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Abstract 

The growing awareness that effective Information Systems (IS), which contribute to 
sustainable business processes, secure a long-lasting competitive advantage has 
increasingly focused corporate transformation efforts on the efficient usage of 
Information Technology (IT). In this context, we provide a new perspective on the 
management of enterprise information systems and introduce a novel framework that 
harmonizes economic and operational goals. Concretely, we target elastic n-tier 
applications with dynamic on-demand cloud resource provisioning. We design and 
implement a novel integrated management model for information systems that induces 
economic influence factors into the operation strategy to adapt the performance goals 
of an enterprise information system dynamically (i.e., online at runtime). Our 
framework forecasts future user behavior based on historic data, analyzes the impact of 
workload on system performance based on a non-linear performance model, analyzes 
the economic impact of different provisioning strategies, and derives an optimal 
operation strategy. The evaluation of our prototype, based on a real production system 
workload trace, is carried out in a custom test infrastructure (i.e., cloud testbed, n-tier 
benchmark application, distributed monitors, and control framework), which allows us 
to evaluate our approach in depth, in terms of efficiency along the entire SLA lifetime. 
Based on our thorough evaluation, we are able to make concise recommendations on 
how to use our framework effectively in further research and practice.  

Keywords:   Service Science, Adaptive provisioning, Green IT/IS, Service management, 
Service Level Agreements, Workload Forecast 
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Introduction 

Effective information systems (IS) have increasingly matured to critical success factors in modern 
enterprises. For instance, the ability to process extensive business data quickly or the operation of 
innovative and powerful customer portals have become vital necessities in today’s dynamic business 
world. In this sense, effective adaptation to new technology trends as well as agile response to changing 
customer requirements are key to sustainable business practices. Nonetheless, through a strict focus on 
functionality, IT operation expenditures have typically been neglected; however, a rising cost of operation 
and the awareness of its substantial environmental foot print has risen corporate IT out of its “shadowy 
existence” into a key challenge for the next decades (Koomey 2007).  

Current market predictions estimate an annual growth of the server market by 5% (Pettey & Tudor 2010). 
Given this trend, information systems will most probably continue to grow in size and complexity, and 
thus the challenge of the steadily growing consumption of resources persists. Green IT initiatives have 
already taken up this problem and offer a variety of innovations and best practice to reduce the economic 
and environmental impact of computing  (Velte et al. 2009; Schulz 2009). However, thorough 
optimization and enhancement efforts are often beyond the expertise of medium-sized and small 
enterprises, therefore requiring high initial investments.  

With the emerging service world, companies have obtained a powerful alternative to their classic in-house 
IT operation concepts. For instance, cloud computing enables enterprises to outsource parts of their 
physical IT to service providers and buy back computing power on a pay-as-you-go basis. In contrast to 
traditional in-house operation, service providers can leverage economy of scale and scope effects. Thus, by 
offering their services to multiple customers simultaneously and building up expertise, they can provide 
corporate computing demands more cost effectively. Within the service world, Service Level Agreements 
(SLAs) have become the common practice to define the terms of business between two parties. On the one 
hand, they contain the Service Level Objectives (SLO), such as response time requirements; on the other 
hand, they include the financial arrangements for the service operation. While in the beginning service 
providers mainly offered their services on a best-effort basis, today strict binding SLA’s are slowly being 
established in the market (Sahni & Tan 2011; Goolsby 2007) . 

Nonetheless, the adaptation to the new service technology as well as the sensible utilization of IT will be 
one of the key challenges of enterprise computing in the next decade. Even though various technological 
advances as well as new software design paradigms enable highly efficient operation modes today (Bailey 
2009), the feasible implementation bears further problems in the real operation. For instance, this 
includes the relation between the Quality of Service (QoS) and the economic parameters of a service 
contract (e.g. price and penalty). In this context, we present our new integrated Service Level Agreement 
(SLA) operation model, which contributes to the sensible and economic utilization of IT. More concretely, 
we designed and implemented a new approach for the operation of large enterprise information systems. 
In contrast to existing concepts in the field of green technology, our model does not solely aim at reducing 
the resource consumption. Instead, our work extends the current state of the art by incorporating both 
technical and economical parameters of SLAs into the system operation strategy. By correlating the 
economic value of the system (i.e. profit and penalties), cost of operation, user behavior, and performance 
characteristics, our integrated management approach derives profit optimal operation strategies. 
Accordingly, our model facilitates highly efficient operation strategies for information systems while at 
the same time guarantees a continuously high QoS. 

In this paper we focus on large web-facing enterprise information systems that provide their services to a 
large number of concurrent users. The workload of these systems is typically characterized by 
continuously varying size (i.e., workload) and composition (i.e., workload mix) of simultaneous requests, 
where each single request only generates a relatively small system load. Common representatives of this 
group are applications such as e-commerce portals and bulletin board platforms. Inherently, these end-
user driven systems often face a highly volatile workload as usage patterns are typically characterized by a 
strong seasonality component (e.g., time of day or day of week). In addition it is noteworthy that the 
systems are traditionally over-provisioned because QoS is apparently valued higher than cost savings.  

In summary, these enterprise information systems often suffer from an inefficiently low average 
utilization of computing resources. Furthermore, these systems are typically operated on commodity 
hardware or on entry level servers in order to reduce the cost of operation (Short et al. 2011). While 
virtualization and consolidation may help significantly to mitigate some of these problems for relatively 
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small instances of applications, virtualization and consolidation as such do not directly affect the efficient 
operation of large information systems, which require the computing power of several nodes. One feasible 
solution for large systems is the use of resource adaptive operation modes, which adapt continuously the 
system size to the user demand.  

However, the implementation of such systems is non-trivial. In fact, if the operated service is provided on 
the basis of an SLA, the problem becomes particularly hard because efficient operation modes inherently 
increase the risk of violating performance constraints (i.e., QoS requirements). Even worse, if we consider 
different SLA configurations for a single service, the problem becomes increasingly complex. For instance, 
a high-priced service should be managed more conservatively than a low-cost service. In Addition, our 
work extends the traditional static view on Service Level Objectives (SLOs) towards a fully dynamic notion 
of SLA compliance. By continuously evaluating the SLA compliance at run time and adapting the SLOs in 
real-time, the system can react to changes in its environment instantaneously. This dynamic view on SLAs 
significantly reduces the risk of violating SLAs at runtime based on wrong or outdated operational 
decisions.  

To account for the heterogeneity of IT systems, our integrated management model utilizes a complex 
system performance model and a workload forecast model. Based on these components, our information 
system operation model can determine the impact of different operation strategies and find a profit 
optimal configuration at runtime.  

The high complexity of enterprise system environments entails that any attempt trying to prove the 
validity of a novel approach to management that bases on data analysis alone is not reliable due to the 
non-linearities in system operation. Instead, the only way to validitate the goodness of a novel 
management approach is by relying on experiments on a real-life testbed. Accordingly, we developed a 
test environment to provide a reliable evaluation. Our test system comprehends of a cloud infrastructure, 
a benchmark application, extensive monitoring and control software, and the integrated, SLA aware 
management model itself. In order to provide a real-world evaluation scenario, we used a real production 
system workload process to generate our test workload. Our evaluations indicate that the application of 
our new resource management system allows reducing resource consumption of the IT systems under test 
conditions by up to 40 percent.  

