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ABSTRACT 

This paper is about the relationship between an organization’s software portfolio architecture and its ability to make changes 

to it. Responding to business and technology changes often involves modifying the software portfolio and the speed and cost 

of making changes to the software portfolio is a measure of the system’s flexibility. The specific research question is: “How 

does software portfolio architecture affect software portfolio flexibility?” 

This research develops measures of architectural and component complexity and hypothesizes that these constructs affect one 

dimension of software portfolio flexibility: architectural flexibility. The hypotheses are tested by (1) collecting component 

and dependency data from a biopharmaceutical company’s software portfolio, (2) combining this data with survey, system 

instrumentation, and archive data, and then (3) estimating and interpreting multiple regression models. The general 

conclusions from the research are that both complexity at the component level and complexity at the architectural level affect 

software portfolio flexibility. 

Keywords 

Information system architecture, complexity, information system flexibility, software measurement, software portfolio.  

INTRODUCTION 

Organizations build or acquire collections of software assets (e.g., applications, databases, scripts, servers, etc.) with the 

expectation that these assets will enable the organization to effectively respond to its environment. These assets are 

frequently integrated with each other so that data and processing can be seamlessly shared. These integrations, however, 

create dependencies between these assets, which raises the question of whether such dependencies could in any way restrict 

an organization’s ability to respond to changes in its business and technology environment.  The purpose of this paper is to 

show that these dependencies do affect an organization's ability to change.  

We call the collection of software assets assembled to satisfy the needs of an organization a software portfolio. A software 

portfolio is not a random collection of assets; it is a specific set of assets assembled into a system to fulfill a purpose (Mason 

and Mitroff, 1973). Our analysis focuses on how decisions made by the organization while it constructs its software portfolio 

affect the organization's subsequent ability to change. 

Using the definition provided by Brooks (1975), we define the pattern of dependencies between components within the 

software portfolio as the software portfolio architecture. Architectures describe the underlying structure of a system 

(Simon, 1996). While we often think of architecture as normative, it needn't be exclusively so. In this research we take a 

descriptive approach to software portfolio architecture, discovering the pattern of dependencies as they exist in the 

organization’s software portfolio. 

Software portfolios are not static, nor are they monolithic; people within the organization make choices to add, modify, 

remove, and combine components as they deem appropriate (Huber, 1990) in response to changes in their environment, 

changes in available technologies, and competitive pressures (Lawrence and Lorsch, 1967).   Organizations interested in 

retaining or increasing their ability to make changes need to know those properties of their software portfolios that affect their 

flexibility (Byrd and Turner, 2000; Duncan, 1995; Kayworth, Chatterjee and Sambamurthy, 2001). This paper addresses this 

need by exploring the relationship between characteristics of a software portfolio's architecture and its resultant flexibility. 

The specific research question examined in this paper is: “How does software portfolio architecture affect software portfolio 

flexibility?” As many of the constructs and theory are new to this research context, this investigation is exploratory. 
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The ability to change the software portfolio architecture (flexibility) has important consequences. An organization’s software 

portfolio implementation can either facilitate change by operating as innovation infrastructure (Weill and Broadbent, 1998), 

or it can retard change by acting as a form of digital cement in which the software portfolio hardens in place, leaving the 

organization unable to change the software portfolio and thus in some respects unable to change itself.   

In this paper we will develop a set of hypotheses concerning the relationship between architecture and flexibility which we 

then test in the context of the software portfolio of a biopharmaceutical company. 

LITERATURE REVIEW 

Prior research has not adequately explored the characteristics of software portfolios within their organizational contexts 

(Orlikowski and Iacono, 2001). The research that does exist has focused on individual components (Darcy, Kemerer, 

Slaughter and Tomayko, 2005; MacCormack, Rusnak and Baldwin, 2006), not systems of components, the focus of this 

paper. 

Researchers have described architecture in a variety of ways (Allen and Boynton, 1991; Broadbent and Weill, 1997). Most 

discussions of architecture are normative: what architecture should be and how it should be created “from scratch” (Zachman, 

1987). Software portfolio architecture is a description of the components that constitute the system; how those components 

interact, connect, and communicate with each other; and how the components operate to realize the software portfolio 

designers’ intent (Baldwin and Clark, 2000; Perry and Wolf, 1992; Ulrich, 1995). 

Relatively unexplored is the value of descriptive architecture: architecture used to describe a system after it has been built 

(Henderson and Clark, 1990). This paper focuses on descriptive architecture. 

