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Economics and Business, 47A Evelpidon and Lefkados Str, 11362 Athens, Greece, 
stcharami@aueb.gr 

Lekakos, George, Department of Management Science and Technology, Athens University of 
Economics and Business, 47A Evelpidon and Lefkados Str, 11362 Athens, Greece, 
glekakos@aueb.gr 

Abstract 

In grocery retailing, promotions and recommendations, derived from traditional data mining 
techniques, apply uniformly to all customers and not to individual ones, thus failing to meet each 
customer’s personal needs. On the other hand, recommender systems have been widely explored in 
the field of e-commerce managing to provide targeted personalized recommendations for products and 
services. Despite the great success of recommender systems in internet retailing, their application in 
many other fields remains practically unexplored. RFID and pervasive networking technologies now 
offer the potentials to utilize recommender systems in physical environment. The scope of this paper is 
to examine the individual characteristics of the new domain along with the applicability of various 
recommendations techniques. The results indicate the superiority of the e-commerce recommendation 
techniques against the traditional approaches currently used in grocery retailing. 

Keywords: Recommendation, Recommender Systems, Personalization, Personalized Recommendations, 
One-To-One Marketing 

1 INTRODUCTION 

The vast amount of products and services offered through the Internet, as well as the great diversity in 
users’ tastes has driven the need for personalized systems (Prassas et al., 2001). Personalized systems 
are able to identify and differentiate the users in order to provide content, services and information 
that best suit user’s individual needs. 

Recommender systems form a special category of such personalized systems and aim to predict user’s 
preferences based on her previous behavior. They have experienced a great success and still continue 
to efficiently apply on various popular websites. Amazon.com is the most familiar and successful 
example of using recommender systems in order to provide personalized promotions for books, movies, 
etc. In Pandora.com the user can create her own radio station which will play her favorite kind of music. 
Whereas, Baynote.com is specialized in websites and content search that best satisfy the user’s 
requirements. 

The key idea underlying recommender systems is based on the observation that people very often rely 
upon opinions and recommendations from friends, family or associates to make choice decisions 
(Lekakos et al., 2006). They imply preferences either implicitly or explicitly and their main goal is to 
identify and select among all available goods the new ones that the users will be interested in. As an 
input, they take product votes/ratings and/or characteristics, and as an output, they generate 
personalized recommendations or they manage the personalized guidance to items of interest among a 
maze of possible choices. 

Two major approaches have been developed for formulating predictions: collaborative filtering (CF) and 
content-based filtering (CBF). In collaborative filtering (Breese eta al., 1998, Herlocker et al., 2002) the 
users provide ratings for the products denoting, in this way, their degree of satisfaction. The users that 
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commonly like some items present similar behaviour and are considered to be neighbors. We call target 
user the user for whom we want to make recommendations. The target user may receive 
recommendations from her neighbors for new, previously inexperienced items with a great probability 
that she will like them, as the neighborhood is characterized by similar behavior and taste. 

Content-based filtering makes the assumption that a user’s previous preferences are reliable indicators 
for her future behavior. This approach requires that items are described by features and is usually 
applied upon text-based documents or in other domains with structured data where feature extraction 
is possible and applicable (Mooney et al., 2000). For example, in books recommender systems the 
features used can be the title, the author, the genre and perhaps even a brief summary. Thus, 
recommendations about new books for a particular user will include books of the same author, close 
genre and theme, etc. 

In addition to the above methods, data mining refers to extraction of implicit but useful information 
from large volumes of data and can be used to support a wide range of business intelligence 
applications such as customer profiling, targeted marketing, cross-selling, up-selling, etc. Classification 
methods, clustering techniques and association analysis can be used to formulate markets according to 
tastes and to produce predictions inside these markets. All the previously mentioned approaches can 
either be applied autonomously or be combined to form a hybrid recommender system. Hybrids 
comprise a very challenging field of research as they aim to combine techniques in such a way that 
advantages are inherited but limitations are eliminated so as to globally improve the task of generating 
predictions (Burke, 2002). 

2 PROBLEM STATEMENT 

The techniques currently used to attract customers and increase purchases in grocery retailing inside 
physical stores include massive products promotions, special offers and occasional discount coupons. 
Data mining techniques and especially association rules are widely applied in grocery retailing. The main 
problem is that these approaches cover only general and by no means personalized trends, thus failing 
to satisfy the diverse needs of millions of customers. To overcome this major problem, our work aims to 
examine and incorporate recommender systems inside physical environments. In literature, there are a 
few references about recommender systems in physical stores, which in fact abstractly address the 
issue without providing any implementation and experimental evaluation (see Buser, 2007, Raman, et 
al., 2005). 