The main contribution of this work is threefold. 

• We provide a new perspective on the management of enterprise information systems and 
introduce a novel framework that harmonizes economic and operational goals. 

• Our novel dynamic SLA management model, which induces economic influence factors into the 
operation strategy, adapts performance goals of an enterprise information system dynamically 
(i.e., online at runtime). 

• The integration of our model into a test environment allows us to evaluate our concept in depth, 
in terms of efficiency along the entire SLA lifetime. Based on our thorough evaluation, we are able 
to make concise recommendations on how to use our framework effectively. 

The remainder of this paper is structured as follows. The next section discusses the design problem 
statement followed by the presentation of the related work. Subsequently, we discuss the foundation of 
the integrated information system management model, followed by a detailed presentation of the model. 
Finally, in the succeeding section, the model is evaluated. The last section summarizes the paper and 
provides a conclusion and an outlook on our future work. 

Design Problem Statement  

Keeping pace with continuous IT innovations and product life cycle enhancements has become extremely 
difficult and cost intensive for enterprises. As a consequence, IT landscapes often suffer from physical 
server sprawl, over provisioned information systems, and a lack of integrated management tools and 
service management frameworks (Bailey 2009).  

The efficient and QoS aware operation of elastic enterprise information systems requires a thorough 
understanding about all factors of influence that affect the overall performance of the system. Even 
though the idea of resource-adaptive operation of large applications seems to be very tempting, its 
application is absolutely complex. This complexity stems from the fact that the overall performance of 
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systems depends on various, interdependent factors; changes in each factor can lead to critical 
performance limitations or – in the worst case – cause total system failure. In order to manage a system 
efficiently, the factors of influence need to be well understood. Accordingly, we can categorize the 
following factors of influence (Figure 1) into the groups’ workload, SLA, software components, as well as 
the infrastructure characteristics. Based on these factors, we have to derive an operation strategy or 
operation mode respectively. In classic system design, this would be the provisioning and configuration of 
an appropriate infrastructure. In modern service design, the operation strategy is more complex and can 
be adjusted to the preferences of the provider or customer. Furthermore, depending on the focus, there 
might be more dominant factors, such as data quality. Nonetheless, in this work we focus on the factors 
determining the system performance. 

 

 

Figure 1: Factors of QoS Influence Figure 2: Elastic Application in a Cloud Computing Environment 

 
The infrastructure characteristics and software components determine the performance 
characteristics of an information system. In our work, we use a state-of-the-art design for information 
systems in clouds (Figure 2). Elastic applications have emerged as the next generation of distributed 
systems. Compared to classic design concepts, they provide extensions enabling resource adaptive 
operation modes. In particular, this design is highly beneficial for cloud environments as it allows for 
utilizing the capability of the cloud to instantaneously allocate resources to systems increasing the 
scalability tremendously (RightScale 2011). Additionally, we utilize a database-as-a-service instead of a 
traditional database to avoid the problems of data synchronization. Due to their complexity, large 
information systems often reveal a complex performance behavior. In order to provision the optimal 
infrastructure configuration for any given workload, the characteristics of the software and the 
infrastructure must be known a-priori. System performance models are one approach to determine the 
expected QoS of a certain system configuration facing a certain workload level. 

 

 

Figure 3: Wikipedia Workload Trace Figure 4: Reconfiguration Lead-time 

 

Next to the system performance characteristics, the workload process is a key factor of influence 
determining whether or not a system is able to meet QoS objectives. Many end-user applications face 
highly volatile workloads, as the workload traces of Wikipedia (Figure 3) demonstrate. This volatility leads 
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to low average utilizations in static system designs (i.e., the number of resources remains constant). By 
dynamically adding and removing resources (e.g. servers) from the system, the average utilization of the 
system can be significantly increased. Nonetheless, the optimal adaptation faces many challenges. More 
specifically, one key challenge is to overcome the reconfiguration lead time (Figure 4). Usually, the 
hardware configuration cannot be adapted instantaneously; rather there occurs a delay between the 
initiation of reconfiguration and its availability due to configuration of the resources, synchronization and 
reconfiguration of the load balancers. However, due to significant lead-times in the reconfiguration, 
resource adaptations need to be initiated in advance. The concrete lead time depends on the level of 
reconfiguration. Nonetheless for the purpose of our model, we assume that the lead time is constant. 
Thus, in order to mitigate the risk of SLA violations or system crashes, the systems cannot be managed on 
the basis of the current state, but rather require near-future workload predictions. At heart, workload 
processes (i.e. particular workload generated by a large number of users) are stochastic processes 
consisting of trend and seasonal factors as well as unpredictable anomalies such as sudden appearances of 
users (flash-crowd effect). Consequently, workload forecast mechanisms need to be customized for the 
individual characteristics of the workload process. 

  

Figure 5: Provider Revenue Model Figure 6: Risk view on SaaS Operation 

 

The final factor of influence is the Service Level Agreement itself. It defines the revenue and penalties 
as well as the cost of operation in our scenario. Figure 5 shows the structure of our economic model. The 
profit is defined as the provider revenue of the system less the infrastructure cost for providing the 
service. The ultimate goal of our information system operation model is to increase the resource efficiency 
of an enterprise information system by aligning the operation strategy to these economic parameters. To 
facilitate this alignment, we consider the industry scenario of a Software-as-a-Service (SaaS) provider, 
operating her application on the infrastructure of a third party Infrastructure-as-a-Service (IaaS) 
provider. Clearly, the application of our SLA model is not limited to this scenario, but for the purpose of 
this paper, this scenario enables a full cost assessment of the impact of resource adaptive operation 
modes. In the later evaluation, this helps us to determine the saving potential of our model in sevice 
operation. 

Figure 6 illustrates the risk perspective of adaptive operation strategies. In static operation modes, the 
major risks are infrastructure failures, such as power outages. This systematic risk (1 − �) of IT system 
operation can mainly be countered by using high quality equipment. During the Service Level Agreement 
design phase, this systematic risk is typically included in the price for the service offer. In addition to this 
systematic risk, resource adaptive operation modes exhibit an operational risk factor. For instance, 
sudden peaks in the workload process can cause sharp drops in performance causing SLA violations. 
Those situations could have been mitigated using larger configurations. In this sense, we define (1 − �) as 
the risk that a certain strategy violates the SLA. By using more resources, this risk can be reduced or even 
eliminated: this comes however, at the price of higher operation cost �(�). Theoretically, the provider can 
select a risk level � which maximizes his profit. Evidently, this implies that operation strategies which 
embody a certain risk of SLA violation might be beneficial for the provider. 