Researchers have focused on the implications of architecture in a variety of domains (Banker, Davis and Slaughter, 1998; 

Duncan, 1995; Henderson and Venkatraman, 1993; Ross, Weill and Robertson, 2006; Sambamurthy, Bharadwaj and Grover, 

2003) using a number of different methods (Bass, Clements and Kazman, 1998; Nezlek, Jain and Nazareth, 1999; Shibata, 

Yano and Kodama, 2005). Software infrastructure is close to the construct of a software portfolio in that both constructs 

consist of multiple, interdependent software assets. The infrastructure flexibility literature has built a conceptual and 

measurement model of flexibility as comprising architectural and organizational characteristics measured through survey 

instruments (Byrd and Turner, 2000; Nelson and Ghods, 1999). Infrastructure architectures, however, have not been 

measured structurally, and their effects on infrastructure flexibility have not been evaluated. In this paper, we explore 

methods and theory to address this gap within the broader context of software portfolios rather than infrastructure only. 

THEORY 

Software Portfolio Architecture 

A system is a combination of components that function as a complete whole (Baldwin and Clark, 2000; Parnas, 1972; Simon, 

1996). One way to describe a system is through its architecture. Brooks (1975) divides the design of software systems into 

components and architecture. The components are the parts of a system that the software developers implement in computer 

code; architecture describes the overall form of the system. 

In this paper, software portfolio architecture is a description of components and dependencies. In the most general sense, a 

dependency exists if one component has knowledge of another such that a change in one could affect the other (Object 

Management Group Inc., 2007). This abstract representation of software portfolio architecture hides many specific details 

including the different types of components used and the different mechanisms by which they are dependent on each other.  

 

In this paper we will represent the architecture of a software portfolio using a network diagram in which nodes represent 

components and lines between pairs of nodes represent dependencies. Such structural views of architecture are common in 

research linking architecture to performance in other contexts (Baldwin and Clark, 2000; MacCormack et al., 2006).  
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Software portfolio flexibility 

Based on Upton (1994), this paper defines software portfolio flexibility as the property of a software portfolio that enables it 

to change or react with little penalty in time, effort, cost, or performance. This definition retains the abstract generality of 

Upton’s definition with an important clarification: flexibility is a property of a system. Such a definition bounds the unit of 

analysis; in this research, the system is a software portfolio. Additionally, this definition excludes concepts such as 

organizational slack, skills, or other resources because such concepts refer to the ability of the organization to change a 

system, not the system itself (Galbraith, 1973).  

Complexity 

To explore the relationship between software portfolio architecture and software portfolio flexibility this research adopts the 

perspective taken in the modularity and software maintenance literatures in which the structural qualities of an architecture 

are measured and the relationships between these measures and flexibility are tested (Darcy et al., 2005; MacCormack et al., 

2006). This paper focuses on one structural quality of architecture: complexity. 

Simon (1996) identifies a complex system as one whose behavior cannot be fully known based upon an understanding of its 

components. Baldwin and Clark (2000) provide a basis for a mathematical representation of complexity. They define each 

choice made by a designer as specifying a design parameter, the smallest unit of a design. This approach suggests that an 

incomplete understanding of interactions among a system’s components results from an incomplete understanding of 

interactions among the design parameters. The bigger the software portfolio, the greater the number of choices made within 

each component, and the greater the potential number of interactions. These interactions complicate designers’ task 

performance (Darcy et al., 2005; Wood, 1986) and affect the difficulty in finding high value designs (Alexander, 1964; 

Levinthal, 1997), which may collectively make modifying a software portfolio difficult. 

We can measure complexity at both the level of the architecture as a whole and for an individual component: 

Complexity in software is generally defined in terms of two measurement categories: cohesion and coupling (Stevens, Myers 

and Constantine, 1974). Cohesion is a measure of the relatedness of the design parameters within a component. Coupling is a 

measure of the extent that one component depends on another. This paper develops architectural complexity measures based 

on cohesion and coupling among components. Our conjecture is that these measures, traditionally employed within an 

application, can yield insight when applied at the software portfolio level. 

The software literature has defined additional complexity measures: data, structural, and procedural complexity (Tegarden, 

Sheetz and Monarchi, 1995; Zuse, 1991). This paper develops component complexity measures based on these three measures 

as defined in Tegarden et al. (1995):  Structural complexity is a measure of the intra-component coupling of the modules 

that comprise the component (Henry and Kafura, 1981). Procedural complexity is a measure of the number of design 

parameters in the component and the interactions among them (Tegarden et al., 1995; Zuse, 1991).  Data complexity is a 

measure of complexity of the component’s data model (Banker and Slaughter, 2000; Card and Agresti, 1988).  