Our objective is to apply personalized recommendations in the domain of grocery retailing, according to 
the following scenario: “While entering the supermarket, the customer dispatches a trolley with an 
embedded display on it or picks-up a PDA provided by the retailer. Either of them will serve as the mean 
through which the customer will receive recommendations while in the supermarket. 
Recommendations produced are based on customer’s purchasing history, her so-called basket. When 
the customer completes her transactions, the purchased products are stored in a database updating her 
personal basket.” 

Identifying the customer is a primary prerequisite for the scenario described above. This task can be 
accomplished utilizing the RFID technology, where readers are placed inside the store and customers 
acquire tags. Alternatively, scanners and barcodes can be also used. The implementation of our system 
is independent of the technology used for customer identification. Though, we should examine the 
advantages and disadvantages of each one. On the one hand, barcodes can be applied with a minimum 
cost using the already provided by supermarkets loyalty cards. The limitation about this approach is that 
the customer should manually identify himself to the system by scanning her card. On the other hand, 
RFID technology provides a fully automated system with the cost of acquiring, installing and maintaining 
a more expensive investment. But eventually, as far as RFID technology is amortized, it definitely 
outclasses the barcodes. 
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As previously mentioned a customer’s basket is composed by all the products she has ever purchased. 
So, in this domain the products are binary denoting that a product is or is not bought (Mild et al., 2001). 
Alternatively, we could use each customer’s purchasing frequency for a product or even provide a rating 
scale as used in e-commerce. Still these are some issues that need to be further examined. Last but not 
least, features for products of that kind are not yet available and the task of extracting them can be very 
cumbersome with uncertain outcome. As a result, the luck of these features currently makes the use of 
content-based filtering extremely complex. 

Taking into consideration the needs stated above, this paper has four key contributions: 

1. Statement of the need for personalized recommendations in grocery retailing. 

2. Implementation of two pure recommendation techniques, collaborative filtering and association 
rules, plus a hybrid combination of them. 

3. Experimental evaluation with real dataset. 

4. Proposals for new kinds of applications for the RFID technology. 

3 DESIGN AND IMPLEMENTATION 

Collaborative filtering is a very successful technique in the field of e-commerce, which has not yet been 
used in grocery retailing and physical stores. Association analysis is the leading approach for estimating 
general trends in grocery retailing and it would be very interesting to also apply and test it in the 
generation of personalized recommendations. Based on Sarwar et al. (2000), we have implemented 
these two pure algorithms and also combined them in one hybrid. In the remainder of this section we 
describe the algorithms of collaborative filtering, association rules and the hybrid. 

3.1 Collaborative filtering 

For the target user   for whom we would like to produce recommendations, collaborative filtering 
proceeds as follows: 

 Compute the similarity between the target user’s basket c  and the baskets ic  of the remaining 

customers i using the Jaccard or Tanimoto coefficient 
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where  xn  is the number of products in basket x. 

 Select the nearest neighbors for the target user   that will best serve in recommendations 
generation. The selection task can be performed either by obtaining neighbors that are above a 
predefined threshold (neighborhood-based technique) or by keeping the k nearest neighbors (k 
nearest neighbors or k–NN technique). 

 Generate prediction for the target user   and the product j as the sum of the weighted 

preferences of her neighbors for this product. ijc denotes neighbor’s i preference for the product j. 

In literature, ijc  generally stands for the rating score that user i has provided for the product j. In 

shopping basket data, as is our case, ijc  is binary. 1ijc  means that neighbor i has experienced 

(bought) the product j, while 0ijc  means that neighbor i has not experienced (bought) the 

product j The denominator serves as a normalizing factor for similarities to sum up to unit. 
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3.2 Overall association rules (OAR) 

As far as the association analysis is concerned, the notion of transactions is equal to the customer’s 
basket. In other words, a customer’s basket is considered to be a single transaction.  

 Generate rules YX   using the entire dataset. We use the Apriori algorithm and obtain the rules 

that satisfy a minimum support  
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 Apply the left side X of the rules to each customer. The left side of a rule can be applied to a 
customer iff it is entirely found in her basket. 

When the left side of a rule is applied, recommend the right side Y of that rule. The right side Y of a rule 
generates a recommendation iff it contains products that are not yet in the customer’s basket, for 
whom the recommendations are made. 

3.3 Hybrid: Neighborhood-based association rules (NAR) 

Combining the notion of neighborhood from collaborative filtering with association analysis, we 
implement the hybrid neighborhoodbased association rules. For the target user   for whom we aim to 
make predictions, we proceed as follows: 

 Find target’s k nearest neighbors. 

 Generate rules YX  using target’s neighborhood. 

 Apply the left side X of the rules to target. 

