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ABSTRACT  

Econometrics textbooks generally conclude that in regression, because the calculation of path estimate variances includes a 

variance inflation factor (VIF) that reflects correlations between “independent” constructs, multicollinearity should not cause 

false positives except in extreme cases.  However, textbook treatments of multicollinearity assume perfect measurement – 

rare in behavioral research.  VIF is based on apparent correlations between constructs -- always less than actual correlations 

when measurement error exists.  A brief review of recent articles in the MIS Quarterly suggests that the conditions for 

excessive false positives are present in published research.  In this paper we show (analytically and with a series of Monte 

Carlo simulations) that multicollinearity combined with measurement error presents greater than expected dangers from false 

positives in IS research when regression or PLS is used.   Suggestions for how to address this situation are offered. 

Keywords 

Multicollinearity, measurement error, correlation, Type I error, false positive, VIF, variance inflation factor, regression, PLS, 

LISREL. 

 

INTRODUCTION 

Anyone who has studied regression analysis has probably read the section of a textbook dealing with multicollinearity.  After 

discussing possible dangers, textbooks generally conclude that except under extreme circumstances, because the calculation 

of the standard error of the path estimates includes a Variance Inflation Factor (VIF) based on intercorrelations between 

independent constructs, the calculated standard errors will increase sufficiently to prevent false positives.  Only when VIFs 

increase to near 10 (Neeter and Wasserman and Kutner, 1985, p. 392) is caution urged
1
. 

   

However, these regression textbooks assume constructs are measured without error.  In this paper we start with the equations 

from regression textbooks for the standard error of regression path estimates, noting that they include a VIF that reflects any 

correlations between independent variables.  However, when we add the recognition that in behavioral research there is 

generally measurement error, it is clear that what a regression analysis sees as the correlation between two independent 

variables measured with error is less than their actual correlation in the population.  This is made clear in Nunnally and 

Bernstein’s (1994) equation for the relationship between underlying correlation and apparent correlation, which they call a 

“correction for measurement error attenuation” (pp. 241, 257).  When this attenuation for measurement error is factored into 

estimates of the correlations between independent constructs, it can be seen that when there is measurement error, the VIF is 

systematically underestimated, with the result that the standard error of path estimates is systematically underestimated. 

   

                                                           

1
 Some researchers suggest a smaller maximum value for VIFs, e.g. Craney and Surles (2002) who sluggest 3.33.  The value 

of 10 is more commonly used, however.   
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Underestimated standard errors of course results in overestimated t statistics and the possibility of excessive false positives.  

The commonly accepted significance level of .05 in statistical testing means that the researcher is willing to risk a 5% chance 

of finding a false positive (Type I error).  Our work suggests that under combinations of multicolinearity, measurement error 

and sample size actually found in published MIS research, the danger of false positives exceeds 10%.  This can occur with 

VIFs as low as 2.0. 

   

In this paper, we start by showing how the equation for the standard error of path estimates is affected by the combination of 

measurement error and multicolinearity.  We then examine one particular paper from MIS Quarterly that well illustrates our 

concern, and we do a quick scan of high correlations in papers from that journal from 2007 to 2009 that might also have 

similar problems.  This scan suggests that as many as a quarter of the path analysis papers have correlations high enough to 

cause real concern relative to this issue. 

   

But theoretically showing that false positives are a possibility is quite different from showing that in practice false positives 

are likely.  To address the question of how likely false positives are, we utilize Monte Carlo simulation to test the impact of 

multicolinearity on regression, LISREL and PLS.  As the reader will see, we find that both regression and PLS are 

susceptible to excessive numbers of false positives under commonly occurring combinations of correlation, measurement 

error, and sample size. 

MULTICOLLINEARITY:  THE TEXTBOOK TREATMENT AND THE IMPACT OF MEASUREMENT ERROR 

Without getting into details of the calculations of regression parameters, it is clear that econometrics textbooks all show that 

the calculation of the variance of the beta estimates is a function of the correlations between predictor variables, as embodied 

in the Variance Inflation Factor.  As explained by Neter, Wasserman and Kutner 1985, p. 391, “the variance inflation factor 

for bk’ is:   

  (VIF)k = 1/(1 – Rk
2
)   (1) 

where Rk
2
 is the coefficient of multiple determination when X is regressed on the p-2 other X variables in the model.”  When 

there are only two predictor variables that are correlated, VIF reduces to the following: 

  VIF = 1/(1 – r
2
)   (2) 

where r is the simple correlation between the two correlated predictor variables. 