Having in mind that the optimal operation strategy is not risk free, Figure 7 depicts the economic 
situation of the service provider. The redline represents revenue and penalty defined in the SLA, the blue 
line the cost of operation and the black dashed line the resulting profit. Obviously, if the provider 
maintains too few resources, the SLA is ultimately violated, which entails the payment of a penalty. On the 
other hand, if the provider adds too many resources to the system, the corresponding costs of operation 
increase, reducing overall profit. Assuming the provider knows the optimal operation strategy a priori (i.e. 
the optimal infrastructure size at any given point during the SLA lifetime), he can choose the cost minimal 
strategy of the optimal point of operation. Albeit, this optimal strategy would maximize the provider’s 
profit, this strategy would induce a high risk, as minimal performance violations would directly lead to a 
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negative profit. Given the uncertainty during operation, a rational (at least risk neutral or risk averse) 
provider would choose a less risky operation strategy in the gray shaded area in order to build up some 
performance reserves to compensate for the operational risk of sudden changes in the environment. 

 

Figure 7: Profit depending resource usage Figure 8: Integrated SLA Management Model Design 

 

Based on the aforementioned factors of influence, we developed our integrated, SLA aware, information 
system management model (Figure 8). The goal of our model is to derive a cost effective operation 
strategy. Based on the revenue and penalty defined in the SLA and the cost of operation, our model aims 
to find a profit optimizing tradeoff between the cost of operation and the risk of performance violations. 
Our model manages the system on the base of a workload forecast model, a system performance model as 
well as on the specification of the SLA. The output of the aforementioned model is converted into the data 
format of our dynamic and integrated SLA management model and processed. Due to this modular 
design, our management tool supports a variety of these models (c.f. Related Work section). Additionally, 
our model encompasses actuator interfaces, which initiate, based on the real-time evaluation of the data, 
the reconfiguration of the infrastructure (i.e. add and remove servers) as well as the reconfiguration of the 
application (i.e. configure load balancers). In our later evaluation we will use a Fourier Transformation 
based forecast model and an empirical system performance model developed in our recent research.   

Related Work 

Our integrated, SLA aware management model combines various different research threads into an 
interdisciplinary model. In the related work section, we will discuss the different aspects of performance 
modeling, workload forecasting, and SLA management and present the current state of the art in 
research.  

Performance analysis of large, distributed systems is a very active research field and a variety of models 
have been developed. Famous representatives are for instance (Urgaonkar et al. 2008), who used queuing 
models for automated resource allocation in information systems or (Cohen et al. 2004) who employed 
machine learning to model the performance characteristics. Both models are an alternative to our 
empirical system performance model presented in this paper. Most of the newer contributions in this field 
extend the performance models to dynamic research management systems. For instance, the authors in 
(Gmach et al. 2009) developed a reactive migration controller for virtualized environments. However, 
compared to our concept, their approach is only designed for basic single-layered systems. The paper 
(Chandra et al. 2003) introduces a resource allocation model for shared datacenters based on a queuing 
network performance model and a time series workload forecast mechanism. However, they do not 
consider SLA’s in the provisioning process. Another concept (Padala et al. 2009) is an automated control 
model for virtual resources. The model manages the varying resource demands by dynamically allocating 
resources to or migrating virtual machines. Nevertheless, in modern cloud environments this migration 
approach is usually not supported. In (Ardagna et al. 2007) a model has been developed to manage the 
resource demand of multiple concurrent systems. In contrast to our model, it optimizes the system only 
for a single point in time, rather than incorporating the state of the SLA’s. In the paper (Lassettre et al. 
2003) the authors developed a surge protection model for dynamic resource allocation. The authors in 
(Lim et al. 2010) developed an autonomic control model to scale elastic storage systems based on the 
utilization of the system. 

Most of the aforementioned work only subsidiarily discusses the impact of a varying workload. However, 
particularly in environments with highly volatile end-user workload, this factor appears to be the most 
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decisive factors. The book (Feitelson 2011) provides a detailed overview of workload and workload 
modeling. In the paper (Urgaonkar et al. 2008), the authors present a workload forecast model based on 
an empirical distribution estimation of past workloads. The authors in (Gmach et al. 2007) used Fourier 
Transformation for data smoothing and applied time series analysis for workload prediction. In (Powers 
et al. 2005) the authors used time series as well as regression analysis for workload prediction. 
Nonetheless, workload processes differ strongly in their characteristics and thus forecast methods need to 
be individually adapted to the process characteristics. Accordingly, all aforementioned approaches are an 
alternative to our Fourier Transformation based workload forecast. 

Service Level Agreements and their different aspects have been extensively discussed by the research 
community. The following paragraph presents an overview of related and complementing work in this 
field. The article (Buyya et al. 2009) provides a good overview of SLAs in the field of clouds. The authors 
in (Yeo & Buyya 2007) developed an integrated risk analysis scheme to analyze the effectiveness of 
resource management policies. Based on SLAs, they determine whether a system is capable of meeting the 
required objectives and whether the acceptance of a single job is economically feasible. The paper (Aib & 
Boutaba 2007) presents an approach to business and policy driven refinement in application hosting 
environments.  Their featured model focuses on QoS objectives and includes a mechanism for runtime 
adaptation. In contrast to our work, both focus on batch processing and thus do not require to cope with 
dynamic workloads, performance and SLA components. In the article (Hasselmeyer et al. 2006) , the 
authors introduce a model for the automatic negotiation of the Service Level Agreements prior to the 
contract start. (Buco et al. 2004) develop a business-objective-based SLA management system over the 
whole lifecycle of the agreements. Similarly, the paper by (Koller & Schubert 2007) presents architecture 
for autonomous QoS management based on SLA specifications. The paper (Sahai et al. 2001) sketches a 
general scheme for Service Level Agreements which allows the autonomic management in services 
systems. In the same direction, the paper by (Raimondi et al. 2008) presents the implementation of an 
automated SLA monitoring for services. Although our model does not cover all technical and negotiation 
aspects of the SLA, a productive version would require such an SLA management concept. In summary, 
most aspects of our dynamic SLA management model haven solved individually. However, we haven’t 
found any work combining all aspects into a single integrated model for enterprise information systems. 

Foundation of the Dynamic SLA Management Model 

Having explained the factors of influence and the requirements for cost effective and risk aware operation 
of enterprise information systems in clouds, we will now present the foundation of our dynamic and 
integrated SLA management model. More concretely, we will discuss our recent and ongoing work in the 
fields of SLAs, system performance modeling, workload forecast, and information system operation 
strategies.  

Service Level Agreements  

Service Level Agreements specify all aspects of business relations between the contract partners, such as 
the rights and duties of each party, contract duration as well as guarantees and warranties. The QoS 
requirements are distinguished into Service Level Objectives (SLOs), Monitoring Intervals and SLA 
assertion. SLOs consist of specific measurable characteristics of the system (e.g. availability, throughput, 
response time) together with a threshold value for this characteristic. Furthermore, an SLA includes 
monitoring intervals, which define when compliance with the SLO is checked. The SLA assertion can 
combine several SLOs and specifies under what conditions the SLA is violated. In addition, it defines the 
lifetime of the SLA as a contract and also controls the penalty payments in case of SLA violation. Different 
SLAs may lead to very different operation strategies.  