 Recommend the right side Y of the applied rules to the target. 

4 EXPERIMENTAL EVALUATION 

The experimental evaluation of the above algorithms consists of data pre-processing, selection of the 
evaluation method and metrics, as well as the results driven from the experiments. 

4.1 Data pre-processing 

Our dataset derives from real purchasing transactions of a supermarket. The original dataset relates to 
8126 customers, 17263 products and the density of the user-product matrix is just 0.23%. Using the 
user-product matrix shown in figure 1, density is calculated by the following formula: 
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Figure 1. Iterative deletion of customers and products. 

We have reduced the original dataset in order to accelerate the experiments. Instead of randomly 
delete data, we introduce an iterative procedure, as shown in figure 1. We begin by calculating the 
overall density of the the user-product matrix. Similarly, we calculate the density of each row. We 
delete the rows that have density smaller than the overall density. Then we calculate the overall density 
again and the density of each column. We delete the columns that have density smaller than the new 
overall density. This procedure continues iteratively until we reach a desirable dataset size. The 
intuition behind this approach is that we delete customers with few purchases and products rarely 
bought. The final dataset consists of 1281 customers, 3993 products, while the density of the matrix is 
2%. 

4.2 Evaluation method and metrics 

We have chosen 10-fold cross validation to be our evaluation method, as the most popular, robust and 
valid cross-validation technique. We divide our dataset in such a way that we keep 90% of it as training 
set and the rest 10% for testing. We repeat this procedure 10 times for non-overlapping test sets, so as 
all data have been used both for training and for testing. 

We use precision, recall and F–1 measure to be our evaluation metrics. 

 Precision stands for the percentage of recommendations generated that where actually found in 
the test set. That means the number of correct recommendations. 
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 Recall stands for the percentage of the test set that the algorithm managed to recommend. 
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 F–1 measure is a combination of equally weighed precision and recall. 
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4.3 Results 

The overall results of the experimental evaluation of all implemented techniques are shown on table 1. 

 

CF 
threshold based k–NN 

all recommendations all recommendations 

threshold = 0.07 k = 10 
PRE REC F–1 PRE REC F–1 

2.38% 2.94% 2.63% 2.57% 28.24% 4.71% 

top-N recommendations top-N recommendations 

threshold = 0.05 k = 60 
PRE REC F–1 PRE REC F–1 

78.24% 13.04% 22.35% 98.33% 17.35% 29.50% 

 

OAR 
all recommendations 

support = 0.03 
confidence = 0.10 

PRE REC F–1 
5.11% 3.33% 4.04% 

 

Hybrid NAR vs. OAR 
all recommendations 

support = 0.10 
confidence = 0.10 

NNs = 60 

support = 0.10 
confidence   0.10 

PRE REC F–1 PRE REC F–1 
9.19% 2.55% 3.99% 0.00% 0.00% 0.00% 

Table 1. Experimental evaluation results. 

For collaborative filtering, we observe that obtaining just the 10 best recommendations produces much 
better results instead of keeping all the predictions that the algorithm generates. The intuition for this is 
that in a physical store like a supermarket, customers will be unwilling to process an endless list of all 
possible recommendations. Instead, they expect to get a smaller number of recommendations that they 
will like the most. Fewer but more accurate and interesting recommendations are of vital importance as 
they help customers to build loyalty to the recommender system. In addition, we note that the 
selection of nearest neighbors is a much better technique than the threshold-based as it achieves better 
results. Table 1 also shows the results for the overall association rules, where it can be noticed that they 
are inferior to collaborative filtering. Finally, in the same table we may see a comparison between 
overall association rules and the hybrid neighborhood-based association rules. It can be easily observed 
that the later is superior to the former, but still hybrid performs much worse comparing to collaborative 
filtering. 

5 CONCLUSION AND FUTURE WORK 

This paper aims to describe a research in-progress, and hence reports the first results of such a work. 
The results we obtained indicate that collaborative filtering operates efficiently in the field of traditional 
retailing, in contrast to association analysis. Collaborative filtering’s remarkable high precision may 
indicate an increase in purchases from the new, unseen products that this approach recommends to 
customers. As far as the association analysis is concerned, we may have to reconsider the approach of 
rules generation and move to less strong rules. The rationale behind this is based on our observation 
that very strong rules lead to products already bought and thus produce no recommendations. We aim 
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to further extend our work by examining the behavior of association analysis obtaining only the N best 
predictions, while for the hybrid we aim to use new intelligent methods for combining 
recommendations at the output. The adoption of other data mining techniques, like clustering, may 
yield useful results in better combining techniques. Last but not least, it would be very interesting to 
expand the experiments in the original larger dataset, as well as integrate our system with an RFID 
reading system. 
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