We will use equations from Pindyck and Rubinfeld (1981 pp. 77-78) for the variance of the beta estimates, but we could have 

used equivalent equations from many textbooks (cf. Johnston 1983, p. 161; Neter, Wasserman, and Kutner 1985, p. 389, etc.)  

Pinkyck and Rubinfeld show that when there are only two predictor variables (X2 and X3), the variance of a beta path 

estimate for X2 is: 

  var(β2)  =  s
2
 / [Σx2ι

2
  ∗ (1-r

2
) ]    (3) 

or   var(β2)  =   [s
2
 / Σx2ι

2
 ] * VIF  (4) 

and similar for X3.  Here 1/(1-r
2
)

 
is the VIF and s

2
 is an unbiased and consistent estimate of σ

2
, the error variance of the 

regression equation
2
. 

As can be seen, the variance of the path estimate for either of the correlated predictors is a function of the VIF
3
.  When there 

is no correlation between predictors, the VIF becomes one.   When the two independent constructs are more correlated (as 

multicollinearity increases), r increases, the (1-r
2
) term will become smaller, and the variance inflation factor (and the 

variance of the path estimate) will become larger.  In the limit when r = 1, the variance is infinite, and regression cannot be 

carried out.  Thus multicollinearity is accounted for in the estimations of the variances (and standard deviations) of regression 

path estimates.   

In general, to test the statistical significance of regression beta estimates, we take advantage of the fact that with normally 

distributed error terms, the following has a t distribution: 

   (β
^
2 - β2) / Var

^
 ( β

^
2)        ~ t N-K (5) 

                                                           

2
 s

2
  =   Σε

2
i / (N – K) where N is the sample size and K is the number of independent variables (including the constant). 

3
 Since a standard deviation of a path estimate is the square root of the variance, standard deviation is also a function of VIF. 
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However, equations 1 through 5 above assume perfect measurement.  When measurement is not perfect, there is no way for 

regression to determine the true correlation of the two independent constructs.  Any estimate of the correlation (r) between 

constructs when there is measurement error that is based on averaged or summed indicator scores will be attenuated 

(reduced) by the measurement error, as expressed in the equation for the “correction for attenuation” (Nunnally and 

Bernstein,  1994, pp. 241, 257)   

r23
corrected

      =      ( r23
uncorrected

 )  /  (α2*α3)
1/2

 (6)    

Here α2 and α3 are the reliabilities of the two correlated predictors.  It can be seen in equation (4) that if the correlation 

between two predictor variables (r) is underestimated because of the attenuation due to measurement error, then the variance 

of the path estimate will also be underestimated, and the t statistic will be overestimated.   Our concern here is that if the t 

statistic is overestimated, then we should expect higher than acceptable numbers of false positives. 

A Concrete Example of a Potential False Positive Situation 

We reviewed all issues from the 2008 and 2009 volumes of MIS Quarterly.  As we will discuss in more detail later in the 

paper, we found numerous examples of published articles where we believe that the conditions for potential false positives 

from multicolinearity problems hold.  We have picked out one that illustrates the potential problem well.  Note that we are 

not faulting these authors (or any others mentioned in this paper).  Rather we wish to point out that although they followed 

established measurement validity practices in the field, in light of the additional insights offered by our work, it may be 

advisable for them (and others encountering high correlations) to review their results and re-consider their interpretations.   

Au et al. (2008) used PLS to test a causal model explaining end user satisfaction for an information system.  Among the 

independent variables were Equitable Relatedness Fulfillment, Equitable Self Development Fulfillment, and Equitable Work 

Performance Fulfillment.  In this context, “equity” refers to the degree to which benefits in each of these three areas are 

commensurate with the effort needed to achieve the benefits.  As shown on Au et al.’s page 52, these three independent 

variables have apparent inter-correlations of .73, .68, and .75, and reliabilities of .89, .90, and .87.  Though not stated in the 

paper, our back of the envelope calculation suggests the VIF for the analysis would be approximately 2.8, far less than the 

standard danger signal of 10.   

