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Abstract 

In this research, we investigate the relationships between structural complexity, 
accountability, and software maintenance performance in Open Source Software 
development projects. Additionally, we investigate the moderating role of monetary 
incentives on various relationships. We collected data on 5,000 bug reports from the 
SourceForge database and perceptual data from 181 open source software developers 
registered on SourceForge for model validation. Results support our hypotheses. The 
important implications of the results are discussed. 
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Introduction 

Typically, an open source project starts when an individual (or group) feels a need for new software or a 
new feature in existing software to solve a personal or work-related problem, and someone in that group 
eventually writes the code to meet that need.  Once the software is released, the user community can 
freely utilize it, modify the source code to customize it to their local needs, identify and report errors in 
the software and submit fixes to existing bugs.  Any such code fixes are reviewed by the core group of that 
open source project, before they are integrated into the source code and released as a new version under 
the same public license. This process of program refinement and maintenance through bug submission 
and fixing continues iteratively throughout the useful life of the software. Due to its long-term and 
iterative nature, open source software (OSS) clearly requires significant long-term investments in 
maintenance. Software maintenance is the “modification of a software product after delivery to correct 
faults, to improve performance or other attributes, or to adapt the product to a modified environment” 
(IEEE 1993). In this study, our focus is on the corrective dimension of software maintenance. 

Given the long life of software systems, it is possible that the individual performing maintenance tasks did 
not participate in the initial development of the original software (Kemerer 1995). If that is the case, the 
developer has to expend a large portion of his or her resources and mental effort in comprehending the 
existing software rather than in making the actual modifications (Lientz et al 1978). Maintenance 
activities for many OSS projects are documented at SourceForge, one of the largest repositories of OSS 
projects on the Internet. Software testing, code fixing, and potential extensions are often performed by 
highly skilled experts who invest a considerable amount of their personal time into these projects without 
expectations of monetary rewards. These open source programmers resemble virtual team members 
scattered across the globe who rarely meet face-to-face and interact solely via the Internet, but are 
brought together by their shared interest in software development. Hence, for a volunteer to complete a 
maintenance task, comprehending the existing source code becomes a key aspect of OSS maintenance. In 
fact, comprehension may be even more challenging for OSS projects than for traditional proprietary 
software, given that most of the participants are volunteers who, unlike developers working in companies, 
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are not bound by any traditional chains of command, and have a choice to not participate in the 
maintenance activities at all.  

As software grows in size and complexity, the task of comprehending it becomes increasingly difficult 
requiring a greater amount of effort from the developers (Rilling and Klemola 2003, Campbell 1988). 
However, many psychologists have concluded that individuals are cognitive misers who avoid expending 
mental effort and attempt to minimize mental procedures whenever possible (Taylor 1981). This might be 
one reason, among others why developers prefer to work on software development over software 
maintenance (Polo, Piattini and Ruiz, 2003; Griesser 1993).  However, this cognitive miser model was 
based on laboratory settings; thus, one has to be cautious in assessing the generalizability of this model.  

In contrast to laboratory settings, where individuals are not held accountable for the positions they take, 
in everyday life, individuals operate in settings in which implicit or explicit norms of accountability 
regulate their conduct (George 1980, Katz and Kahn 1978). When individuals feel accountable for tasks, 
their task behavior changes (George 1980). The question then inevitably arises: Does accountability 
influence performance in highly demanding cognitive tasks? More specifically, do individuals perform 
better in cognitive tasks, such as software maintenance, for which they feel personally accountable?  

The concept of accountability, which is defined as an obligation or willingness to accept responsibility or 
to account for one’s actions, has been an inherent part of the design and implementation of information 
systems. For instance, methods and models such as Yourdon Methodology, Total Quality Methods, and 
the Capability Maturity Model, focus on ways of making development processes accountable, both within 
project teams and for management, on an organizational level (Eriksen 2002, Button and Sharrock 1998). 
Even in the OSS community, the notion of accountability exists through its meritocratic philosophy 
(Lerner and Tirole, 2002; Masum, 2001; Raymond, 2001). Contributors develop their reputations 
through sustained quality contributions which lead to recognition and authority in the community. 
Although accountability has been an inherent part of well-studied and widely-used models of information 
systems and OSS community development, to the best of our knowledge, its role in software maintenance, 
and particularly in the OSS setting, has not been studied yet. It is especially important to examine the 
impact of accountability on software maintenance in OSS projects, because much of the work is done by 
volunteers. Our research addresses this gap in the maintenance literature by studying the effects of 
accountability on maintenance performance. In our study, maintenance performance is defined as 
corrective maintenance effort, or the effort to fix identified bugs in the software.  

In addition to software complexity, we also consider the moderating effects of monetary incentives on the 
relationship between accountability and corrective maintenance effort. Vieder (2008) suggests that 
monetary incentives confound the impact of accountability on individual’s behavior. Clearly, another 
question then arises: Do monetary incentives moderate the relationship between accountability and 
performance behavior?  

In sum, this paper focuses on formalizing the separate and joint effects of accountability, software 
complexity, and monetary incentives on performance of corrective maintenance tasks as empirically 
testable hypotheses. The paper then reports the results from testing those hypotheses within the context 
of open source software projects using maintenance data from 5,000 bug reports from the SourceForge 
database and perceptual data from 181 open source software developers registered on SourceForge.  

The rest of the paper proceeds as follows. Section 2 presents the design of this study and develops 
research hypotheses for empirical testing.  Research methods employed for testing our hypotheses are 
described in §3.  Data analytic techniques and findings are presented in §4, following by a discussion of 
these findings in §5.  The paper concludes with a summary of its theoretical and practical implications. 

