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Abstract 

Human-based electronic services (people services) provide a powerful way of outsourcing tasks to a 

large crowd of remote workers over the Internet. Because of the limited control over the workforce in 

a potentially globally distributed environment, efficient quality management mechanisms are a 

prerequisite for successful implementation of the people service concept in a business context. 

Research has shown that multiple redundant results delivered by different workers can be aggregated 

in order to achieve a reliable result. However, existing implementations of this approach are highly 

inefficient as they multiply the effort for task execution and are not able to guarantee a certain quality 

level. Our weighted majority vote (WMV) approach addresses this issue by dynamically adjusting the 

level of redundancy depending on the historical error rates of the involved workers and the level of 

agreement among them. A practical evaluation in an OCR scenario demonstrates that the approach is 

capable of gaining reliable results at significantly lower costs compared to existing procedures. 

Keywords: crowdsourcing, group decision making, quality of service, human-based electronic 

services. 

 



1 Introduction 

Human-based electronic services are a specific form of crowdsourcing - a term shaped by Howe 

(2006). While they formally look like Web services, human-based electronic services are not 

performed by a computer, but rather by human workforce, typically by a crowd of Internet users. The 

success of Amazon's Mechanical Turk (MTurk) platform
1
 and the growing number of companies that 

build their business model entirely on that platform demonstrate the potential of this approach (Frei 

2009). Here, the platform acts as a broker between requesters who publish micro tasks and workers 

who perform those tasks in return for a small compensation.  

Kern et al. (2009) coined the term people services (pServices) for human-based electronic services and 

define it as ―Web based software services that deliver human intelligence, perception, or action to 

customers as massively scalable resources―. As there is limited control over the individual 

contributors, particular attention has to be paid to the quality of the work results – in fact, quality 

management is the key to a widespread application of pServices in more business critical scenarios 

than the ones currently supported. However, a central validation of work results by the requester 

conflicts with the general idea of people services to provide human workforce in virtually unlimited 

scalability: if the requester doesn’t have the bandwidth for performing the actual work it can be 

typically assumed that he would neither have the bandwidth for reviewing the result quality in a 

scalable way. Therefore, it seems obvious that the scalability of the crowd needs to be leveraged not 

only for performing the actual work, but also for ensuring the quality of the results.  

For annotation tasks, Sorokin and Forsyth (2008) distinguish between two generic quality assurance 

strategies on pServices platforms which use the crowd itself for quality assurance: the collection of 

multiple annotations and the performing of a separate review task (they call it grading task). More 

generally, the first approach can be defined as a majority vote approach which ―introduces redundancy 

by passing the same task to multiple workers and aggregating the results in order to compute the result 

with the highest probability for correctness‖ (Kern et al. 2010).  

Existing applications of this approach typically use a fixed degree of redundancy, i.e. each task is 

performed by the same number of workers. The result with the highest probability for correctness is 

determined based on the agreement among the workers. Obviously, the level of agreement (and so the 

expected result quality) varies depending on the error rates of the involved workers. For some tasks, 

the agreement might be extremely high (e.g. all workers agree on exactly the same result), for others 

the worker results might be at odds (e.g. half of the workers returns result A, while the other half 

returns B). Therefore, a majority vote with a fixed degree of redundancy is both highly inefficient and 

incapable of assuring a certain level of result quality.  

In order to overcome these problems, our weighted majority vote (WMV) approach dynamically 

adjusts the required degree of redundancy by taking into account both the actual level of agreement 

between the workers as well as their historical error rates. After providing an overview on related 

work, we introduce a model of the WMV. Thereafter, we evaluate its capabilities in an optical 

character recognition (OCR) scenario implemented on Amazon’s Mechanical Turk platform. The 

paper closes with a summary and an outlook. 