Partial results from Au et al.’s analysis are shown in Figure 1.  As can be seen in the figure, these three independent 

constructs had roughly the same correlation with the dependent variable Satisfaction, .56, .57, and .60, respectively.  

However, as shown under the column for the betas, the beta for Equitable Self Development Fulfillment is small and not 

significant, while the betas for Equitable Relatedness Fulfillment and Equitable of Work Performance Fulfillment are 

moderately strong and statistically significant.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  An Example: Understanding EUS Formation 
Au et al., MISQ 2008
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One interpretation of Au et al.’s results is that because of measurement error combined with the high correlations between the 

three independent variables, the t statistics for the three paths might be overestimated.  Because all three independent 

variables have almost the identical correlation with the dependent variable, we might expect that all have about the same 

impact on Satisfaction.  However, that is not evident in the PLS path values -- for two variables the paths are much higher 

and more statistically significant than for the third.  As Johnson (1972) notes, one of the characteristics of excessive 

multicolinearity is overestimation of one of a pair of correlated constructs, and underestimation of the other.  More 

specifically, he says that a large correlation between independent variables 

“is thus likely to produce large and opposite errors in β
^
2 and β

^
3; if β

^
2 underestimates β2, then β

^
3 is likely to 

overestimate β3 and vice versa.  It is thus very important that the standard errors should alert one to the presence of 

multicollinearity.”   (p. 162) 

Thus one interpretation of the results is that because of multicollinearity, the path values for Equitable Relatedness 

Fulfillment and Equitable of Work Performance Fulfillment are overestimated, while Equitable Self Development Fulfillment 

is underestimated.   

These results by themselves are not sufficient evidence that Au et al. have problems caused by multicollinearity.  However, 

combined with the analytical evidence from the previous section, as well as the results of our Monte Carlo simulation that we 

will present, they are highly suggestive of a problem.  Our interpretation of the Au et al. results is that because of the high 

correlations, the effects of these three variables cannot be disentangled.  Trying to disentangle them (as Au et al. do), 

probably results in misinterpreting the results to mean that Equitable Self Development Fulfillment has no independent effect 

on Satisfaction.   

In fact, they struggle with explaining the empirical results, since presumably Equitable Self Development Fulfillment was a 

factor that they thought would be important to satisfaction ratings.  However, because the beta coefficient for the Equitable 

Self Development Fulfillment was not significantly significant, they presume that it has no impact, and suggest: 

“…..the absence of a direct significant impact of equitable self-development fulfillment on EUS (H5) could be 

explained in two ways. First, the application of IS in the service industry still mainly focuses on operational work.  

The scope of IS use is therefore likely to be routine-based.  Hence, those employees who have the opportunity to 

seek greater challenges from the information system are likely to be in the minority.  Second as information systems 

are mainly used for routine operational work, employees can get acquainted quickly with the required technical 

skills.  To relate job security or career advancement to an individual’s exceptionally poor or outstanding 

performance would difficult, and therefore equitable self-development fulfillment is not significantly linked to EUS 

[End User Satisfaction].  If this model is applied to higher level strategic information systems in other industries, it 

is likely that such an impact would be more significant. (page 53)” 

It is clear that Au et al. still believe that Equitable Self Development Fulfillment is important, even though they assumed that 

they had disproven it for this environment: 

“Although it was found that equitable self-development has no direct impact on EUS, whether it has any indirect 

impact mediates through other variables is yet to be determined. (page 54)”   

Given their level of intercorrelation, we would suggest it is quite possible that the other two predictors (Equitable Work 

Performance Fulfillment and Equitable Relatedness Fulfillment) are false positives, but is also possible that the path for 

Equitable Personal Development Fulfillment is a false negative.  In fact with this level of correlation, it may be better not 

trying to disentangle the three effects, and instead (as Au et al. do at one point), treat the three as a single component, and test 

the impact of adding all three at once to the analysis.  Doing this, they do suggest (without clear statistical evidence) that the 

group of three has an important effect. 

 

Is This Issue Important for Information Systems Researchers? 