Theoretical Framework 

The theoretical framework for this study is developed by integrating two different perspectives. The 
accountability perspective forms the basis for conceptualizing the importance of accountability as 
motivation to complete software maintenance tasks. The complexity perspective forms the basis for 
choosing software complexity as a key variable influencing performance. 
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Accountability Perspective 

As observed by Eriksen (2002), accountability is used most frequently by social scientists inspired by 
ethnomethodology, a research approach which focuses on how people organize their everyday actions and 
interactions so as to make them visible-and-accountable (Garfinkel 1967). According to Suchman (2002), 
accountability is bearing the results of one’s own actions. It has been argued as a process in which 
individuals perceive being answerable to external audiences for performing a certain task thereby 
fulfilling obligations, duties, and expectations (Weigold and Schlenker, 1991, p. 25; London 2003). Using 
a four stage mode, Schlenker and Weigold (1989) described the processes through which accountability 
and its resulting effects evolve. The four stages of the model are inquiry, accounting, judgment, and 
sanctions. In the inquiry stage, individuals anticipate having to describe, interpret, and justify their 
actions based on their perceived behavioral standards. In doing so, they thereby proffer personal versions 
of the events and why they occurred; this is the accounting phase. During subsequent stages, individuals’ 
actions are evaluated, and they are rewarded or sanctioned based on a comparison between the behaviors 
exhibited and behaviors expected. Although the model has four stages, the feeling of accountability and its 
corresponding behavioral actions take place during the inquiry phase only.  

Continuing the work of Schlenker and Weigold (1989), London et al (1997) developed a sub-model of the 
inquiry phase, which focused only on the components that lead to an individual’s feeling of accountability 
and its corresponding resulting behavior. The model is shown in Figure 1. According to this model, an 
individual (actor) experiences forces originating due to either internal or external sources for a task 
(objective). These forces, in turn influence the individual’s behaviors and reactions. We have used this 
model to guide our theoretical foundations for the concept of accountability. The different components of 
the model are explained next. 

 

 

Figure 1: Model of Accountability Processes (Adopted from London et al 1997) 

 

In this model, an individual is held accountable for an objective. An actor’s accountability may originate 
from different sources discussed later. Goal setting theory suggests that the object of accountability has to 
be clear and unambiguous (Frink and Klimoski, 1998; Locke and Latham, 1990) to ensure that the actor 
understands what behaviors are expected of him or her. As such, there may be several objectives, and each 
objective may vary in complexity, and in turn the required effort (Locke and Latham, 1990).  

There are two sources of origination of accountability- internal or external. Under external accountability, 
individuals feel responsible and obligated to perform certain behaviors because they are expected by 
others or social situations to do so (Erdogan et al, 2004). On the other hand, in the case of internal 
accountability, the source is one’s conscience (London et al, 1997). The individuals, in this case, feel the 
obligation to perform certain behaviors because of their own commitment to the behavior. Thus, 
individuals are responding to external accountability when behaviors are performed because of an 
obligation to another person, and are responding to internal accountability when behaviors are performed 
as an obligation to oneself. London et al (1997) suggested that accountability may even emerge from a 
combination of the two sources. 
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Accountability forces are the reasons why people feel accountable. These forces originate from the internal 
or external or combination of both sources. Internal forces include feeling of self-control, and ego-
gratification. External forces may be financial, approval and recognition from peers, potential positive or 
negative outcome (e.g. gain in job market) under the discretion of source (London et al 1997). The 
distinction between the internal and external forces of accountability is important to understand. When 
the originating source is internal, formal control mechanisms, such as role descriptions, rewards, and 
punishments, may not be necessary. Instead, individuals carry on the tasks because of their perceived 
obligation to themselves. However, when the origin is external, the formal mechanisms exert pressure on 
individuals to perform the expected behaviors. These accountability forces increase an actor’s feelings of 
accountability, which, in turn, influence the actor’s behaviors such as increased effort, mindful cognitive 
processing, faster performance, and satisfaction. 

The influence of accountability is currently not very clear, and findings in the literature sometimes appear 
contradictory. The supporting research suggests that accountability leads subjects to process information 
in more analytical and complex ways. For example, McAllister et al (1979) found that subjects who felt 
accountable for their decisions spent more time and effort in a business simulation task than subjects who 
did not feel accountable for their decisions. Cvetkovitch (1978) argued that accountability led subjects to 
“more analytical” modes of thought in betting games. In a study on message processing, Tetlock (1983) 
found that subjects who felt accountable interpreted policy issues on controversial subjects in more 
multidimensional ways than subjects who did not feel accountable. Chaiken (1980) found that 
accountable subjects were not influenced by the likableness of the source of the message, but were 
influenced by the arguments in the message. On the other hand, unaccountable subjects were influenced 
by the likableness of the source, but not by the arguments. Based on her findings, Chaiken further 
proposed that accountability led subjects to actively attempt to comprehend and evaluate topic-relevant 
arguments as opposed to relying on source cues in forming their opinions.  

 

 

Figure 2: Proposed Model of Accountability 

 

On the other hand, accountability does not always lead to greater cognitive work. A few studies have 
suggested that accountability simply leads individuals to take positions that they believe are acceptable to 
others. For example, Adelberg and Batson (1978) found that accountable decision makers in a simulated 
environment produced less effective results in money allocation activity when there were not enough 
funds. In an intergroup bargaining experiment, Benton (1972) showed that negotiators who feel 
accountable to constituents take more rigid bargaining stances and are less likely to arrive at mutually 
beneficial agreements than are negotiators not under such pressure. Kennedy (1993) found that 
accountability reduced the recency bias for M.B.A. students, but not for audit managers. Cloyd (1997) 
found that accountability influenced the search strategies of high-knowledge tax seniors but did not 
improve the strategies of low-knowledge tax seniors.  

The evidence on the effects of accountability is thus mixed: Sometimes accountability leads to complex 
information processing, and sometimes it leads to expedient decisions. These mixed results could be due 
to the various differences in studies. For example, the studies by Kennedy (1993) and Cloyd (1997) 
differed in several aspects such as task complexity, and subjects; and it is possible that these aspects, 
either alone or in combination, may have accounted for the difference in results. Clearly, further work is 
needed to understand the impact of accountability. Its impact in the context of software maintenance is 
developed further in the next section. 
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Complexity Perspective 

Software complexity has existed as an important issue ever since the software programs came into 
existence. However, there is no consensus about what software complexity actually is. What is accepted is 
that there are two main categories of software complexity: computational and structural (Zuse 1991). 
Basili and Hutchens (1983) defines complexity as a measure of the resources expended by a system while 
interacting with a piece of software to perform a given task. It is important to note the term ‘system’ in 
this definition. If the interacting system is a computer, then complexity is defined by the execution time 
and storage required to perform the computation. For example, as the number of distinct control paths 
through a program increases, the computational complexity may increase. This kind of complexity is 
defined as ‘Computational Complexity’ (Rabin 1977, Curtis et al 1979). If the interacting system is a 
programmer, then complexity contributes to the difficulty experienced by the programming in performing 
tasks, such as coding, debugging, testing, or modifying the software. This kind of complexity is known as 
‘Structural Complexity’. Structural complexity, defined as “the organization of program elements within a 
program” Gorla and Ramakrishnan, 1997), refers to characteristics of software which make it difficult to 
understand and work with (Curtis et al 1979). Dealing with structural complexity primarily expends 
intellectual resources; whereas computational complexity primarily consumes machine resources. As 
exponential improvements in technology, combined with the ever declining cost of per unit machine 
resource, have rendered computational complexity unimportant, we primarily focus on structural 
complexity in this paper.  