2 Related Work 

The general use of group decisions has been discussed for a long time. The validity of the majority 

vote model, e.g. as traditionally adopted by the judiciary, has been mathematically proven by 

Condorcet’s Jury Theorem (Condorcet and Caritat 1785). Under the assumption that one of two 

outcomes is correct and each decision maker has the independent probability p > 0.5 to make the right 
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decision, the probability for a correct group decision is greater than the individual one. Furthermore, 

the probability of a correct decision increases with the number of individuals in the group. May (1952) 

examines the fairness of the majority rule under the assumption that every voter has exactly one vote. 

Lam and Suen (1997) study the application of a majority vote mechanism for the aggregation of 

results in Pattern Recognition. According to them, the term majority usually refers to more than 50 

percent of a group. 

Surowiecki (2004) illustrated that the aggregation of group responses may lead to better results than 

the information of any single group member - if the opinions are diverse, independent, decentralized, 

and an appropriate aggregation mechanism exists. This phenomenon has been described as the wisdom 

of the crowds. Typical applications that leverage crowd intelligence are prediction markets (Gruca et 

al. 2005), Delphi methods (Rowe and Wright 1999) and extensions of the traditional opinion poll.  

In the field of machine learning, Littlestone and Warmuth (1994) developed a weighted majority 

algorithm that acts as a ―master algorithm‖ and aggregates the answers of several prediction 

algorithms in order to determine the best prediction possible.  

The aggregation mechanism is a vital part of each majority vote model. Depending on the task 

structure, results can be aggregated in several ways. Xu et al. (1992) suggest to combine multiple 

classifiers for handwriting recognition, Revow et al. (1996) compare five combination strategies 

(majority vote, Bayesian, logistic regression, fuzzy integral, and neural network) and arrive at the 

conclusion that majority vote is as effective as the other, more complicated schemes to improve the 

recognition rate for the data set used. 

The majority vote concept is widely used in the context of people services. Redundant task execution 

is a basic feature for quality improvement provided by platforms like MTurk. Sorokin and Forsyth 

(2008) and Snow et al. (2008) have analyzed the effect of the approach based on annotation scenarios. 

Snow et al. (2008) have investigated how many non-experts out of the crowd are needed in order to 

achieve better results than one single expert. They consider a basic majority vote mechanism, 

randomly breaking ties at an equal number of identical answers. They further use the workers’ past 

error rates for bias correction of new votes. They arrive at the conclusion that for many tasks only a 

small number of non-expert annotators are necessary to outperform a single expert annotator. 

Depending on the scenario, they report a required number of non-experts between two and more than 

ten. They also emphasize the high speed and low costs of Mechanical Turk. Whitehill et al. (2009) 

consider how to integrate labeler’s expertise into a majority vote mechanism for image labeling. They 

propose a probabilistic model and use it to simultaneously infer the label of each image, the expertise 

of each labeler, and difficulty of the individual image recognition task. As stated by Surowiecki, the 

aggregation of individual votes is essential to determine a common decision. Only tasks that can be 

aggregated automatically are suitable for the basic majority vote approach. Kern et al. (2010) refer to 

this type of task as deterministic task. They define the term deterministic task as “a task for which 

there is a well defined optimal result i.e. for which two workers who perfectly meet the task objective 

will pass exactly the same results, or for which the responses can at least be automatically transformed 

(normalized) into a well defined optimal result.‖  

3 The Weighted Majority Vote Approach  

In this chapter we introduce the weighted majority vote (WMV) approach which allows for efficient 

and goal based quality management for pServices. After introducing the overall scenario and the 

assumptions we describe the approach in detail. 

3.1 Scenario and assumptions 

The basic scenario of the WMV approach comprises three roles: a requester who wants to offer work, 

a group of workers who want to work on those tasks and a Web platform that coordinates the process 

and manages the quality of the work results. 



