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Abstract 

We extend continuous assurance research by proposing a novel continuous assurance architecture 

grounded in information fusion research. Existing continuous assurance architectures focus primarily 

on methods of monitoring assurance clients’ systems to detect anomalous activities and have not 

addressed the question of how to process the detected anomalies. Consequently, actual 

implementations of these systems typically detect a large number of anomalies, with the resulting 

information overload leading to suboptimal decision making due to human information processing 

limitations. The proposed architecture addresses these issues by performing anomaly detection, 

aggregation and evaluation. Within the proposed architecture, artifacts developed in prior continuous 

assurance, ontology, and artificial intelligence research are used to perform the detection, 

aggregation and evaluation information fusion tasks. The architecture contributes to the academic 

continuous assurance literature and has implications for practitioners involved in the development of 

more robust and useful continuous assurance systems.   
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1 Introduction 

Most organizations today rely heavily on computerized information systems to automate and control 
their business processes. The proliferation of technologies like Enterprise Resource Planning systems 
and the widespread acceptance of e-commerce standards like EDI, XML and XBRL have 
fundamentally changed the nature of the assurance function. The real-time availability of detailed data 
about business processes internally and more frequent reporting of financial information externally 
have together increased the pressure on auditors to provide continuous assurance in some form. 
Additionally, recent legislation such as SoX, HIPPA and GLBA, has increased the importance of 
providing continuous assurance of the design and effectiveness of controls throughout the year. 
Organizations covered by the Sarbanes-Oxley (SOX) Act of 2002 are now required to disclose 
material changes in financial condition as they occur.   

Prior research has demonstrated how information technology can be harnessed to change both the type 
and timing of assurance services provided to users, specifically demonstrating techniques of 
performing “continuous auditing” (Groomer and Murthy 1989; Kogan et al. 1999; Rezaee, et al. 2002; 
Dull, et al. 2006). The AICPA and the Canadian Institute of Chartered Accountants define continuous 
auditing as “…a methodology that enables independent auditors to provide written assurance on a 
subject matter, for which an entity’s management is responsible, using a series of auditors’ reports 
issued virtually simultaneously with, or a short period of time after, the occurrence of events 
underlying the subject matter” (CICA/AICPA 1999). A recent report issued by 
PricewaterhouseCoopers indicates that organizations are indeed moving towards continuous 
assurance, with 81% of firms reporting that they either had a continuous auditing or monitoring 
process in place or were planning to develop one (PwC 2006).  However, of these firms only 3% had 
fully automated continuous assurance capabilities and most firms were auditing on a frequent rather 
than continuous basis, i.e., quarterly (57%), monthly (34%) and daily (9%) (PwC 2006). Thus, 
industry is far from realizing the type of continuous assurance envisioned by policy makers and 
researchers where assurance is provided in real-time or close to real-time, i.e., on a continuous rather 
than frequent basis.   

Academic research on continuous assurance has largely focused on the process of detecting assurance 
exceptions, i.e., deviations from a desired state such as a benchmark, best practice, policy or rule.  
Consequently, existing continuous assurance architectures (e.g., Groomer and Murthy 1989; 
Vasarhelyi and Halper 1991) do not address the important problem of processing detected exceptions. 
Unfortunately, behavioral decision theory and empirical research show that humans generally perform 
poorly in tasks requiring aggregation, processing, and analysis of cues (Tversky and Kahneman 1974; 
Iselin 1988; Kleinmuntz 1990). As reported by Alles, et al. (2006, 2008) and Debreceny et al. (2003), 
although the implemented continuous assurance systems were effective in detecting anomalies, there 
were simply too many anomalies generated for the users to process, leading to information overload. 
Thus, to the extent that the task of aggregation and analysis of detected exceptions is left to humans, 
the overall effectiveness and efficiency of any continuous auditing system will be limited.  

In this research we follow the design science paradigm1 and present the design of a novel architecture 
for continuous assurance that supports exception detection, aggregation and analysis. The new 
architecture, called Continuous Assurance Fusion (CAF), is grounded in both prior continuous 
assurance literature and computer science information fusion research. This architecture contributes to 
the literature by using information fusion concepts to address the issue of the processing and analysis 
of exceptions after they have been generated. Information fusion involves gathering data about an 

                                            
1 Please refer to Section 4.5 for a description of eight design science principles and an evaluation of this research based on 
these principles. 



object of interest from multiple sources and integrating these data in order to arrive at a holistic 
conclusion about the object. While the architecture itself is based on prior information fusion research, 
specific architectural components are based on various research streams within the accounting and 
information systems fields.  Specifically, prior continuous assurance research informs the data 
gathering component of the architecture, Resources-Events-Agents (REA) ontology concepts are used 
in the first data integration step, and artificial intelligence and machine learning algorithms are used in 
the subsequent data integration steps. This research provides a new direction for future continuous 
assurance research and a framework for integrating continuous assurance, artificial intelligence and 
REA ontology research. The CAF architecture itself, and subsequent research leveraging this 
architecture, can ultimately benefit practitioners through the development of continuous assurance 
systems that can effectively deal with detected exceptions.  