The notion of structural complexity is linked with the limitations of short term memory. According to the 
cognitive load theory, all information processed for comprehension must at some time occupy short-term 
memory (Rilling and Klemola 2003). Short term memory is described as the capacity of information that 
the brain can hold in an active, highly available state. Short term memory can be thought of as a 
container, where a small finite number of concepts can be stored. If data are presented in such a way that 
too many concepts must be associated in order to make a correct decision, then the risk of error increases. 
The capacity of holding information may vary across individuals, and may limit the capability to 
comprehend and modify the existing source code.  

This structural view of complexity is particularly appropriate for studying software maintenance. 
Complexity causes two general problems in maintenance. The more complex a system is, the more 
difficult it is to understand, and therefore to maintain. Empirical studies suggest that a significant portion 
of the software maintainer’s time is devoted to understand the existing source code of the software to be 
changed (Littman et al 1987). A study of professional maintenance programmers by Fjeldstad and 
Hamlen (1983), for example, found that, depending on the complexity, the programmers studied the 
original software code up to 3.5 times as long as they studied the supporting documentation, and equally 
as long as they spent implementing the modification. The second problem is more insidious. Empirical 
research shows that complex programs require more maintenance throughout their lives (Gremillion 
1984, Vessey and Weber 1983). Complex programs contain more errors, and errors are more difficult to 
uncover during testing. Consequently, they remain undetected until late in the life cycle. The problem is 
circular, i.e. maintenance is difficult because of complexity, and because of complexity more maintenance 
is required. Thus, this study argues that software structural complexity is a key maintenance performance 
factor because it influences the critical activity of program comprehension. 

Research Model and Hypotheses  

The theoretical framework for this study is presented in Figure 3. The framework integrates two models in 
which structural complexity and accountability influence software maintenance performance. These 
relationships with software maintenance performance are moderated by monetary incentives. A detailed 
explanation of all the relationships depicted follows. 

Maintenance Performance (Time taken to fix bugs) 

Prior work on software maintenance has typically measured performance in terms of meeting budget, 
schedule, and functionality requirements (Hoffer et al 2002). However, OSS projects typically have no a 
priori budget, schedule, or set of requirements (Scacchi 2002) limiting the conceptualization of effective 
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development. Similarly, some typical software engineering outcome metrics such as post release defect 
rates or conformance to quality standards may only be applied toward the end of the systems 
development life cycle, while attaining effectiveness in earlier stages is important in the OSS context 
because many projects fail before producing a finished product (Stewart and Gosain 2006).  

 

 

Figure 3: Proposed Research model 

 

Some OSS studies such as Apache and Mozilla have used responses to maintenance requests as indicators 
of work accomplishment (Mockus et al 2002). Yu (2006) proposed an indirect maintenance model to 
measure performance of OSS projects in terms of lag time, which is defined as the time between starting a 
maintenance task and closing the task. In other words, lag time is the duration from when a bug is 
reported until the bug is fixed and the bug request is closed. Following these, we focus on OSS 
maintenance performance in terms of the effort (measured as time) to complete corrective software 
maintenance tasks for OSS projects. Therefore, Maintenance Performance is measured as the time logged 
on SourceForge to complete a corrective maintenance task. The study focuses on the time lag as the 
variable of interest, since personnel time is the most expensive and scarce resource in software 
maintenance (Grammas and Klein 1985). In traditional software maintenance, clients are charged by the 
amount of time spent on their projects. This motivates personnel to maintain accurate project time 
records. 

Complexity 

Often a developer fixing bugs in the source code has not participated in the initial development of the 
original program (Kemerer 1995). As a result, in order to perform maintenance tasks, an individual has to 
first comprehend the source code of the existing software. Comprehending involves identifying the logic 
among various segments of the source code and understanding their relationships. This process is 
essentially a mental pattern recognition by the software developer, and involves filtering and recognizing 
enormous amount of data (Rilling and Klemola 2003). Consequently, an individual expends most of his or 
her resources in comprehending the source code rather than in making the actual modifications (Lientz et 
al 1978).  

Kearney et al (1986) suggested that the difficulty of understanding depends, in part, on structural 
properties of the source code. As simple source code is easier to analyze, it requires less processing 
capacity. On the other hand, a complex source code is difficult to analyze, and requires high processing 
capacity. In other words, as software becomes increasingly complex, the amount of required cognitive 
effort in comprehending existing source code becomes increasingly high (Rilling and Klemola 2003). 
High cognitive load requires more time-consuming and resource-demanding efforts to familiarize oneself 
with the code (Darcy et al. 2005). As high amounts of software complexity interfere with the process of 
comprehending the source code (Gibson and Senn 1989), it becomes difficult for maintainers to efficiently 
and correctly modify the software. Furthermore, software maintainers are often required to modify 
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software that is ill-documented, lacks comprehensible structure, and hides data representations 
(Guimaraes 1983). Thus, software maintenance becomes a largely cognitive task in which programmers 
perceive and manipulate relationships between informational cues presented by the existing software 
(Pennington 1987, Shneiderman 1980). This implies that the higher the amount of complexity in source 
code, the greater the downstream penalties in terms of resources consumed for software maintenance 
(Banker and Slaughter 2000). Therefore, consistent with the prior research on software complexity, we 
expect a positive relationship between source code complexity and the time it takes to perform the 
maintenance tasks. 