The requester passes tasks to the platform which makes it available to the workers in a task queue. The 

workers pick the tasks on which they want to work and submit raw results back to the platform. The 

scenario assumes that a raw result is either correct or not, i.e. it either meets the quality requirements 

of the requestor or does not. The requester should design and describe the task in a way that allows for 

a sharp distinction between correct and incorrect results. For each specific type of task, an individual 

failure rate    is attached to each worker   which represents the likelihood of the raw result meeting 

the quality requirements of the requester. The error rate may change over time, since workers may 

become careless by the time or they might improve their skills. The term raw result indicates that the 

result is not necessarily correct.  

The difficulty of all tasks is assumed to be similar. However, there might be some individual tasks that 

are harder to solve than others, for example because the task description does not apply to all 

individual tasks in the same way. As those tasks may be impossible to solve without support of the 

service requester, they are being sent back to the requester so that he can use this information to 

improve the task design and resubmit the tasks. 

3.2 Model 

The goal of the weighted majority vote approach is to dynamically determine for each task how many 

workers are required to meet the requester’s quality requirements (1). The basic idea is to start with a 

raw result returned by a single worker (2) and calculate based on his individual error rate whether the 

required minimum probability for correctness has already been met (3). If this is the case, the final 

result is returned (4). If the required quality has not yet been met, it is checked in step (5) whether a 

quality improvement can be expected by adding more workers. If that is not the case, the task is 

escalated back to the requester. Otherwise, the process continues with step (2) where another raw 

result is gathered from an additional worker. The process is continued until either the raw results 

delivered by several workers can be aggregated into a reliable result (3) which is returned as the final 

result to the requester (4) or until the escalation limit is reached in step (5). Figure 1 provides a 

schematic overview of the scenario. 

 

Figure 1.  Weighted majority vote (WMV) scenario 
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We presume that the correctness of the results follows a certain statistical distribution, which can be 

leveraged in order to aggregate the results. We also assume a fixed payment per task; therefore the 

overall costs can be minimized by minimizing the total number of tasks.  

To summarize, the following parameters are introduced by the scenario:  

The requester specifies  

 Desired level of quality      - the desired level of result quality, i.e. the minimum probability that 

the results returned by the weighted majority vote meet the requirements of the requester. 

 Result distribution D  - the statistical distribution that describes the correctness of the results. It 

should be tested via statistical hypothesis testing. In this paper, the binomial and the Poisson 

distribution are used as examples. 

 Maximum escalation level max  - the maximum probability that a task gets escalated to the 

requester. If max = 0.05, a maximum percentage of 5% of all tasks might get escalated in the long 

run even if all of them conform to the task specifications. 

The workers x 

 return raw results   
  when working on task y. 

 have individual failure rates    for the given type of task. 

 

From a mathematical point of view, the weighted majority vote approach is consisting of the following 

steps illustrated by Figure 2: 

 

1. Specify the desired level of quality     and the escalation level     . 

2. Make one (more) instance of task y available to the workers. 

3. Retrieve the raw result   
  of worker   having worked on task  . Among the results already 

submitted for task y, identify the one with the highest probability of correctness     as well as the 

escalation level    according to the given result distribution  . 

4. Return the result    with the highest probability of correctness    in case the probability    

exceeds the desired level of quality      and update the qualification values    of all participating 

workers, where        . 

5. Escalate the task back to the requestor if the overall probability    for getting the result tuple    is 

lower than or equal to the escalation limit     , with       
     

       
    and         

        being the IDs and   being the number of the workers who have worked on the task. 

 

Figure 2.  Weighted majority vote (WMV) approach 
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Steps 2 to 5 are repeated until the final result is returned in step 4 or the task is escalated in step 5. In 

step 3, the values    and    are calculated using equations (E1) and (E2). Equation (E1) determines 

the Bayes-conditional likelihood for result    being correct under the condition that the result tuple    

was received. What matters are not the actual values of the results   
     

       
   but the agreement 

among the workers about a specific result being correct i.e. the number of workers who agree that a 

specific result is correct in combination with their individual error rates. The parameter   refers to the 

number of distinct results in the result tuple   . 