In the following presentation, we assume a basic SLA definition. The SLO demands a response time of the 
information system below 	 = 500 
� for each request. The SLA between the SaaS provider and 
consumer specifies that this SLO target must be met for � =95% of all requests on average, measured in 
intervals of 1 ������. If the provider fulfills the SLA, he receives a payment of �; if he fails to comply, he 
has to pay a penalty of � (in the remainder of the paper, the penalty is defined as a negative number, 
i.e. � = −100). The SLA lifetime is set to � = 24 hours. Next to the SLA specifications, we additionally 
define that our controller is applied every � = 15 minutes. This allows us to divide the SLA lifetime in � = 96 periods. We further define � as the current time index and � = ��, … , �! ∈ # as the workload 
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process during the SLA lifetime. Evidently, the workload data of �$  with % > � are unknown at time index �. 
Furthermore, we assume that the provider operates the information system on the resource of an 
Infrastructure-as-a-Service (IaaS) provider. The cost for an instance hour is defined as '(. 

System Performance Model 

Elastic applications are one solution towards highly efficient operation modes of large enterprise systems 
in clouds. Recall that the provisioning the optimal hardware configuration for any given workload, a 
thorough understanding of the system characteristics is necessary. Usually elastic applications do not 
scale linearly with the amount of hardware resources. In particular distributed systems usually show 
complex performance characteristics, which are caused by various, non-trivial interdependencies within 
and between the different layers of the system. In our recent work (Malkowski et al. 2010; Malkowski et 
al. 2011), we developed an observation based, empirical approach for the performance modeling of large 
systems. In contrast to other models, our approach solely relies on the observed system behavior during 
operation. More specifically, our system characteristics model monitors the workload process, system 
metrics, as well as the SLO relevant metrics (e.g. response time) and saves the data in an operational data 
store. Based on this recorded data, our performance model can predict the expected degree of SLO 
compliance of a certain configuration � under a workload level �. For the purpose of this paper, we used a 
relatively simple application design (Figure 2), which scales along the number of cloud resources � =��, … , �) ∈ � . In our scenario, the database service is assumed to deliver constant QoS, independent of the 

system load. In the following presentation we define lambda Λ(�, �) as the system performance model 
function providing the degree of SLO compliance for a certain workload � and configuration �.  

For instance, a system with � = 3 resource units facing a workload level of � = 250 might be able respond 
to all requests within a response time Θ = 500 ms . In this case our degree of SLO compliance 
is Λ(3,250) = 100%. If we reduce the system size by one node to � = 2, then system most likely reaches an 
overload state and the degree of SLO compliance consequently drops to Λ(2,250) = 50%.  

Generally, the system performance function Λ(�, �) has a value range between 0% and 100% and can be 
interpreted as a step-wise defined function. If the system is overloaded, the system performance function 
will tend towards 0%. If the system is only moderately utilized, the system performance function Λ(�, �) is 
near 100%. The degree of SLO compliance will obviously increase with the number of resource units � and 
decrease with the increasing workload level �. 

Figure 9 shows the performance characteristics of 
our benchmark application used in the evaluation. 
The value axis represents the degree of SLO 
compliance, whereas the description axis presents 
the workload and the configuration (i.e. number of 
nodes in the system). The range of high QoS is 
delimited with the green surface. In the area 
between the green and the yellow service, the system 
is still fully functional, although it may exhibit 
reduced response time. For most applications 
occasionally operating in the yellow surface (SLO 
compliance between 95% and 50%) is acceptably. If 
the workload drops the SLO satisfaction below the 
yellow surface, the SLA might be compromised. 
Beneath the red surface, the system will enter a critical, completely overloaded state. If the system enters 
this area, a total system failure is likely to occur. In our benchmark system, the smallest configuration �� is 
able to achieve a Λ(��, 30) =100% SLO compliance up to 30 concurrent users. However, depending of on 
SLO specification, the configuration can account for up to 90 concurrent users (Compliance target � = 95%) or 110 concurrent users (� = 90%), respectively.  

Workload Forecast 

Modern elastic applications allow resource adaptive operation without compromising system stability. 
Nevertheless, significant reconfiguration lead times demand to reconfigure the system in advance 

 

Figure 9: System Performance Curves 
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help of the Discrete Fourier Transformation into its single spectra components. In particular, an end
generated workload exhibit predominant seasonal factors of influence (e.g. time of day). By identifying 
and isolating these components, we can predict the near futures of the workload process with high 
accuracy. Due to space constraints we omit the detailed presentation of the forecast algorithm and define 
Omega (1) as the workload forecast function. Based on the
near future of the workload process from the current index 
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Our forecast model, as well as most mechanisms in literature, usually delivers point estimates for the 
workload in the near future. However, the later 
estimates in order to facilitate a more robust operation. Thus, we complemented our forecast model with 
empirical prediction error estimation. Based on the comparison between the forecast and the later 
observation, the accuracy of the prediction is determined. The prediction error estimation is defined in 
the form of a matrix (2), whereby 
elements of the matrix contain the probability to face a workload level 

Figure 10: SLA Lifetime Forecast

 

Figure 10 shows the application of the workload forecast and the error distribution on a Wikipedia 
workload trace (Mituzas 2011). The blue line presents the observed workload process and the green line 
the forecast. For the first two hours of the forecast, the prediction error distribution is depicted by the box 
plots. Without a detailed analysis, 
process until the end of the SLA lifetime. 
first peak represents the current workload l
the forecast periods. For the near future the prediction is very accurate, though the accuracy decreases 

with the increasing forecast horizon. 
management model to derive efficient operation strategies online.

Naïve Operation Strategies 

In this section, we provide a brief overview on common operation strategies in order to show the origin of 
our dynamic SLA management model. We assume that the respective controllers
over the SLA lifetime, whereby the index of the current period is defined as
monitoring data, the controllers determine an optima
as the system may have a significant lead
interval), the reconfiguration decisions will first be available in
presented in their most basic version.

The most basic operation strategy is a static system operation mode that keeps the hardware 
configuration unchanged over the whole SLA lifetime (
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help of the Discrete Fourier Transformation into its single spectra components. In particular, an end
generated workload exhibit predominant seasonal factors of influence (e.g. time of day). By identifying 

solating these components, we can predict the near futures of the workload process with high 
accuracy. Due to space constraints we omit the detailed presentation of the forecast algorithm and define 

) as the workload forecast function. Based on the past workload observations 
near future of the workload process from the current index � to the end of the SLA lifetime
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most mechanisms in literature, usually delivers point estimates for the 

workload in the near future. However, the later dynamic SLA management model demands distribution 
estimates in order to facilitate a more robust operation. Thus, we complemented our forecast model with 
empirical prediction error estimation. Based on the comparison between the forecast and the later 

vation, the accuracy of the prediction is determined. The prediction error estimation is defined in 
), whereby ? refers to the forecast horizon of the error estimation. The single 

elements of the matrix contain the probability to face a workload level � in period �. 
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shows the application of the workload forecast and the error distribution on a Wikipedia 
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the forecast. For the first two hours of the forecast, the prediction error distribution is depicted by the box 
analysis, we see that the workload forecast provides a good 

process until the end of the SLA lifetime. Figure 11 depicts the workload forecast error distribution. The 
first peak represents the current workload level; the following curves show the prediction distribution of 
the forecast periods. For the near future the prediction is very accurate, though the accuracy decreases 

with the increasing forecast horizon. Both components �1 and #9 ) are later used by the 
fficient operation strategies online. 