H1: An increase in the source code complexity is inversely associated with the software maintenance 
performance. 

Accountability 

Even though the OSS community is open, there is still a notion of accountability through its meritocratic 
philosophy. The merit is based on reputation gained by recognition from the co-developers and the 
community members (Lerner and Tirole 2002). When a developer makes a contribution to an OSS 
project, the peers assess whether the contribution merits acceptance into the code base or not. This 
acceptance of contribution in the code base brings a “good” reputation to the developer among other co-
developers.  

Jensen and Scacchi (2007) empirically studied an individual’s movement from being an observer to a core 
developer. They found that an individual moves through different stages – observer, bug reporter, 
developer, and core developer – while participating in OSS development. During an individual’s 
progression, the individual must both acquire project-specific technical skills, and earn the reputation by 
demonstrating these skills (Bird et al 2007). Programming skills are considered highly knowledge 
intensive, and even experienced developers have to work hard to gain specific skills needed for particular 
development tasks (Bird et al 2007). In other words, an individual earns his reputation by investing a lot 
of effort, time, and commitment.  

When individuals are accountable for a task, whether self-selected or imposed by other members of the 
OSS community, they attempt to perform the task efficiently to maintain their current status or gain 
better reputation. Reputation, which emerges as a consequence of the reliable and consistent behavior 
over time, is an indication of future actions of the individual (Ganesan 1994). Accountability, thus, 
motivates individuals to perform by increasing the importance of avoiding “bad” standing 
(embarrassment, loss of self-esteem) and of making “good” standing (status) (Tetlock 1983). In terms of 
Janis and Mann (1977), people who expect to be evaluated are more likely to perform the tasks. Therefore, 
an irresponsible action of not completing the task in the timely manner, for which the individuals are 
accountable, can have negative consequences for their reputation. This fear of loss of reputation motivates 
a developer to complete the task in timely manner (Markus et al 2000). 

Now, when a new bug is reported, OSS project leaders either assign the task of fixing the bug to one 
particular (set of) developer(s) or do not assign the task to anyone at all. It is also possible that an 
individual may assign the task to him- or herself. So, when a task is either self-assigned or imposed by 
project leaders, the individual with the responsibility becomes accountable for that task. In agreement 
with Fox et al.’s (1979) observation that poor performance of accountable individuals can be highly 
threatening for their reputation, we argue that the tasks for which someone is accountable, gets completed 
in shorter time. Hence, we hypothesize that accountability influences an individual’s software 
maintenance performance. 

H2: Accountability is positively associated with software maintenance performance. 

We also argue that accountability moderates the relationship between complexity and maintenance 
performance. As we have described, software maintenance is a largely cognitive task in which 
programmers perceive and manipulate relationships between informational cues presented by the 
existing software (Pennington 1987). High complexity tasks consume more short-term memory and thus 
require more time-consuming, resource-demanding cognitive-processing of the cues (Darcy et al. 2005). 
On the other hand, generation of the required output in low-complexity tasks requires only a small 
proportion of the available cues to be examined and does not require significant effort or resources from 
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developers (Gibson and Senn 1989). Therefore, accountability, which results in increased mindful 
cognitive processing and effort, is unlikely to significantly affect the performance of developers for low-
complexity tasks. However, such an induced higher cognitive-processing and effort will result in 
significant improvement of developers’ performance in the case of high-complexity tasks, where such 
effortful information integration is required. Therefore, we hypothesize that accountability will have a 
stronger impact on the completion time for complex tasks than simple tasks. Hence, 

H3: Accountability will attenuate the relationship between complexity and software maintenance 
performance.  

Monetary Incentives 

Performance suffers if a developer does not wish to exert additional effort or attention, although the 
capacity to do so exists. A developer will not exert effort unless doing so seems worthwhile. One remedy is 
to increase the benefits associated with additional attention and effort, perhaps by providing additional 
stimuli.  

Much attention has been given to intrinsic motivational stimuli such as ego gratification, community 
reputation, and signaling expertise. However, an increasing number of open source projects have opted to 
receive monetary donations which have been found to have an impact of developers’ motivations to 
participate in OSS development. Commercial firms spent an estimated cumulative Euro 1.2 billion in OSS 
development up till 2006, both indirectly by allowing or even encouraging their employees to work on 
public OSS projects or by directly supporting existing OSS (Ghosh 2006). Such monetary incentives 
provide external stimuli to developers leading them to take deeper interest in the project and devote more 
of their time and resources to the project (Lakhani and Wolf 2005). Hars and Ou (2002) found salaried 
and contract programmers to be more strongly motivated by self-determination and personal need. In 
other words, monetary incentives boost the developers’ motivation to input higher levels of effort in 
maintenance tasks. Similar to the moderating effect in H3, we expect monetary incentives to moderate the 
relationship between complexity and software maintenance performance. Vieider (2008) argues that as 
both accountability and monetary incentives trigger increased levels of attention and cognitive processing, 
confounding the effects of the two makes causal attributions problematic. It may thus be, in principle, that 
effects traditionally ascribed to one are in fact due to the other. Thus, the effects should be ascribed to the 
interaction between monetary incentives and accountability. Based on this suggestion, we propose that 
accountability and monetary incentives interact to affect software maintenance performance. Therefore, 
we propose the following:  

H4a: Monetary incentives are positively associated with software maintenance performance. 

H4b: Monetary incentives will attenuate the relationship between complexity and software 
maintenance performance. 

H4c: Monetary incentives will strengthen the effects of accountability on software maintenance 
performance. 

Methods 

We evaluated our hypotheses using data that we collected in two phases. The first phase of data collection 
involved bug reports that were closed during years 2006 and 2007, whereas the second phase of data 
collection involved bug reports that were closed between May 2010 and September 2010. The details of 
the two phases are discussed next. 

Phase I 

Data were collected from open source projects registered at SourceForge prior to the year 2006.  
SourceForge is the primary hosting site for open source projects on the Internet, currently hosting many 
open source projects, and data from this site have previously been used for studying a wide range of open 
source behaviors (e.g., Grewal et al 2006, von Hippel and von Krogh 2003).  Restricting our analysis to 
projects registered before 2006 allowed us the opportunity to examine at least two years of maintenance 
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activities for these projects, by examining reported bugs for these projects during the years 2006 and 
2007.   