(E1)                          
                   

       
 

(E2) determines the probability    of receiving result tuple   . If    reaches or falls below     , the 

task is escalated back to the requestor. Therefore,      denotes the approximate portion of tasks being 

escalated: 

(E2)             

3.2.1 Example for Binomial Distribution 

Assuming that the results follow a binomial distribution, the conditional probability    that result     is 

correct when receiving the result tuple    is 

(E3)                         
                   

       
  

                  

                    
 
          

 
   

. 

The probability    of receiving result tuple    is calculated by: 

(E4)                                 
 
          

 
    

3.2.2 Example for Poisson Distribution 

In the more complicated case of a Poisson distribution, let     denote the distance between two results 

  and  . The distance to the gold standard is Poisson distributed with individual parameter   . The 

value p(   ) denotes the probability that result   has the distance     to the gold standard. Then the 

conditional probability    that result    is correct is calculated by: 

(E5)                          
       

 
   

                      
 
   

 
   

 
   

 
   

 
   

 

The probability    of receiving result tuple    is calculated by: 

 (E6)                                    
   

 
   

 
   

 
   

 
      

4 Evaluation 

In order to test the capability of the weighted majority vote approach, we implemented and evaluated 

it based on the existing marketplace Amazon Mechanical Turk. We used an optical character 

recognition (OCR) scenario that represents a typical task class applied on that platform.  

4.1 Experimental design 

Data revision, including scenarios such as classifying, tagging, summarizing and revising content or 

audio and video transcription, and the recognition of (hand) written texts is a class of scenarios which 

is currently widely used on Mechanical Turk. Like many data revision tasks, optical character 



recognition (OCR) of handwritten texts cannot be fully automated yet (Lopresti 2009). Even 

sophisticated technologies need human assistance in order to achieve satisfying results. 

The data used for the evaluation consists of 1,176 single handwritten words. Each task was specified 

by its particular input data consisting of an image file (JPEG) displaying the handwritten word. The 

MTurk platform was accessed through the Java SOAP API provided by Amazon.  

In order to compare the WMV approach with the traditional majority vote mechanism, the actual 

evaluation was performed as a simulation on the basis of raw results from two batches, each consisting 

of multiple redundant instances per task. For simulating the traditional majority vote, a fixed number 

of raw results were used. For simulating the WMV, a varying number of raw results were used 

according to the dynamic concept of the approach (Figure 2). 

The batches were uploaded to the Mechanical Turk twice: On January 8
th
, 2010 an initial set of 3 

redundant instances of each of the 1176 task was uploaded without a qualification requirement. This 

first batch was used for parameter calibration. On February 1
st
, 10 additional instances of each task 

were uploaded. To prevent fraudulent workers and workers that are not qualified for this task type 

from participating, a qualification test was introduced. In the qualification test, the workers had to 

return the digital representation of 10 handwritten words. The actual evaluation used the second batch 

of 11.760 tasks. It was prohibited that a worker handles the exact same task more than once.  

The task payment was $0.01 per task, with Amazon receiving a service charge of $0.005 for each task. 

Consequently a total amount of                         data sets has been collected during 

the evaluation leading to total expenses of                              .  

4.2 Results 

The result section consists of two parts. The first part covers the analysis of the raw results from the 

two batches and comprises the quality of the raw results, the agreement among the workers, the 

scalability of the MTurk platform and some considerations about the task specific result distribution. 

The second part covers the performance of the WMV approach. 

4.2.1 Quality of raw results  

We clearly observed the improvement of quality and the impact of fewer workers participating when 

introducing a qualification test. 112 workers participated in processing the first batch of         
      assignments, while only 38 did in the second batch, although it was significantly larger, 

comprising a total of                 assignments. Of course, the workers in the second batch 

completed a significantly larger number of assignments each.  