 

In this section, we provide a brief overview on common operation strategies in order to show the origin of 
SLA management model. We assume that the respective controllers are executed 

over the SLA lifetime, whereby the index of the current period is defined as �. Based on the most recent 
monitoring data, the controllers determine an optimal configuration � ∈ � for the next period. However, 
as the system may have a significant lead-time Δ (defined as a multiple of the controller execution 
interval), the reconfiguration decisions will first be available in � D Δ. The following strategies are 

in their most basic version.  

�5EF 
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 Jstatic�∅�     �3� 

The most basic operation strategy is a static system operation mode that keeps the hardware 
configuration unchanged over the whole SLA lifetime (3). The static system operation mod
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classical operation strategy that is naturally extremely costly, as the system needs to be adjusted to the 
peak workload. In the later evaluation, we will use the static operation mode as baseline. 

�5EF = � = Jreactive(c∗, α, w) = Uscale up:      � = � + 1 Λ(�∗, �) 4 �scale down: � = � − 1 Λ(�∗ − 1, �) ≥ �   (4)∅ else [ 
The basic reactive operation mode (4) follows an observation-based operation strategy. The basic 
intuition is that the system configuration will be scaled up if the current configuration �∗ cannot satisfy 
the SLO at a desired compliance target of �. This reactive controller reflects the current state of the art of 
cloud providers. For instance Amazon Simple Queue Service (Amazon 2011) stores incoming requests in a 
queue. If the queue exceeds a predefined length, the system is scaled up. Although this controller type 
significantly reduces the resource consumption, it incorporates the inherent risk of performance violation 
as systems often cannot be reconfigured ad-hoc and the reconfiguration decision is solely based on the 
current workload level �. �5EF = � = Jpredictive(α, Δ, ω) = arg min^ ∈_ `�| Λ(15EF, �) ≥ �}    (5) 
While the reactive operation modes base configuration decisions upon the current situation of the system, 
the predictive operation mode (5) uses the workload forecasts ω to make the decision. The intuition is the 
same as for the basic reactive operation mode. Scaling up becomes necessary if the current configuration �∗ cannot meet the SLO target compliance in the near future, during which the configuration is fixed due 
to the lead time. In those cases it is necessary to increase the system configuration now, such that the 
advanced configuration at time � + Δ is available to satisfy the SLA accordingly.  

Dynamic and Integrated SLA Management Model 

Based on the background of the previous section, we now present our dynamic and integrated SLA 
management model. The core idea of our model is to feed (i) the economic parameters of the SLA 
document (i.e. revenue and penalty) and (ii) the cost of operation into the operation strategy of an 
enterprise information system. However, as the criterion of complying (violating, respectively) with an 
SLA is binary, the inclusion of the economic parameters into the online management strategy is difficult 
to achieve. In order to identify the optimal tradeoff between the cost of operation and the risk of violating 
the SLA, we developed a pricing and valuation scheme for the different cost factors on the period level �. 
This allows us to assess the economic impact of different configuration options in real time. This in turn 
allows us to derive the efficient configuration for any period � in real time given the recent and anticipated 
future performance. In this section, we will first define our management model. Based upon this dynamic 
model, we introduce the core of our SLA management model. Subsequently, we will discuss different 
configuration options with respect to their applicability. 

Dynamic SLA Model 

As mentioned in the related work section, SLAs have become the standard for defining the terms of 
operation in IT infrastructures. SLAs specify the revenue for maintaining the services, penalties for QoS 
violation, monitoring metrics, and corresponding thresholds. However, today SLAs are predominantly 
treated in a static way. Accordingly, SLAs are translated into a static set of requirements at design time of 
the IT services. During runtime, the system is provisioned according to these requirements. Thus, the 
SLOs, defined in the SLA, are merely used for monitoring the system and determining if and if so, when 
the SLA is violated. The previous operation modes aim at satisfying the SLO compliance target �, defined 
in the SLA, at any point in time. By continuously providing a performance level above �, SLA violations 
are avoided. However, SLAs are typically giving more flexibility to providers, as they only require fulfilling 
the SLO target over the entire SLA lifetime. For instance, if the initial target � is not met at the beginning 
of the SLA lifetime, system operation should aim at providing better QoS during the remaining lifetime 
such that the SLA is still satisfied. For instance, if the SLA requires a response time below one second in � = 95% of all cases, the SLA can still be met if the response time of the system was initially below 95 % 
(say 94 %) by offering a better response time during the remaining lifetime (say 96%). In this case the 
SLO target is set to 96% in order to achieve a 95% SLO compliance on average and thus comply with the 
SLA. 
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� = �c5 + (1 − �5)d5 ⇔ d = (� − �c5)1 − �5     (6) 
Our SLA model exploits this idea by optimizing over the SLA lifetime. Based on the specified SLO 
compliance target �, our model continuously evaluates the current degree of compliance c (i.e. the 
average SLO compliance up to the current period) and determines an updated SLO target d for the 
period � online. If the system complies with the new target, the SLA will be fulfilled. Equation (6) provides 
the formal definition: Essentially, we define � = �/� as the fraction of the elapsed SLA lifetime. The target 
SLO compliance � must be equal to the weighted current SLO compliance c and the SLO compliance in 
the remaining lifetime d. Solving this equation for d gives us the required SLO compliance for the 
remaining SLA lifetime. This approach facilitates updating the performance target during operation 
continuously succeeding in a more fine grained and sensible operation of the system.  

c̿ = c ∗ (� − 1) + ∑  Λi�$ , 1$j5EFk�$l5� + Δ − 1    (7) d̿ = � − �n ∗ c̿1 − �′ , �n = � + Δ − 1�    (8) 

cq ^,r = c̿ ∗ (� + Δ − 1) + Λ (�, �)� + Δ    (9) ds^,r = � − �′cq ^,r1 − �′′ , �nn = � + Δ�    (10) 

Nonetheless, reconfiguration decisions need to be initiated in advance and thus we cannot only rely on the 
current state of the SLO compliance. Instead we have to estimate the state of the system in period � + Δ. 
Again, we assume a constant reconfiguration lead time. Equation (7) estimates the expected degree of 
SLO compliance based on the current degree of compliance c and the expected degree of compliance Λ(�$ , 1$) in the time between � and � + Δ. Similar to equation (6), the expected required SLO compliance 

for the remaining SLA lifetime d̿ is calculated with the relative elapsed time in � + Δ − 1. The goal of the 
our SLA model is to assess the impact of different configuration decisions. Thus, in equation (9) and (10), 
the impact of different configurations � for the decision period � + Δ is determined. The variable cq ^,r 

provides the expected degree of SLA compliance in period � + Δ for the configuration � if the system faces 
a workload level �. The corresponding ds^,r value is calculated in equation (9) with the elapsed time of the 
period � + Δ. If ds^,r is larger than 100%, the corresponding system configuration would have a fatal impact 
on the SLA, as the new SLO target could not be satisfied at all. In this case our dynamic SLA management 
model assumes a non avertable SLA violation. 