The relationship between software portfolio architecture and software portfolio flexibility 

Changing a software portfolio involves identifying a gap between current and desired performance, identifying potential 

choices, making decisions, and evaluating outcomes. Complexity impinges on the designers who change a software portolio 

in two ways: first, complexity increases the cognitive demands on the designer (Anderson, Reder and Lebiere, 1996; Banker 

and Slaughter, 2000; Miller, 1956; Wood, 1986). Second, complexity increases the difficulty of finding a fit between design 

and context (Alexander, 1964; Baldwin and Clark, 2000; Levinthal, 1997; Simon, 1996). 

The general argument in this paper is that components vary in their dependency on the other components in the software 

portfolio and that these differences in dependency result in differences in both types of complexity, which cause differences 

in architectural flexibility. Complexity increases the cognitive efforts required of those making changes to the components 

and increases the difficulty of finding high-value modifications. 

HYPOTHESES 

Based upon the preceding theory, we propose five hypotheses that relate complexity to flexibility. 
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Component complexity 

Modifying the software portfolio by deploying, upgrading, replacing, or decommissioning a component requires the designer 

to have some understanding of the component. This understanding is required to select the right component, configure or 

change it so that it fits the organization’s requirements, or find suitable alternatives.  Component complexity complicates the 

effort of achieving the necessary understanding and either reduces the probability that the designer’s understanding will lead 

to successfully meeting organizational expectations or increases the probability that the designer will need to make multiple 

attempts in order to meet organizational expectations (Darcy et al., 2005; Fleming and Sorenson, 2001; Levinthal, 1997; 

Wood, 1986).  There are three hypotheses associated with this argument based on the dimensions of component complexity 

identified above: 

H1: Increased structural complexity is associated with decreased flexibility. 

H2: Increased procedural complexity is associated with decreased flexibility. 

H3: Increased data complexity is associated with decreased flexibility. 

Architectural complexity 

Two hypotheses, based on component coupling and cohesion, reflect the effect of increased architectural complexity on 

software portfolio flexibility. Component coupling is a measure of the degree of dependency between a particular component 

and all other components in the software portfolio. As coupling increases, the number of other components the designer must 

consider and the number of potential interactions among those components increases. As a result, increases in component 

coupling impinge on the designers’ cognitive limits and increase the difficulty of finding a fit between design and context. 

Both of these factors combine to reduce the probability of a good outcome.  

Component cohesion is a measure of the degree of dependency among the components that a particular component (the 

“focal” component) is directly dependent on. It is a measure of the degree of dependency between a focal component, the 

components it is connected to (its neighbors), and the dependencies among the neighbors. Cohesion is a measure of the direct 

and indirect dependencies among the immediate neighbors of the focal component. 

The more dependencies in the neighborhood of a focal component, the more interactions among the design parameters of the 

interconnected components and the more understanding required by a designer to make a change to the focal component. The 

effort of achieving the necessary understanding either reduces the probability that the designer’s understanding will lead to 

successfully meeting organizational expectations or increases the probability that the designer will need to make multiple 

attempts in order to meet organizational expectations (Darcy et al., 2005; Fleming and Sorenson, 2001; Levinthal, 1997; 

Wood, 1986). 

Thus, 

H4: Increased component coupling is associated with decreased flexibility. 

H5: Increased component cohesion is associated with decreased flexibility. 

METHODS 

Data collection site 

Data to test the theory describing the relationship between software portfolio architecture and software portfolio flexibility 

were collected from a research division of BPC (a pseudonym), a biopharmaceutical company. The individuals responsible 

for the components are called IT Service Owners; they helped collect data about the components. The IT Service Owners 

provide project management, systems analysis, and some limited programming services to the organization. 
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BPC is particularly well-suited to the investigation of a software portfolio architecture that has grown, in the words of the IT 

director, “organically.” Modifications to the software portfolio have followed the needs of the users, rather than prescriptions 

set forth in a designed, normative architecture. This is representative of organizations in which incremental changes are made 

to an existing software portfolio as business requirements and technologies change.  

Data collection methods 

Data were collected by examining strategy documents, having IT Service Owners enter architectural information into a 

repository, using automated system scanning techniques, and executing a survey instrument.  

Site’s software portfolio architecture 

The site’s software portfolio consists of 147 components and 388 dependencies. Components are software assets that BPC 

can treat independently of other such components and over which BPC can exercise architectural control (Jensen and 

Meckling, 1992). Of the 147 components, six were removed from analysis because they were deemed by BPC as non-

material. The remaining 141 components have 258 component-to-component dependencies. 