Our project sample was further restricted to projects written using the C++ programming language and 
those designed for the Windows operating system.  This was based on prior findings that coders’ choice of 
programming language influences program size (Jones 1986) and program complexity (Weyuker 1988), 
and hence code written in different programming languages is not directly comparable.  Software written 
in “low” level programming languages tends to have more lines of code and takes longer to understand, 
correct, or extend than that written in “high” level languages.  Likewise, programming efforts tend to vary 
with the operating system of the project.  We chose the Windows operating system because of its 
widespread deployment and popularity and because of the large number of open source projects directed 
at this computing platform. This criterion resulted in 1054 projects with 105,910 bugs. For the study, we 
randomly selected 5,000 closed bugs to test the proposed hypotheses. To ensure reliability of the results, 
robustness tests were conducted as described in the results section later.  

Focal Variables 

Maintenance Performance: We extracted various elements of data, including the bugs reported, the 
date on which the bugs were reported, the date on which the bugs were fixed, and the release number, 
from bug tracking system, and version tracking reports. From these extracted elements, we calculated the 
time taken to fix (FixTime) each individual bug by subtracting the open date from the close date for each 
bug. 

Complexity: There is a large variety of complexity metrics available in literature and being practiced by 
the software industry. The two most common metrics are Halstead’s E and McCabe’s cyclomatic. We view 
complexity as the degree of cognitive effort involved. From this perspective, Halstead’s measures 
(Halstead 1977) completely ignore the factor corresponding to the complexity of function calls. They are 
suitable only for predicting algorithmic complexity of a program. If a program has a very small number of 
operators but many function-calls then these metrics will not give a correct estimation of complexity. In 
such cases, these metrics will classify an application as a difficult one to comprehend.  

McCabe’s Cyclomatic complexity is another measure of cognitive complexity. It tends to assess the 
difficulty faced by the maintainer in order to follow the flow control of the program. It is considered an 
indicator of the effort needed to understand and test the source code (Stamelos et al 2002). Kemerer and 
Slaughter (1997) used McCabe’s cyclomatic complexity metric to evaluate decision density, which 
represents the cognitive burden on a programmer in understanding the source code. Therefore, in order 
to measure the complexity of the task, we measured the cyclomatic complexity of the corresponding 
version of the project and subjected the source code files through CCCC, a software code analysis tool 
designed for object-oriented (C++) source code. In the case of C++, the tool counts the number of 
independent paths using tokens such as 'if', 'while', 'for', 'switch', 'break', '&&', and '||'. The cyclomatic 
number is calculated once for each function, wherever it appears in the inheritance hierarchy, and is 
considered to be contributed exactly once to the total cyclomatic number for the system as a whole, no 
matter how many child classes gain access to the function by inheritance.  To account for the effects of 
size, the complexity (Complexity) was normalized by dividing it by the number of lines of code for each 
software project. In addition, this also reduces collinearity problems when size is included in the 
regression models (Gill and Kemerer 1991). 

Accountability: Each project in our study maintains a list of tasks to be completed. For each task, 
projects also list the individual to whom the task has been assigned (either by the group administrators or 
chosen by the individual). If the task is not assigned to any one, it is left open for so that anyone from the 
OSS community can work on it. Accordingly, a variable Accountability is used to represent task 
accountability (1 if assigned, and 0 otherwise).  
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Monetary Incentives: A control variable Sponsor is used as a dummy variable to denote whether a 
project uses external funds as part of its incentive mechanism (1 if yes, and 0 otherwise). 

Control Variables 

Different variables including age of project, size of project, total installed base representing total 
downloads, and project maturity were controlled for. Detailed explanations for controlling these variables 
have been omitted due to page length limitations but are available upon request from the authors. 

Selection Bias  

As a significant portion of the bugs (34%) were not closed within the time frame of the study, the selection 
of only closed bugs could have resulted in selection bias in the results. In order to test for the possibility of 
sample selection bias, we compared various chacteristics of bugs that were closed (and selected in the 
study) with the chacteristics of bugs that were not closed (not selected in the study). We randomly 
sampled 100 bugs that were not closed, and extracted data elements for complexity, project size, and 
sponsorship for those bugs. The results of all the t-tests on the two groups show no significant differences. 
This suggests that selection bias may not be salient.  

Analysis Technique 

Although we have controlled for various project specific characteristics that could affect time to fix bugs, 
there could still be potential unobserved heterogeneity. Unobserved attributes such as governance 
mechanisms, coordination among the developers, etc., may potentially influence maintenance 
performance. The presence of such unobserved effects may lead to inefficient estimates. Hence, to check 
for the significance of these unobserved effects, we perform a Breusch-Pagan Lagrange Multiplier test 
(Wooldridge 2006). In the absence of project specific unobserved effects a pooled OLS estimation is 
consistent as well as efficient. In the presence of unobserved effects but the absence of correlation 
between unobserved and observed independent variables random effects estimation is consistent as well 
as efficient. However, in the presence of the correlation the random effects estimation is inconsistent. 
Given the potential for correlation between the unobserved characteristics of a project and the observed 
independent variables, we test these effects through the use of project fixed effects estimation (Greene 
2003). By the use of fixed effects, we can parcel out the effect of project level factors and obtain unbiased 
estimates of the relationship between independent and dependent variables. Though the fixed effects 
estimates are consistent, they are inefficient in the absence of correlation. We performed the Hausman 
specification test to compare fixed versus random effects under the null hypothesis that the project 
specific unobserved effects are uncorrelated with other regressors in the model (Greene 2003). The 
results are presented in a subsequent section. 

Phase II 

As discussed in the theory development section, accountability forces are the reasons why individuals feel 
responsible for performing certain tasks. Such feelings of accountability can originate from internal as 
well as external sources. To capture accountability as a perceptual force, we also measured perceptions of 
accountability using a survey instrument. The instrument was adopted from Frink and Ferris (1998), and 
contained 5 items each for internal and external accountability. The instruments included items such as, 
“I will get recognition from the project administrators if I fix this bug,” “My success in fixing this bug is 
important to the project administrators,” “The project administrators feel that fixing this bug is important 
for the project,” “The project administrators’ impression of how quickly I fixed this bug is important to 
me,” “I feel accountable to the project administrators to fix this bug.” 