Online Economic Assessment of the SLA State 

As previously mentioned, the online derivation of a cost efficient and risk minimal operation strategy is a 
non-trivial problem. Usually, the assessment whether the SLA is fulfilled or violated is binary being 
determined at the end of the SLA lifetime. However, in order to ensure an economic-aware operation 
strategy, the value of the different configuration options must be evaluated online in order to derive a 
feasible operation strategy. Thus, our dynamic SLA management model evaluates the impact of the 
different configuration decisions in real time on the basis of past performance and on anticipated future 
user behavior. Furthermore, we designed a scheme to distribute the revenue � and penalty � among the 
single periods � of the SLA lifetime. This procedure allows us to derive a profit optimal operation strategy 
which is aware of the risk of violating the contract. By calculating the expected profit of all configuration 
options, weighted by the probability of facing a workload level �, we can determine the profit optimal and 
risk adjusted configuration for the decision period � + Δ. The model is designed in a way, that it employs 
larger configurations (in terms of resource units) for high penalties and high revenues contracts to avoid 
SLA violations. In contrast, if the resources are expensive or the penalty is low, the dynamic SLA 
management model chooses very inexpensive operation strategies. Clearly these operation strategies 
entail a higher risk of SLA violations but more importantly increase the expected profit in return.  

The core idea of our SLA management concept is to distribute the total revenue � on the single periods � 
equally. Furthermore, we define that the full revenue �/� of a period is earned if the system complies with 
the SLO target �. Nevertheless, as slight performance violations might be reasonable from an economic 
point of view, we permit that the configurations may only partially fulfill their goal in single periods. As a 
consequence, these periods only earn a corresponding fraction of the revenue. Conversely, we also allow 
that a period can earn more than the assigned revenue by overachieving the SLA target. This approach 
incentivizes the system to build up performance reserves. 
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�t = � u1 − �′ ∗ c̿�v   , �n = � + Δ − 1� (11) w^,r = �t� − � − Δ ∗ Λ(�, �)d̿    (12) 

In order to account for the uncertainties in the system, we continuously update the distributable revenue 
among the remaining periods with the help of the expected SLA compliance c̿ before the decision period. 
By determining the ratio between the achieved compliance and target and multiplying this value with the 
elapsed SLA lifetime, we can derive the distributable revenue �t for the remaining lifetime (11). In order to 
determine the revenue share of the period � + Δ, we divide the remaining revenue by the number of 
remaining periods (12). In contrast to our original formulation, we define that the full revenue of the 
period is earned, if the system complies with the online target dx . By multiplying this value with the 
expected SLO compliance Λ(�, �) of a configuration � and a workload �, the expected revenue can be 
calculated. 

Π = − �� (� + Δ)   (13) z^,r = − �� ids^,r − cq ^,rj1 − ds^,r ∗ �   (14) {^,r = | 0 Π > z^,rΠ − z^,r else [    (15) 

The valuation of the penalty is different from the revenue valuation. In our penalty valuation model, we 
assume that the system should achieve a 100% SLO compliance in each period. All deviations are, similar 
to the revenue valuation, priced by a fractional penalty. However, as the SLO target � accounts for limited 
performance shortcomings, each period is given a violation allowance of −�/�. If the performance 
allowance is not required it can be saved for later periods. Equation (13) defines the performance violation 
allowance buffer. Equation (14) presents the penalty caused by the system up to the current period � including the online SLO impact ds^,r  of the current decision period. Finally, equation (15) states that only 
positive penalties are relevant for the configuration decisions. This prevents, that the system eventually 
attempts to increase the profit of a configuration by “earning” negative penalties.  

In order to derive the profit optimal configuration, the cost of operation for the period of consideration 
must be included in the decision process. However, cloud resources are commonly priced on an hourly 
base and hence we use the attributable price of the cloud resource for the period  ' = '(/Δ( by dividing the 
cost of an instance hour '( by the number of periods the instance hour can be used: Δ( = 1/Δ. By multiplying 
this cost factor with the number of resources �, we can derive the cost impact of a configuration. 

Target Function: �′223 =4 s′�, … , s′� ≥= Φ(γ, j, n) = argmin^�,…,^�∈_ � ��
6

�l$ (16a) 

Subjected to: 1� − % � Λ(��, 1�) ≥ d6
�l$  (16b) 

Optional: Λ(��, 1�) > �lb, ∀�l$,…,6 (16c) 

In our resource adaptive operation mode together with our dynamic SLA management model, the 
provisioning decision in one period affects the online performance goal d of the remaining period. In 
order to include this factor into our operation strategy, we forecast the workload process until the end of 
the SLA lifetime and select an appropriate configuration for all future periods. Equations (16a-c) provide 
the formal definitions of our provisioning model. The target function (16a) minimizes the total number of 
resource during the remaining periods � − % of the SLA lifetime. The first constraint (16b) ensures that the 
resulting configuration vector is able to satisfy the online SLA target d. The optional constraint (16c) 

allows defining a lower bound SLA target � lb. This way, the dynamic SLA management model will not 
select a system configuration which provides less performance than the lower bound. This optimization 
problem can be solved in linear time utilizing a basic heuristic. Starting with the largest configuration �max, we remove one resource unit in each iteration from the period with the lowest relative SLO 
performance loss. Thus, we require at most �max ∗ � iterations to solve the optimization problem. 

Γ��,� = ' ∗ (|Θ(ds^,r , � + 1, �)| − |Θ(d̿, � + 1, �)|)   (17) Γ�,� = �Γ��,�0��
elseΓ��,� 4 0        Γ��,� = ∅        Γ��,� > � + �   (18)[ 

By calculating the difference between the original performance goal d̿ and the new performance goal dr,^, 
we can estimate the operation cost impact on the future periods (17). By multiplying the resulting resource 
difference with the resource cost ', we obtain the economic impact Γ��,� of the configuration � for the 
future periods. Nonetheless, depending on the resulting Γ, case differentiations may become necessary 
(18). The second condition defines that cost saving effects may not be included in the decision problem. 
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The third constraint controls that in those cases where there is no feasible solution (i.e. no operation 
strategy is able to achieve the SLA), the future impact is priced with the penalty �. Furthermore, we 
included a feasibility constraint: If the cost of future operation exceeds the revenue penalty span, 
continuing the operation is economical infeasible. 

�(�) = � �W9 �,�EF ∗ (w^,r + {^,r + Γ�,�)�r∈� + �^   (19) �5EF = argmax^  �(�)   (20) 
Similar to the naïve operation strategies, the optimal configuration is selected on the base of the valuation 
of the current system state. First, for all configurations � and all workload levels � with a positive 
probability of occurrence, the expected profit is calculated on the base of the expected revenue, penalty, 
and cost of operation as well as their impact on the future periods (19). Since the workload is uncertain, 
the outcome of each workload level is weighted with its probability. The configuration with the highest 
expected profit is selected for the decision period � + Δ (20). Nonetheless, due to unforeseen changes and 
the systematic risk of performance violations, the continuation of the information system operation might 
be economically infeasible. In case all configurations � have an expected profit of � (i.e. there is no feasible 
way of fulfilling the contract), the dynamic SLA management model assumes that the SLA cannot be 
saved at all regardless of any activities. In this case the system switches to the smallest configuration �� to 
reduce the loss by saving the cost of operation.  