Information System researchers often find themselves in a position where they have data that exhibit somewhat high 

correlations among predictor variables.  Figure 2 shows that during the 2008 to 2009 period there were 34 paper in MISQ that 

used path analysis of some kind (typically PLS, regression, or LISREL/Other SEM approach).  Of these, 8 had apparent 

correlations of .5 or above, and our assessment is that 6 of these have likely problems (either a false positive or a false 

negative).  We reached this conclusion by looking at correlations between predictor and dependent variables (as well as the 

correlations among predictor variables), and comparing those with the size and sign of path estimates. Table 1 shows specific 

papers from MISQ during the years from 2007 through 2009, and the size of potentially problematic correlations.   
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So the situation seen in the Au et al. paper is not unique.  Even though a calculation of variance inflation factors in all these 

papers may suggest no concern (i.e., the VIFs are far less than 10), adding the variables one at a time might suggest many of 

the hallmarks of multicollinearity – path estimates that shift from positive to negative when a correlated construct is added, or 

greatly changing their value and significance (Neter, Wasserman, Kutner, 1985 p. 390).   

Reference sources for guidance on determining whether or not excessive multicollinearity exists are inconsistent and not very 

helpful.  Neter et al.’s informal methods for detecting multicollinearity might strongly suggest a problem, but at the same 

time the standard test (variance inflation factors) indicates no problem should exist.  Our research suggests that correlations 

far less than required for high VIFs can generate unacceptably high proportions of false positives in regression.  Since a 

Figure 2.  MISQ 2008-2009
34 Papers with Path Analysis

Highest Correlations Between Independent Vars

Not Provided

All Under .50

Some Over .50

Corr Correction

Looks Only At Fit

8 papers with > .50

6 with likely problems

Table 1.  High Correlations In MIS Quarterly 2007-2009
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reasonable protection against false positives is central to empirical research and the scientific method, we need more 

information about whether correlation and measurement error really do increase the risk of false positives, and if so, what 

level of correlations and measurement errors should be considered danger signs. 

 

Using Monte Carlo Simulation to Discover If There Really Is a Problem 

Monte Carlo simulation has been used extensively to investigate a variety of statistical analysis issues
4
.  With Monte Carlo 

simulation, we start with a ‘true’ base model that has known properties because we define them in advance.  The model we 

will use is shown in Figure 3.  We then use random number generators to generate, in effect, questionnaire data drawn from a 

population where the model represents the true relationships between constructs and questions measuring them.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Monte Carlo simulation in this context, the researcher generates numerous datasets that exhibit the desired properties, and 

uses any analysis technique of interest to analyze the data.  The parameters of the base model can be used to generate specific 

characteristics in the data.  In other words, Monte Carlo simulation can generate large numbers of samples in any desired 

condition, where what the true underlying distributions and paths are between constructs are precisely known.  Because of the 

above, Monte Carlo simulation is very well suited to exploring the impact of multicollinearity and measurement error on 

statistical techniques. 

For our Monte Carlo simulation work, we followed the general approach taken in Goodhue et al. (2007).  We used different 

values for the correlation between Ksi1 and Ksi2 to create greater or lesser multicollinearity, and we changed the loadings on 

the construct indicators to create different levels of measurement reliability. (See Figure 3.)  Because we generated many 

different random datasets (500 for each reliability / correlation condition), by looking across all the datasets in a particular 

condition we can get a fairly accurate understanding of the efficacy of the statistical techniques for that condition, and can 

also compare that efficacy across techniques, and across other conditions.  

For our analyses here, we used a sample size (N) of 100, which is a common size for MIS research.    Using Cohen’s (1988) 

power tables and taking into account the baseline parameters and their measurement error, N = 100 should give us a 

                                                           

4
 For example Fornell and Larcker (1981) looked at the impact of different correlation structures on the chi-square goodness 

of fit tests for structural equation modeling.  Goodhue, Lewis and Thompson (2007) looked at the efficacy of using PLS with 

product indicators for testing interaction effects.    
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sufficient sample size for 80% power for the Ksi1 and Ksi3 paths to Eta.   As shown in Figure 3, each construct is measured 

by three indicators with initial loadings of .70, .76 and .82, which will give us a Cronbach’s alpha of .80 for each of the 

constructs
5
.  This alpha of .80 is equivalent to the usual recommended cut-off value for alpha in reasonably mature research 

streams (Carmines and Zeller 1979).   Ksi1 and Ksi3 each have a moderate effect size
6
 influence on Eta (due to a path value 

of .292); Ksi4 has a strong effect size influence on Eta (due to a path value of .51); Ksi2 has a zero effect on Eta.  Therefore, 

any statistically significant value found for the Ksi2 to Eta path is a false positive.      