An important section of the survey involved a retrospective study, where the respondents were asked to 
recall a specific bug they fixed, and their perceptions at the time of fixing that bug. To avoid memory bias, 
we chose to limit the data collection to bugs reports closed within the last 4 months, i.e., May 2010 and 
September 2010. The other selection criteria were kept the same as discussed in Phase 1.  Following the 
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preparation of a list of bug reports between the aforementioned time period, 300 email invites were sent 
to individuals who had fixed those respective bugs, with the instructions to answer the survey based on 
the respective bugs. Each invitation and corresponding survey was customized to include the web link to 
specified bug report.  

Of the 300 emails sent, we received 181 usable responses (60.33% response rate).  A t-test was performed 
to compare the experience (length of registration at SourceForge) of developers who responded to the 
survey and the developers who did not respond to the survey. A separate t-test was performed on the 
number of the projects with which the developers were associated. Both t-tests confirmed no differences 
in the responders and non-responders. Hence, non-response bias was not an issue.  Subsequent to 
receiving the responses, we gathered other data items as well as objective measures of accountability for 
each bug as discussed earlier in Phase 1. 

Phase II of our study serves two purposes: (i) validates our objective measure of accountability, and (ii) 
confirms the reliability of our model and results.  

Model Specification and Results 

Initial investigations indicated that the dependent variable and many of the independent variables were 
not normally distributed.  In such cases, linear regression analysis might yield biased and non-
interpretable parameter estimates (Gelman and Hill 2007).  Therefore, as suggested by Gelman and Hill 
(2007), logarithmic transformations were performed on the non-normally distributed dependent and 
independent variables.  

Additionally, interaction terms were found to be correlated with their corresponding variables. The 
correlations were high enough to raise concerns of multicollinearity, which if uncorrected for may lead to 
inflated standard errors and, in worst case, inconsistent or unstable estimates (Greene, 2003). As 
suggested by Gelman and Hill (2007), we mean centered the variables before calculating the interaction 
variables which reduced the correlation to acceptable level. Multicollinearity does not appear as an issue. 
For clarity, the different transformations are shown as ln, nm, and mc for log operated, normalized, and 
mean centered transformations respectively in the model. 

For our dependent measure, FixTime, we test the impact of complexity and accountability by estimating 
the parameters for the following regression model: 

lnFixTimeij = α + β1nmComplexityij + β2Accountabilityij + 

 β3mcAccountabilityij*mcComplexityij  + β4amcSponsori  + 

β4bmcSponsori*mcComplexityij + β4cmcAponsori*mcAccountabilityij + β5lnAgeij + 

β6lnSizeij + β7lnDownloadij + β8Maturityij + µj + εij 

 

where i is project; j is bug; lnFixTime is log of dependent variable (time taken to fix the bugij); Complexityij 
is the complexity of the project at the time of the bug fix; Accountabilityij is the indicator variable which 
equals 1 when someone is accountable for the bug fix maintenance task, and 0 otherwise; Sponsorj is an 
indicator variable which equals 1 when a project receives monetary sponsorship, and 0 otherwise; 
Priorityij is also an indicator variable which equals 1 when the bug fixing task has high importance, and 0 

otherwise; ui represent unobserved effects; and εij is the error term. 

Results for Phase I 

The Breusch-Pagan Lagrange Multiplier test was significant, (χ2= 6.41, p < 0.05) and the Hausman test 
was insignificant (χ2 = 10.50, p=n.s.). This implies that the random effects estimation is consistent as well 
as efficient for the analyses. The residuals of the all models were analyzed for potential serial correlation. 
No significant serial correlation was observed. As a further diagnostic test, we calculate Variance Inflation 
Factors (VIF) for each variable (Greene 2003); the maximum value of VIF is 1.40 (see Table 1), well below 
10, which is usually considered as the threshold above which multicollinearity may affect results (Neter et 
al. 1990). Belsley-Kuh-Welsch (1980) collinearity diagnostics indicated a highest condition number for 
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the model of 10.37, also within the recommended limit (Greene 1993), confirming no significant concern 
for multicollinearity. A variety of specification checks was performed for the estimated model to ensure 
that standard assumptions were satisfied. Table 1 presents random effects estimation results for the time 
it takes to close bugs. The results are based on data collected for 5,000 bugs from 552 different OSS 
projects.  

The results show support for all six proposed hypotheses. The coefficient of complexity is positive and 
significant supporting hypothesis 1. Consistent with hypothesis 2, the coefficient of Accountability is 
negative and significant. The interaction between Complexity and Accountability is negative and 
significant supporting hypothesis 3. Consistent with hypothesis 4, the coefficient for monetary incentives 
is negative and significant. Monetary incentives variable also has significant moderating effect on both 
accountability and complexity. The results are discussed in details in the next section.  

Robustness Test 

Other than applying robust standard errors and testing for multicollinearity in Table 1, we further 
performed sensitivity analyses included re-estimating maintenance performance after deleting two 
influential observations identified using the Belsley-Kuh-Welsch (1980) criteria. The sign and significance 
of the variables in the revised regression correspond to those in the original model. Additionally, we 
computed the regression coefficients using a fixed effects model, and the regression results were 
consistent with the results from the random effects model. To conserve space we do not report these 
results. The results are available from the authors upon request. 