Modifications 

The previous section presented the dynamic SLA management model in detail. Although our model is 
designed for a risk neutral, rational operation strategy, there are several options to adapt the model to the 
individual needs of the service provider. The first option is the inclusion of a lower bound SLO threshold.  
The presented version of the integrative SLA model is designed to switch to the smallest configuration �� 
facing a certain SLA violation. Although this might be an economically rational decision, this behavior 
may contradict other soft factors such as reputation of the provider. Thus, our first proposed modification 
is to switch to the predictive operation mode (5) once the SLA is ultimately violated. This is attained by 

setting the SLA target to the lower bound target � lb. This guarantees an acceptable QoS but reduces the 
cost of operation for the doomed contract. 

ℎn(�, �) = �1 � Λ(�, �)#r,� 4 dr∈�0 else [    (21) ℎ(�) = � ℎ′(�, �)�EFEF(k�
�l�EF    (22) ��(�) = ' ∗ � � Δ(ℎ(�′)

^
^�l^�

�    (23) 

Today’s cloud providers usually charge their resources on an hourly base. However, our model is usually 
executed in smaller time intervals and determines the expected optimal configuration in accordance with 
the lead time Δ. As a consequence, our SLA model might add additional resources to the system, which are 
only required for a limited time (i.e. significantly lower than the length of an instance hour). To 
compensate this effect, our model can be complemented with an economic feasibility assessment function 
of the provisioning decision. The core idea is that the cost for each instance hour is shared between the 
periods using this resource (i.e. the periods � + Δ  to � + Δ + Δ(). For example, if one additional resource 
unit is only required in one period �, this period is charged with the price of the full instance hour '(. If the 
resource is feasible for all periods of the instance hour, each period is charged with the fractional cost '. 
Hence we have to determine whether the new configuration is not only feasible for the predicted period, 
but also for the following periods during the lifetime of the instance hours. Based on the workload forecast 
distribution, equation (21) verifies if the configuration � can sustain the workload in period �. 
Subsequently, equation (22) determines the number of periods, during instance hour lifetime  Δ(, this 
resource � is accessible. Finally, equation (23) defines the fractional resource costs of the current period. 
This valuation of the different configurations allows the model to identify the optimal configuration and 
significantly reduces the number of configuration changes. 

�� = � − ' �|��|5
�l�    (24) Λn(�, �) = �    ≤ d  d   ≥ d [ ,   = Λ (�, �)   (25) Λn(�, �) = U     ≤ d    + (  − d) ∗ � − ��   ≥ d [ ,   = Λ (�, �)   (26) 

The profit of the provider is defined as his revenue less the cost of operation. In particular in scenarios 
with low penalties and unforeseen high workload, the dynamic SLA management model may decide to 
give up on the SLA target. Nevertheless, if this happens in the middle of the SLA lifetime, the deliberate 
violation of the SLA might be an unfavorable option as the previous efforts to comply with the SLA 
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already caused significant cost of operations. To incorporate this aspect into the management strategy, the 
penalty is continuously increased by the expenditures used for additional resources (24). This procedure 
avoids abortions during the SLA lifetime.  

The last modification of our model deals with the fractional revenue determination of each period. In its 
initial design, the model allows to earn additional revenue by over-fulfilling the SLA target in each period. 
In some scenarios this behavior might be unwanted. Equation (25) provides an alternative option by 
limiting the maximum revenue to the revenue assigned to the period by redefining the bounds of the 
degree of SLO compliance function Λ. The second option (26) provides a moderate alternative as it 
continuously shifts from the original version to the modified version (25) during the SLA lifetime. These 
incentivize the SLA model to build up performance reserves at the beginning and switch to a more cost 
effective operation mode at the end of the SLA lifetime. 

Evaluation 

The evaluation of our dynamic SLA management model, based on real production system workload 
traces, was carried out in a self-developed test infrastructure (i.e., cloud testbed, elastic application, 
distributed monitors, and control framework) (Malkowski et al. 2011). In the evaluation, we systemically 
analyzed the impact of different SLA properties (e.g. revenue, penalty, QoS requirements) and the various 
configuration options. 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 12: Dynamic SLA Management Model Configuration Options 
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Figure 12 provides insights into the decision logic of our dynamic SLA management model. While the bars 
show the expected profit of the different configurations over time, the lower surface depicts the 
provisioned configuration. In this scenario, we use the workload process of a single day of Wikipedia 
Germany (Figure 10). The revenue � and the penalty � are set to $300. The infrastructure cost '( is $1.2 
and the maximum infrastructure size is limited to �max = 10. The cost of operation is oriented at the 
common price for mid-range servers of public cloud provider offers. The SLA has a lifetime � of 24 hours. 
The reconfiguration lead time is set to two periods or 30 minutes respectively. Furthermore the SLA 
target � is set to 95%. In the following presentation, we use the original model formulation with the lower 

bound SLA control modification (� lb = 70%).  
Figures (a) and (b) show the characteristics of our base line scenario, where the negative components are 
trunctuated in figure (b). In this moderate scenario, we can study the behavior of the dynamic SLA 
management model in a normal scenario. Figure (a) shows that during peak times the weaker 
configurations would violate the SLA and hence are negative. The green mid range configuration exhibits 
only minor performance limitations and is thus only valued slightly negative. Figure (b) shows the same 
graphs from another perspective. We can clearly see how the weaker configurations become infeasible 
during daytime (higher workload) and later become feasible again with the decreasing workload.  

In figure (c) and (d), we reduced the SLA target to � = 80% and deactivated the lower bound control. Due 
to the relatively high revenue compared to the QoS requirements, the SLA is successfully fulfilled after 
85% of the SLA lifetime. In figure (d), we additionally reduced the revenue to � = 120 and the penalty to � = 0. The SLA specification in this scenario is close to the economic infeasibility as the costs of operation 
nearly consume the total revenue. However, in absence of the lower bound control, our rational model 
decides not to provision resources during the expensive peak time. Due to the weak SLA definition, the 
dynamic SLA management model is still able to meet the SLA target and operate profitably. Nonetheless 
in this case the system is operated with a minimum amount of resources during the peak time. Evidently, 
this is no realistic scenario, but facilities the potential of our model.  

In figure (e), we activated the node feasibility assessment modification. Evidently, this helps to 
significantly reduce the fast change of configurations. Furthermore, we can see the profit impact of this 
modification. As soon as the node is used for multiple periods, the resource costs per period decreases (as 
the node cost per instance hour is shared over multiple periods) and the specific configurations become 
more profitable. Finally, figure (f) shows the base line scenario with a longer reconfiguration lead-time 
(Δ = 4). The dynamic SLA management model tends to provision more resources in the single periods. 
For instance, we can see this effect in the middle of the SLA lifetime. The configuration �¢ is valuated 
higher than in the baseline scenario (b). This behavior is caused by the lower confidence of workload 
forecast and the difficulties to maintain the QoS. 