 

Figure 3. Worker accuracy and number of completed Human Intelligence Tasks (HITs) 
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The analysis in Figure 3 shows that there are workers with a wide spectrum of individual error rates. 

Some of them are obviously unable to provide good quality or try to cheat by submitting poor quality 

on purpose. As the 2
nd

 batch results show, these are eliminated by introducing a qualification test. 

To calculate the distance     between two answers, we use the Levenshtein distance - a metric for 

measuring the amount of difference between two character sequences (Damerau 1964). It is defined as 

the minimum number of edits needed to transform one word into the other. Permissible operations are 

insertion, deletion and substitution of a single character. We assume the Levenshtein distance   
  to 

the correct answer to be Poisson distributed with parameter λ. The parameter λ is assumed not to 

change rapidly for the same worker and tasks of the same type. As validated with a   -Test based on 

the results of the second batches, the hypotheses can be accepted with a significance of 95%.  

4.2.2 Worker agreement 

Figure 4 illustrates the level of agreement    amongst the workers for all HITs y during the second 

batch. In equation E7, we compute the agreement by dividing the sum of the Levenshtein distance    
  

of answer   to all other answers   for all assignments by the number of all possible combinations of 

votes: 

(E7)            
     

  
       

 
   

         
     

  denotes the number of votes participating (which equals 10 for all HITs of the second batch) and    

denotes the average word length for task y. About 74% of all HITs have an agreement of 95% or 

better. Less than 5% have an agreement of below 70%. These mainly involve cases where workers 

submitted empty answers due to not being able to provide the right answer or because of carelessness.  

 

Figure 4: Worker agreement during second batch 

We in fact see that the error rate does not seem to be equal for all tasks; especially those ~5% of HITs 

with an agreement of less than 70% are critical to the assumption of equal task difficulty. The goal is 

to escalate these tasks in order to provide feedback to the service requester so that he learns which 

tasks are problematic and what to consider when uploading tasks to the task marketplace in general. 

4.2.3 Scalability 

Probably the most astonishing result of the experiment was the speed at which the results were 

submitted. The first result in the first batch of 3,528 tasks was submitted after 22 seconds and the 

whole batch was handled (except 2 results that were already accepted by workers) in less than 15 

minutes at an execution rate of 14,088 tasks per hour or ~126 tasks per worker and hour. During first 

experiments we even observed total execution speeds up to 3 times as fast, because of more workers 

participating. We assume that the execution speed besides the payment also depends on the time of 

day, since most workers are U.S. or Indian citizens (Ross et al. 2010).  
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Figure 5 illustrates the execution of the whole batch of 11,760 assignments which was executed at a 

slower execution speed due to the introduction of a qualification test. A similar chart is used by the 

crowdsourcing service provider CrowdFlower
2
. 

The first result was submitted after only 59 seconds, with the whole batch being processed after 2:40 

hours at an execution rate of 4,410 tasks per hour or ~116 tasks per worker and hour. We also see that 

workers process tasks more continuously since the ratio of workers participating in assignments per 

HIT is a lot smaller than in the first case (~3.8 compared to ~37.3). Only few workers leave the 

process; some even have breaks and return to the process later (e.g. worker No. 16). Additionally we 

observe very different execution rates for different workers, from 36 assignments per hour up to 900 

assignments per hour. 

 

Figure 5. Timeline of HIT execution for the second batch 

4.2.4 Impact of a task specific result distribution 

As already pointed out before, the weighted (and also the basic) majority vote mechanism can be 

applied using a binomial distribution or a task specific distribution. In our OCR scenario it is the 

Poisson distribution. While the Binomial distribution only differentiates between correct results and 

incorrect results, the Poisson distribution can reflect the proximity between similar responses. For 

example, if only one character in a word was recognized incorrectly, the result is incorrect but still 

better than if the complete word was incorrect. 