Of the 141 components, 119 were assigned to IT Service Owners. There are sufficient attribute data for 78 of the 119 

“owned” components to construct the independent variables. Of these 78 components, 62 have a completed survey (described 

next) in which the IT Service Owner claimed enough knowledge of the component to give a meaningful response. 

Operationalization of the dependent variable 

We operationalize architectural flexibility by measuring the cost of making an architectural change: the lower the cost the 

greater the flexibility. 

Cost data were collected through a survey administered to the IT Service Owners. Drawing upon the work of Baldwin and 

Clark (2000), and in consultation with BPC, we define the architectural operations that could be performed on a software 

portfolio component as deploy, upgrade, replace, decommission, and integrate. A component is integrated when 

modifications are made to it that enable it to ‘talk’ to another component, which creates a dependency. 

All IT Service Owners with component knowledge (nine individuals) provided estimates of the cost of each architectural 

operation listed above for the 62 components that ultimately enter the regression model. Each owner supplied a response for 

two to 17 components. In order to minimize bias, respondents did not provide responses for all the components they were 

responsible for in a single survey session, and a respondent control variable is added to the regression model. 

A single flexibility variable, COST, was created from the five flexibility survey measures by summing their values for each 

component. Cronbach’s alpha for COST is 0.83, summarized with the other variables in Table 1. 

Operationalization of independent variables 

The component and architectural complexity constructs were operationalized as follows: 

Structural, procedural, and data complexity 

In the software measurement literature, structural and procedural complexity are traditionally measured by analyzing source 

code. Source code is not available for the components at BPC. Therefore, structural and procedural complexity are measured 

through a factor analysis of the file types and sizes distributed with each component (Kim and Mueller, 1978; Tegarden et al., 

1995; Zuse, 1991). Since the number of lines of source code is highly correlated with the sum of the sizes of the resulting 

compiled files, we measured the sum (in bytes) and number of files of each file type (java, html, object, executable). These 

measures created a profile of each application and factored into the complexity measures used in this paper. 

Data complexity is measured by counting the database tables associated with each component under the assumption that the 

more tables accessed by a component, the more data, and relationships among the data, there are.  
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Coupling 

Coupling is operationalized through the network analysis measure closeness centrality (Borgatti and Everett, 2006; 

Wasserman and Faust, 1994) because it measures the effect of all components on any given component. We calculate 

closeness centrality for a component by summing the value of the reciprocal path values between it and each other 

component in the network.  The path value is the sum of the log(size) of the components encountered along the path. Because 

we sum reciprocal paths, unreachable components are taken as contributing zero. 

The use of the reciprocal results in very big components contributing less to the closeness measure than small components. 

The intuition for this is that an integration uses only a small part of a larger component’s capabilities; the larger component 

provides interfaces or other technologies that make integration easier; and the larger component is more mature and, thus, 

doesn’t need tight integrations.  

Cohesion 

Cohesion is operationalized through the network analysis measure embeddedness (Borgatti and Everett, 2006; Wasserman 

and Faust, 1994) because it measures the effect of a component's neighbors on each other. The neighbors of a component are 

those components connected to it with path of length one. Embeddedness is estimated by calculating the path density among 

the component’s neighbors (Wasserman and Faust, 1994). Density is computed by dividing the total number of edges by the 

total number of pairs of components. The density is bound between 0 and 1. In the case of an isolated component or a 

component connected to only one other component the value is set to 0. 

Controls 

The statistical model controls for two sources of bias. Response bias is controlled for by including the amount of time, 

COMPTIME, the respondent has spent working with the component. The amount of time respondents have spent with their 

components potentially affects their component knowledge and the accuracy of their cost estimates.  

The second source of bias is the components themselves. The component characteristics identified in Table 2 were controlled 

for to address the possibility that different types of components have different levels of flexibility unrelated to the complexity 

measures identified in this paper.  

Variable Description N
a 

Range Mean Var. 

COST Compound flexibility measure 62 2.20-6.02 3.60 1.11 

STRUCT_COMP Structural complexity 78 -1.88-2.31 0.00 0.94 

PROC_COMP Procedural complexity 78 -1.59-1.25 0.00 0.96 

DATA_COMP
b
 Data complexity 78 0-5.99 2.20 4.99 

CLOSE_W Closeness centrality. Arc value =log(size) 78 0-10.30 2.90 10.20 

EMBED
c
 Embeddedness 78 0-0.69 0.14 0.05 

COMPTIME
d 

Respondent’s Time with component 62 1-3 2.00 0.689 

a
 The number of components (rows) with valid data. 

b
 The range, mean, and variance summary statistics include the 0 values. 

c
 Logarithm transformed 

d
 A value of 1 indicates less than one year, a value of 2 indicates more than one but less than five 

years, and a value of 3 indicates more than five years. 