 

Figure 13: Low-cost Scenario with Disturbance Figure 14: High Revenue Scenario with Disturbance 

 

In the following, we present the behavior of the dynamic SLA management model in the case of an 
unforeseen, but regularly, recurring disturbance in the workload process. Hence, this disturbance is 
included in the workload forecast error distribution as a minor outlier. Figure 13 presents a low-cost 
scenario with a revenue and penalty of 150. Figure 14 depicts the high revenue scenario with a revenue 
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and a penalty of 300. The upper red line represents d and the black line c, whereas the green line is the 
original performance target �. The blue line below depicts the workload process. The blue graph depicts 
the optimal configuration determined a priori, the green bar the provisioning of our model and the red the 
differences between the both.  

Both figures illustrate the behavior of our SLA management model. At the beginning in both the 
scenarios, the SLA is overachieved, which can be seen by the decreasing value of c. Nevertheless, in the 
high price scenario more resources are provisioned and c decreases at a fast rate. During both peaks, the 
online target d increases. Subsequent to both violations the amount of provisioned resources increases. 
However, following the second peak, the SLA of the lost-cost scenario is non recoverable and violated, 
whereas the SLA in the high price scenario can still be met, by overachieving the SLA in the remainder of 
the SLA lifetime. As our model is configured to behave strictly profit optimizing, it switches the system to 
a minimal configuration. In summary, this scenario shows the potential of our dynamic SLA management 
model. While the low cost service is operated with a weak and cost effective infrastructure, the high price 
service is operated with a more powerful configuration, which can sustain unforeseen workload peaks.  

 

Table 1: Results of the dynamic SLA management model on four weeks of operation 
Wikipedia 
Version 

Revenue Penalty Alpha Degree SLA 
Compliance

SLO 
Minimum 

SLO 
Maximum 

Average 
Resources 

Profit Successf
ul SLA 

G
e

r
m

a
n

 $300 $-300 0.95 96.3% 73.6% 99.1% 6.07 $125.12 28 

$3000 $-3000 0.95 97.9% 737% 100% 8.69 $2749.73 28 

$300 $-300 0.80 93.5% 69.24% 100% 5.24 $149.09 28 

$300 $-300 static 97.7% 90.2% 100% 10 $12 28 

E
n

g
li

s
h

 

$300 $-300 0.95 95.2% 76.0% 98.6% 8.52 $54.62 28 

$3000 $-3000 0.95 96.3% 76.1% 99.6% 9.74 $2719.49 28 

$300 $-300 0.80 91.8% 73.5% 97.8% 7.48 $84.58 28 

$300 $-300 static 96.7% 92.0% 99.6% 10 $12 28 

J
a

p
a

n
e

s
e

 $300 $-300 0.95 95.9% 83.8% 100% 6.40 $115.67 28 

$3000 $-3000 0.95 97.4% 77.5% 100% 8.53 $143.61 28 

$300 $-300 0.80 92.8% 71.7% 99.6% 5.43 $2843.61 28 

$300 $-300 static 98.5% 100% 100% 10 $12 28 

 

Table 1 shows a broad range of results of the dynamic SLA management model with different 
configurations on different workload traces. As the German, English and Japanese Workload strongly 
differ in their average workload levels, all processes have been normalized such that the maximum 
workload does not exceed 1000 requests per second. As benchmark, we included the results of a static 
operation. The cost for one cloud resource per hour was set to $1.20 and the delay time was set to 30 
minutes. The first scenario is balanced between the economic parameters and the performance goal. The 
second scenario is a high revenue scenario and the third has a low performance target. The table presents 
the results of 28 days from the mid of February to the mid of March in 2011. Our model successfully 
fulfills the SLA in all scenarios in every run. In particular in the low cost scenarios, our model helps to 
significantly reduce the cost of operation. The lower SLO minimum originates from the switch to the 
lower bound control on fulfillment of the SLA. In the high revenue scenario, the SLA management model 
provisions significantly more resources to the system, as the costs of operation are minor. The saving on 
the English trace is significantly lower, as the system traces have a higher base load. 

Conclusion 

In this paper we presented a novel dynamic SLA management model for the sustainable and efficient 
operation of elastic information systems in cloud environments. Based on a system performance model 
and workload forecast model, our new management concept enables highly efficient operation modes. 
Our model extends the current state of the art by not only managing the system based on the QoS 
specifications of the SLA, but also according to economic parameters, such as the revenue, penalties, and 
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the cost of cloud resources. In contrast to (most) other SLA management concepts, our model does not 
necessarily aim to comply with the SLA at all times, but may instead choose a strategy that maximizes 
profit in the long-term. Furthermore, the dynamic character of our SLA model allows the flexible 
adaptation of performance goals at runtime, therefore mitigating the risk of performance violations. In 
summary our model bridges the gap between cloud technology and the economic value of a service. It 
provides a methodology to automatically manage service offers according to their value and is, therefore, 
particularly useful for services offered in different QoS classes with different price models. 

Conceptually, our model is an effort with the aim of integrating all aspects of a Service Level Agreements 
(e.g., monitoring metrics and economic parameters) with runtime monitoring data. To accommodate the 
heterogeneity of enterprise information systems, our model is designed modularly, enabling different 
configurations according to the properties of the system. During operation, our model systematically 
processes and analyzes all factors of influence such as the performance and workload data as well as the 
current SLA state. In particular, for critical high-price services, our novel SLA model has proven to 
outperform other basic concepts. While basic controllers are conceptually able to provide any cost-
effective operation mode, our model is able to adapt the operation strategy automatically based on the 
true economic value of the system. Thus, depending on the economic situation, it mitigates the risk of 
performance violations compared to rigorous cost-driven adaptive operation modes. We showed that the 
our model allows flexible information system operation with up to a 40 percent lower cost of operation 
compared to static operation modes and a significantly lower risk of SLA violations compared to other 
adaptive resource management systems. 

We planned various extensions for our SLA management model. Recently, Amazon Web Services LLC 
introduced a new spot pricing scheme for cloud resources (Amazon 2011b). In our future work, we plan to 
extend our work to reflect these recent developments by supporting dynamic resource prices. More 
concretely, this enables service providers to operate the system in times with lower resource cost more 
risk-aware and take higher operational risks during peak time. Furthermore, we intend to extend our 
model to manage the resource requirements of multiple competitive systems. Based on the current SLA 
state of different services and their economic parameters, this extension should optimally allocate 
resources to the different services. For instance, if we have two services, each requiring 4 nodes, and 9 
nodes in total, the management model should automatically assign the residual node to the service with 
the higher economic risk. In its current implementation the management model is risk neutral, aiming to 
maximize the expected profit. In our future work, we plan to integrate an individual risk function in order 
to let the operator self-select his risk-affinity level. Furthermore, the revenue and penalty parameters have 
only been arbitrarily specified. In our future work, we plan to use the dynamic management concept to 
estimate the expected cost of operation and the risk of an SLA violation and thus determine the optimal 
and risk adjusted price and penalty combination for a service.   
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