As indicated in the square text boxes of Figure 3, we can manipulate the amount of correlation between Ksi1 and Ksi2 by 

changing the parameters of the underlying model.  That is, we can change the correlation between KSI1 and KSI2 to reflect a 

correlation of .4 (or .6, etc.) instead of zero, generate a new set of 500 or so datasets, and see what kind of results we get from 

regression using this new data.  We can also modify the measurement error by changing the loadings of the indicators.   

For our initial analysis we tested 20 conditions:  all combinations of four levels of reliability (1.00, .90, .80, and .70) and five 

levels of correlation between Ksi1 and Ksi2 (0.0, .4, .6, .8, and .9).   For each condition that we tested, we generated 500 

datasets of 100 questionnaires each and analyzed each of the 500 datasets separately using first regression and then LISREL.  

After that analysis, we then determined:  (a) the average estimate value for each path, and (b) the number of paths (out of 

500) with a statistically significant path.  In the case of the Ksi2 to Eta path, every statistically significant value was a false 

positive.  For each statistical technique and each condition, we calculated the proportion of false positives as the number of 

false positives divided by the number of datasets (500).  Since this gives us a proportion, we can use a standard equation for 

the 95% confidence interval around our proportion of false positives
7
. 

Since we are using a statistical significance level of p<.05, we would expect about 5% of false positives.  The confidence 

interval around a proportion of 5% with N=500 is 5%  +/- 1.9, or from 3.1% to 6.9%.  Any proportion higher than 6.9% is 

statistically significant evidence of excessive false positives.   

Figure 4 shows our results using regression (on the top left) and LISREL (on the top right).  The two dotted horizontal lines 

show the limits of the confidence interval around 5% false positives.  As is easily seen, with an actual correlation of .6 and 

measurement validity of .80 or .70, the results show a statistically significant number of excessive false positives for 

regression (around 8%), but not for LISREL.   

Our explanation for why regression has excessive false positives and why LISREL does not is the following.  LISREL 

analysis is based on covariances between the indicators and thus its equations have access to information about reliability.  

Therefore it does not underestimate the correlations between Ksi1 and Ksi2, so it does not overestimate the t statistic for the 

Ksi2 to Eta path.  Regression, on the other hand, has only the value of the constructs determined by summing or averaging 

the indicator values.  Thus regression has no information about the measurement reliability, and cannot take that into account 

in its calculation of the standard deviation of the Ksi2 to Eta path.   

Because with Monte Carlo simulation we know the true correlation between Ksi1 and Ksi2, we have a unique opportunity to 

ask what the results would be if Nunnally and Bernstein’s equation for measurement attenuation were taken into account, and 

the standard deviation for the regression paths were corrected by the appropriate amount.  Those results are shown in the 

bottom left of Figure 4.  Two things are clear from the comparison of the top and bottom left hand graphs of Figure 4.  First, 

when the correction for attenuation is used, the regression results no longer have excessive false positives, and secondly the 

corrected regression results mirror very closely those obtained by using LISREL. 

 

                                                           

5
 Knowing the underlying loadings of the indicators, we can calculate their inter-item correlations and therefore their average 

correlation.  With this we can use a standard equation for Cronbach’s alpha:  α = N*ρavg  / [1+ρavg(N-1)] (Carmines and 

Zeller, 1979). 

6
 If uncorrelated and measured without error, KSI1 through KSI3 would have an effect size of .292

2
/(1 – R

2
) or .13,which is 

categorized as a moderate effect size according to Cohen 1988.  Similarly, KSI4 would have a .39 effect size or a strong 

effect size.  We note that with measurement error, the effect sizes of both are reduced – with alpha = .80, the two effect sizes 

are .08 and .25, again assuming no correlations. 

7
 A standard equation for the 95% confidence interval around a proportion p with sample size n is:  p +/-  1.96 [ p(1-p) / n ]

.5
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Where Does PLS Fit Into the Picture? 