 

Table 1: Results of Random Effects Models for lnFixTime (n=552, Obs=5000) 

Variable Coefficients Std Error VIF 

Focal Effects    

Complexity .472** .012 1.40 

Accountability -.373** .023 1.14 

Complexity*Accountability -.152** .028 1.33 

Sponsor -.347** .027 1.37 

Complexity*Sponsor -.211** .029 1.17 

Accountability* Sponsor -.277** .051 1.30 

Control Effects    

Project Age .038 .026 1.16 

Project Size .005 .006 1.04 

Installed Base -.016* .005 1.03 

Project Maturity .006 .005 1.01 

Model Statistics    

R-square within .347   

R-square between .461   

R-square overall .356  ** p-val < 0.05 

Wald χ2 3624.59  ** p-val < 0.01 

NOTE: The dependent variable was computed in terms of time taken to close bugs. Therefore, the higher 
value would imply lower maintenance performance, whereas lower value implies higher maintenance 
performance.  Consequently, the estimated regression coefficients have reverse signs. 
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Results for Phase II 

The measurement scale for accountability was tested for reliability and construct validity using 
confirmatory factor analysis (CFA). CFA is more appropriate than alternative statistical techniques such 
as exploratory factor analysis when there is strong a priori theory and the research employs mostly pre-
validated measurement scales (Bagozzi and Phillips 1982), as was the case in this study. Confirmatory 
factor analysis utilizing varimax rotation (Johnson and Wichern 1992) and the Kaiser-Meyer-Olkin (1974) 
measure of sampling adequacy and Bartlett's test of sphericity were employed to verify that internal and 
external accountability constructs loaded on orthogonal factors. The results of factor analysis as shown in 
Table 2 confirmed a two-factor solution. 

 

Table 2: Confirmatory Factor Analysis & Scale Properties 

Internal External 

1a .833 2a .887 

1b .887 2b .882 

1c .869 2c .893 

1d .836 2d .839 

1e .823 2e .867 

Composite Reliability .929 Composite Reliability .941 

AVE sq root .850 AVE sq root .874 

 

The convergent validity of scale items was assessed using three criteria suggested by Fornell and Larcker 
(1981): (1) all item factor loadings (λ) should be significant and exceed 0.60, (2) composite reliabilities for 
each construct should exceed 0.80, and (3) average variance extracted (AVE) for each construct should 
exceed 0.50, or in other words, the square root of AVE should exceed 0.71. As seen from Table 2, 
standardized CFA loadings for all scale items in the CFA model were significant at p < 0.001 and exceeded 
the minimum loading criterion of 0.60, with the minimum loading being 0.823 for internal accountability 
item 1e. From Table 2, we can see that composite reliabilities of all factors also exceeded the required 
minimum of 0.80, with the values of being 0.929 and 0.941 for internal and external accountability 
constructs respectively. Further, the square roots for AVE for both the constructs are 0.85 and 0.87; both 
of these are greater than the desired minimum of 0.71. Hence, all three conditions for convergent validity 
were met. 

Table 3 presents random effects estimation results for the time it takes to close bugs. The results are based 
on data collected for 181 bugs from 159 different OSS projects. Model 2a shows the results of random 
effects estimation for Phase II data with an objective measure of accountability, whereas Model 2b shows 
the results for data with perceptual measure (through survey) of accountability. Both models show 
support for all six proposed hypotheses. More importantly, the beta coefficients in both the models have 
similar values indicating that the two measures have similar effects. This is also confirmed through the 
high value of coefficient of concurrent validity (0.716) between the two measures of accountability.  

Model 2c and 2d show the results of post-hoc analysis, where we tested the effects of accountability 
originating from internal and external forces separately. Model 2c shows the results of random effects 
estimation with accountability originating from internal sources, whereas Model 2d shows results with 
accountability originating from external sources. As can be seen in Model 2c, the direct effect of internal 
accountability on the maintenance performance is not statistically significant at the 0.05 level.   

Discussion 

This study employed data from open source software projects to analyze the impact of complexity and 
accountability on software maintenance performance (defined in terms of the time taken to complete 
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corrective maintenance tasks).  Various other moderating effects were also studied. This section describes 
our key findings and their implications for software maintenance research and practice. Unless mentioned 
otherwise, the discussion is based on the results of Phase I data.  

Complexity can lead to many problems, an obvious one being the time taken to fix bugs. It is common that 
when a bug is fixed in one segment of the source code, it usually causes ripple effects and adjustments in 
other segments. The more complex the software, the more the required adjustments in other segments. As 
a consequence, the developer has to simultaneously understand, and repair related pieces in dispersed 
segments. Handling all segments together has a detrimental effect on the time devoted by the developer 
because more time is needed to follow the flow of logic within the code. We found that, ceteris paribus, 
with an increase in one unit of complexity, the average time it takes to fix bugs increases by 0.472 units.  

 

Table 3: Results of Random Effects Models for lnFixTime (n=159, Obs=181) 

 Model 2a 

(0/1 Scale) 

Model 2b 

(Overall Acct) 

Model 2c 

(Int. Acct) 

Model 2d 

(Ext. Acct) 

Focal Effects         

Complexity 0.317** 0.355** 0.354** 0.363** 

Accountability -0.203** -0.186** -0.108 -0.153* 

Complexity*Accountability -0.194* -0.160* -0.168* -0.126* 

Sponsor -0.129* -0.163* -0.228** -0.242** 

Complexity*Sponsor -0.149* -0.172* -0.214** -0.203* 

Accountability* Sponsor -0.160* -0.145* -0.144* -0.039 

Control Effects         

Project Age 0.092 0.096 0.099 0.096 

Project Size 0.041 -0.002 -0.007 -0.001 

Installed Base -0.046 -0.044 -0.046 -0.056 

Project Maturity -0.058 -0.034 -0.041 -0.031 

Model Statistics         

R-square within 0.220 0.172 0.134 0.194 

R-square between 0.481 0.482 0.476 0.451 

R-square overall 0.443 0.432 0.422 0.416 

Wald χ2 294.720 262.930 270.180 269.200 
** p-val < 0.05; *** p-val < 0.01 

Model 2a: Direct measure of accountability (0/1 scale as in Phase I);  
Model 2b: Accountability measured using overall perceptual measure (0-5 scale) 
Model 2c: Accountability measured using only Internal perceptual measure (0-5 scale) 
Model 2d: Accountability measured using only External perceptual measure (0-5 scale) 

 

This result has another spurious effect on software maintenance. When a developer becomes conscious of 
the long time needed to fix a bug, there is a tendency for the developer find ‘quick and dirty’ solutions, 
thereby making the code even less maintainable. Such half-baked efforts lead to a vicious cycle in which 
the complexity, the number of bugs, and the time taken to fix those bugs feed on each other until a dead 
end is reached with the only option of either reengineering the project or shutting it down completely. 