We found that we can use the Poisson distribution in order to approximate the Levenshtein distance of 

a worker’s answer to the gold standard. Using the ordinary majority vote, the answer that occurs most 

is considered to be the most probable correct result. If several words occur the same amount of times 

(―tie‖), a random choice between these answers is made, as suggested by Snow et al. (2008). In the 

weighted majority vote mechanism, the qualification values of the participating workers are 

considered. In this section we try to take a look at how the majority vote mechanism performs without 

including the worker error rate. In the specific OCR scenario one can think of different aggregation 
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methods. Because the answers consist of a set of letters, we suggest measuring the overall Levenshtein 

distance   
  as the sum of all Levenshtein distances    

  of answer i to all the other answers j and 

propose that the most probable correct answer is that with the shortest distance to all other answers 

(equation E8). Ties are also broken by chance.  

(E8)   
       

  
        

The data of the evaluation has been used in order to compare the two aggregation methods.  All 

possible combinations of answers have been used. Figure 6 shows the results of both mechanisms in 

terms of accuracy and number of votes.  

 

Figure 6. Accuracy of simple majority vote using different aggregation methods 

As we see, the aggregation method using the shortest Levenshtein distance indeed outperforms the 

simple majority vote method, especially when using a low level of redundancy. 

4.2.5 Performance of the weighted majority vote approach 

Using the weighted majority vote approach, we achieve remarkably good quality and we almost 

exactly met the quality goal of 0.99. It is not surprising that there is a small deviation because the 

workers’ error rates reflected in the model are only approximations using historic values and therefore 
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given that the weighted majority vote is 4 times more efficient as it requires only 2.21 (Poisson) and  

2.25 (Binomial) workers per task compared to 9 workers per task for the basic ninefold majority vote 

approach. In other words: the weighted majority vote approach has reduced the quality management 

effort by some 75 percent compared to the basic majority vote approach. Figure 7 illustrates this 

relation based on the data from table 2. 
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redundancy 2 2.21 2.25 3 4 5 6 7 8 9 10 
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Table 1. Comparison of the accuracy of different majority vote procedures 
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Figure 8 shows the amount of redundancy leveraged in the majority vote mechanism (binomial and 

Poisson case). We observe that in the binomial case more tasks end with two votes (88%) than in the 

Poisson case (85.5%), while the number of tasks with more than 4 votes is higher in the binomial case 

(10.2%) than in the Poisson case (6.2%). This is not surprising if we take a closer look at the binomial 

aggregation formula (E3). We see that in almost all cases where the first two workers agree, no 

additional worker is involved in the process. Given there is one worker who has a result that differs 

from the others, we almost always need at least 3 workers who agree to outvote this worker, of course 

depending on the individual error rates. This leads to the result that the Poisson case is not only 

slightly better in terms of accuracy but also more efficient with an average of 2.21 workers per 

instance, compared to 2.25 workers per instance in the binomial case.  

 

Figure 7. Comparison of the accuracy of different majority vote (WMV) procedures 

  

Figure 8. Amount of redundancy in the binomial case and Poisson case 

5 Conclusion 

We have proposed and evaluated a weighted majority vote (WMV) approach that supports goal-based 

quality management for human-based electronic services (people services). The approach uses 

redundant task execution by dynamically including additional workers in the decision process until the 

desired level of quality is reached. An evaluation on Amazon’s Mechanical Turk platform based on an 

optical character recognition (OCR) scenario has shown that the WMV approach is capable of meeting 

predefined quality requirements almost exactly. Furthermore, it significantly increases the efficiency 

of the quality management as it reduces the quality management effort by some 75 percent compared 

to the traditional majority vote approach. In its current form, the WMV approach can only be used for 
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deterministic tasks, i.e. for tasks for which a well defined optimal result exists. In our ongoing research 

we are widening the reach of the approach to more complex usage scenarios and extend it by elements 

of statistical quality control (SQC) in order to be able to reach a predefined level of result quality more 

precisely while further reducing the overall quality management effort. 
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