Although our intial analysis was focused on regression and LISREL, in MIS research PLS is another frequently used 

statistical analysis technique.  Though not as complete a picture at this time, we did conduct an analysis using 10 of the 20 

conditions with PLS.  (We have not yet included the alpha = 1.0 and alpha = .70 conditions.)  Table 2 shows the results.   

These results suggest that PLS suffers at least as much as regression does from problems with false positives.  At least in this 

context, it appears that PLS is more like regression than it is like LISREL. However, a more thorough treatment using PLS is 

required before a more definitive conclusion can be reached. 

 

 

 

 

 

 

Figure 4.  The Impact on False Positives of 
Correlation and Measurement Error

(Plus a Correction for Regression)
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CONCLUSION 

While this research is still ongoing, we view this as very strong initial evidence of our ingoing assertion – multicollinearity 

combined with measurement error is a more dangerous condition than we might have been led to believe.  What might be the 

danger signs?  First it is important to recognize that in our Monte Carlo simulation, and in the correlations shown in Figure 4, 

the true value of the correlations are shown.  However, regression analysis underestimates those correlations, as shown the 

equation for measurement attenuation.  Therefore, if Ksi1 and Ksi2  are each measured with a reliability of .80, what level of 

apparent correlation be evident if the true correlation were .6.  The math is shown below: 

r23
corrected

      =      ( r23
uncorrected

 )  /  (α2*α3)
1 

From Equation (6) 

r23
uncorrected

   =     r23
corrected

    * (α2*α3)
1/2

    =     .6 * (.80*.80)
1/2

   =    .48 

This suggests that when constructs are measured with an alpha of .80, and appear to have a correlation of about .5, they really 

have a correlation of about .6, and paths from them may have about 8% false positives, a statistically significant increase 

above the allowable 5%.  In a more extreme situation, with a reliability of .70 and an apparent correlation of .56, the actual 

correlation is close to .8, and the occurrence of false positives might be about 11%.  We should note, however, that our 

results are specific to this study, in that if the measurement error were different in amount or form from what we used in the 

simulation, our results might have been slightly different.  This could be the subject of a future study. 

In addition, please note that not all high correlations will result in false positives or false negatives.  Our initial rule of thumb 

is to be very cautious when apparent correlations are above about .50, with reliability at about .80 or below.  Another danger 

sign is path estimates that are disproportional to the correlations between independent and dependent constructs.  Under these 

circumstances, false positives (and false negatives) appear to be more frequent than current scientific method standards would 

allow, and hence more scrutiny would be suggested.   

The obvious question is: What should one do under these circumstances?  Our suggestion would be to use the following 

approach.  First, as a way of more specifically exploring the degree of multicollinearity, you can add the individual correlated 

variables, each one by itself, to the analysis with all the non-correlated variables, to see what each variable’s independent 

impact is.  Then gradually add the additional correlated variables into the analysis, watching the changes each new correlated 

variable makes in the old correlated variable path values and significances.  If values or significances don’t change much as 

you add new correlated variables, you probably don’t have multicollinearity problems.   If the individual impacts do change 

when additional correlated variables are added, you have a strong case for multicollinearity.   

One solution that may be tempting at this point would be to choose one of the variables with a high individual impact and 

drop the rest.  This however would be misleading to readers, since you really don’t have a way of separating out the impact 

of this one variable from that of the others.   
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Instead, difficult though it may seem if your hypotheses suggest different and separable impacts, if a set of predictor variables 

is highly correlated, it may be the reality that you will not be able to separate out the individual causal effects of each.  Once 

this is accepted, you may be able to salvage some real value by considering the correlated variables as a group, and asking 

what the impact of the group is on the dependent variable.  You can easily determine the increase in R
2
 of the group, and an F 

test will allow you to determine whether the impact of the group is statistically significant.  Future work may be able to better 

measure the different constructs to get separable impacts on the dependent variable.  Or you may have determined that the 

several correlated predictor constructs are really so closely linked that they should be considered a single construct.   

We suggest that bringing this perspective into our MIS research analysis and interpretation will sharpen our ability to develop 

accurate and useful causal models of the MIS environment. 
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