According to the theoretical foundations, accountability as liability rests both on causation of effects and 
on the social expectations of others for one’s action. When held accountable for a task, an individual 
attempts to avoid negative consequences and attempts to achieve positive consequences. Based on this, 
Tetlock (1983) suggested accountability as a technique to improve performance. Our results concur with 



 Midha and Slaughter / Mitigating the effects of structural complexity on OSS 
  

 Thirty Second International Conference on Information Systems, Shanghai 2011 15 

the theoretical model. We found that with an increase in one unit of accountability, the average time taken 
to fix bugs decreases by 0.373 units. 

Apache Group, the informal organization of people responsible for guiding the development of the Apache 
HTTP Server Project, allocates the accountability for bug fixes to its developers, and has been able to get 
work done in an effective way. Project leaders, however, must be aware that they allocate the 
accountability of the work to someone who has the capabilities and resources to do it. Allocating a task to 
a developer, who does not possess sufficient required knowledge or resources, may lower the developer’s 
activity and increase the average time it takes to complete the task. 

Even though complexity and accountability have significant impact on maintenance effort, in order to 
understand their true effects, it is important to consider the moderating effects. The total impact of 
complexity on the time to fix bugs is 0.472*Complexity – 0.152*Complexity*Accountability – 
0.211*Complexity*Sponsor. So the coefficient 0.472 represents the full effect of a one unit change in 
Complexity when holding everything else constant and Accountability*Sponsor=0. However, the full 
effect of one unit change in Complexity when Accountability and Sponsor are not zero is 0.472 – 
0.152*Accountability – 0.211*Sponsor holding all other variables constant. The actual impact of 
Complexity is 0.374 in the presence of Accountability and Sponsor (computed at their respective mean 
values). Note that the effect of one unit change in Complexity is decreasing in the value of Accountability 
and Sponsor. The significant moderating impact of accountability on the relationship between complexity 
and performance is that accountability motivates effort-demanding information processing, i.e. 
individuals exert more effort on complex tasks to maintain their current or gain reputation. This implies 
that delegating accountability of tasks to a developer will lead to better performance of highly complex 
software maintenance tasks. The results for the moderating effects for complexity are shown in Fig 2. The 
results for the impact of accountability in the presence of accountability also showed similar trends.  

 

 

 

Figure 2: Effect of Complexity with Accountability and Monetary Incentives 

 

The true effect of accountability on software maintenance is -0.373*Accountability – 0.277* 
Accountability* Sponsor. So the coefficient -0.373 represents the full effect of a one unit change in 
Accountability when holding everything else constant and Sponsor=0. However, the full effect of one unit 
change in Accountability when Sponsor is not zero is -0.373 – 0.277*Sponsor holding all other variables 
constant. The actual impact of Accountability is -0.427 in the presence of Sponsor (computed at mean 
value). Clearly, the decrease in time to close bugs with increase in accountability was significantly larger 
for the projects that received monetary incentives compared to the projects that did not receive any 
monetary incentives. The results are shown in Fig 3 and suggest that developers take accountability more 
seriously when monetary incentives are attached with a project.  
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Figure 3: Effect of Accountability with Monetary Incentives 

 

The results of the Phase II study also show similar findings. One particular result is worth separate 
discussion. As noted, the effect of accountability when the originating source was internal was not found 
to be significant. However, the effect was significant when the source was external (Model 2d). The results 
imply that the external forces of accountability have a stronger impact on maintenance performance than 
the internal forces. The subtle but critical difference between external accountability and internal 
accountability is “the boss holds me accountable” and “I hold myself accountable”. Katzenbach and Smith 
(1993) point out that external accountability is a precursor to internal accountability, i.e., external 
accountability helps in developing a stronger and a more powerful sense of internal accountability. At its 
core, accountability is about the promises that underpin the two critical aspects of effective and mature 
teams: commitment and trust (Katzenbach and Smith 1993). They further suggest that accountability 
arises from and reinforces the time, energy, and action invested in figuring what the team is trying to 
accomplish. As our results find only external accountability to be significant, the implication is that OSS 
communities are still in the early stages of mature teams. At this time, individuals in the OSS 
communities in our study appear to hold themselves accountable externally, and may be developing the 
ability to hold themselves accountable internally. However, a full-fledged separate study in future might 
be needed to attest to this. 

Limitations  

Like most empirical studies, this research is not without limitations.  The first limitation is the sample 
frame.  While Sourceforge has data about many open source projects, it does not capture all open source 
projects, which was the population of interest in this study.  However, the selected sample size was large 
enough to ensure statistical validity.   

Second, findings from our sample of open source software may not be entirely generalizable to software 
maintenance projects (including proprietary) at large.  For instance, it is possible that some bugs may not 
be reported in open source projects, given the voluntary participative nature of such projects, which may 
influence some of our findings. 

Third, sometimes tasks are not assigned to someone right away. For example, a task may be left open 
now, but gets assigned to a developer next week. One could also argue that an individual may become 
accountable (self-imposed) for a task after working on it, and then submit the modification immediately 
to achieve higher reputation. We did not differentiate between such tasks as the results will remain the 
same because we measured lag time between the date on which a bug was reported and the date on which 
the bug was closed. Even if the developer submits the modification immediately, the developer would 
have worked on it in order to submit the modification. However, controlling for the date of task delegation 
may produce interesting results, and we leave that as an option for future research.  
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Implications 

In spite of the above limitations, this study has important implications for research and practice.  To the 
best of our knowledge, this is the first study to investigate the impact of accountability on software 
maintenance performance.  Strong empirical support for our hypothesized relationships suggests that 
accountability is indeed useful for software maintenance projects, including open source projects that 
tend to have a less rigorously controlled development structure compared to proprietary software 
projects.   

These findings have at least two immediate implications for software and project managers.  First, they 
must monitor and control complexity in order to achieve efficient software maintenance. Second, they 
must delegate accountability to improve software maintenance performance. Maintenance tasks are 
completed in less time when the accountability is assigned.  And third, project managers should solicit 
more external incentives for programmers to work on projects.  

Finally, although we examined the time taken to complete corrective maintenance tasks as a measure of 
maintenance performance, the time taken to fix a bug is also indicative of software quality.  Well-designed 
software should theoretically require less time to correct bugs.  Hence, it is possible that accountability 
may also help improve software quality.  We leave such analysis as an option for future research. 
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