Table 1. Summary statistics for non-categorical variables 
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Name Description 

COMM Component developed by vendor. 

CLIENT Component accessed by end-users. 

COMP Component oriented towards computation. 

NTIER Component has N-Tier architecture. 

STATIC Component is no longer being enhanced. 

Table 2. Component categorical variables 

OLS regression 

COST is estimated with ordinary least squares (OLS) regression.  

RESULTS 

DV=COST Model 1 Model 2 Model 3 

COMPTIME 0.12 0.05 0.43* 

COMM  -0.43 -0.41 

CLIENT  -0.33 -0.40 

COMP  -0.15 -0.15 

NTIER  -0.05 -0.07 

STATIC  -0.94* -0.19 

STRUCT_COMP   0.10 

PROC_COMP   0.20 

DATA_COMP   0.21** 

CLOSE_W   0.10* 

EMBED   0.49 

Constant 3.36** 4.71** 2.54** 

Observations 62 62 62 

F-test 0.55 1.83 3.69*** 

R-squared 0.01 0.17 0.45 

Adjusted-R2 -0.01 0.08 0.33 

DF 1 6 11 

* p<0.05, ** p<0.01, and *** p<0.001 

Table 3. OLS results for dependent variable COST 

 

Table 3 shows model significance and coefficient estimates for the COST regression equation. The regression equation is 

built in stages in order to evaluate the additional explanatory power of the independent variables over base models that only 

include control variables. Model 1 consists of respondent controls only; Model 2 adds the component controls; and Model 3 

adds the complexity measures used for hypothesis testing. 

The difference in adjusted R-squared values and increases in F-test scores between Model 3 and the prior models suggests 

that the independent variables collectively have statistically significant explanatory power and support the general hypothesis 

that component and software portfolio architectural complexity predict software portfolio flexibility. 
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The respondent’s time with the component, COMPTIME, is significant (p<0.05) and positively associated with COST; this 

suggests that as the IT Service Owners spend time with their components they more fully appreciate the difficulty in making 

changes to them. None of the component controls are significant. 

STRUCT_COMP is used to test H1.Although the coefficient is in the expected direction, it is not significant; therefore, H1 is 

not supported.  

PROC_COMP is used to test H2. Although the coefficient is in the expected direction, it is not significant; therefore, H2 is 

not supported.  

DATA_COMP is used to test H3 It is significant and in the expected direction (p<0.01); therefore, H3 is supported. Data 

complexity, possibly because it is not hidden from the components that access the data, has a significant effect on flexibility. 

CLOSE_W is used to test H4. It is significant and in the expected direction (p<0.01); therefore, H4 is supported. Closeness 

has a significant effect on flexibility. Flexibility is a function of how coupled a component is to all other components, not just 

to those that integrate with it directly. 

EMBED is used to test H5. It is in the expected direction, but it is not significant; therefore, H5 is not supported.  

CONCLUSION 

In this paper we have made the case that there is insight to be gained by treating an organization’s software portfolio as an 

architecture – documenting the components and dependencies as observed in that portfolio as it has come to exist in the 

organization. We have argued that the complexity of this architecture has an impact on the ease with which designers are able 

to modify that architecture. 

Our analysis of the software portfolio architecture at BPC supports this conjecture.  We saw statistical support for the 

hypothesis that increases in the data complexity of components leads to decreased architectural flexibility.  We also found 

evidence that it is not just the properties of individual components but also the pattern of dependencies among those 

components that make a difference.  Specifically we found that increased coupling among components correlates with 

decreased flexibility.  

As noted in the introduction, this is an exploratory study and the results must be treated as such.  In particular, as a single-site 

study, the results may be an artifact of the specific data collected at this site at this time.  Clearly additional study across sites 

and industries will be necessary to determine whether the preliminary findings from BPC represent a generalizable 

relationship between architecture and flexibility.  The contribution of this study is, first, to develop the theoretical and 

methodological basis for carrying out such investigations, and second to provide preliminary evidence that there may well be 

an important connection between the architecture of a software portfolio and the ability of the organization to adapt that 

portfolio in response to changing business conditions.  
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