2 Background and Related Research  

Continuous assurance research has proceeded primarily along two paths, one focusing on the potential 
impact of continuous assurance on various stakeholders and the other focusing on technical issues in 
designing and implementing CA architectures. The latter research stream informs our proposed CA 
architecture. The vast majority of continuous assurance design research has largely focused on the 
process of detecting assurance exceptions, i.e. deviations from a desired state such as a benchmark, 
best practice, policy or rule. The detection of exceptions can be accomplished through data- and 
control-oriented continuous assurance procedures (Kogan, et al. 1999). In data-oriented procedures the 
raw business process data are audited for exceptions using detailed testing techniques, while in 
control-oriented procedures the correct operation of general and application computer controls are 
verified. The latter approach is often more efficient because the effective operation of general and 
application controls also provides assurance regarding the accuracy of the underlying business process 
data, but this approach requires that computerized controls are amenable to automated testing.  

Two classes of architectures have been proposed in prior research to accomplish the exception 
detection task: (1) embedded audit modules; and (2) monitoring and control layer. Both architectures 
focus on the detection of exceptions and do not focus on the task of disposition or resolution of the 
exceptions after they have been detected. In embedded audit modules the exception detection logic is 
integrated within the accounting system, often relying on embedded code within the application or 
database triggers that are fired if an exception occurs (Groomer and Murthy 1989). In the Groomer 
and Murthy (1989) embedded audit modules approach, subroutines within application programs 
examine transaction data for exceptions and log detected exceptions in real-time in the database for 
further examination. Woodroof (2001) extended this idea and proposed a continuous auditing 
approach using digital agents, i.e., software agents to perform the exception detection and 
communication. More recently Debreceny, et al. (2003) implemented 10 embedded audit modules, as 
a proof-of-concept, into Microsoft Great Plains using stored procedures and triggers in the database.  

The second type of continuous assurance architecture, the monitoring and control layer architecture, 
was first proposed by Vasarhelyi and Halper (1991). In the monitoring and control layer, the exception 
detection application is implemented as a standalone system that periodically queries the accounting 
system for raw transaction and control setting data. This information is then examined within the 
standalone system and flags are raised for detected exceptions. The architecture consists of eight 
elements: “(1) data-capture layer, (2) data-filtering layer, (3) relational storage, (4) measurement-
standards layer, (5) inference engine, (6) analytic layer, (7) alarms and alerting layer, and (8) reporting 
platform” (Vasarhelyi et al. 2004, p. 12).  Related to this architecture, Kuhn and Sutton (2006) 
proposed using the architecture specifically for detecting financial statement fraud and discussed how 
a continuous analytical monitoring model of certain “key-event-transactions” can be used to alert 
auditors of potential management fraud, while Murthy and Groomer (2004) proposed a new Web 
Services based monitoring and control layer architecture for business process monitoring that would 
facilitate and standardize the communication between assurance providers and clients.  While not 



monitoring transaction level data or internal controls for exceptions, nor monitoring data in real-time, 
Nigrini and Johnson (2008) report on an implementation where restaurants are scored on ten key 
variables using data from monthly sales reports to help internal auditors decide which restaurants to 
investigate. Alles et al. (2006, 2008) reported the implementation of an actual continuous assurance 
system using the monitoring and control layer architecture. This system focused on detecting control 
exceptions in business processes using control information from SAP applications at Siemens. In 
addition to focusing on exception detection, Alles et al. (2006, 2008) also discussed problems with too 
many alarms being generated. They dealt with this issue by making it easy to turn on and off entire 
groups of controls, as well as choosing who is notified by what alarms using a role-based approach. 

Assurance providers perform tasks that require collecting, aggregating and analyzing information that 
is often distributed in nature, for example fraud detection, test of controls, assurance of accounts 
payable amounts and aging, and going-concern assessments. Existing continuous assurance 
architectures focus on the detection of exceptions and do not address how to process these exceptions 
further before being presented to human users, i.e., assurance professionals like auditors. Thus, 
existing continuous assurance architectures focus primarily on the collection of exception data, but not 
on the aggregation and analysis of exception data. The aggregation and analysis of the exceptions is 
assumed to be performed by the users of the continuous assurance system. Behavioral decision theory 
and empirical research, however, show that humans generally perform poorly in tasks requiring the 
combining of multiple cues (Kleinmuntz 1990), can be overloaded by too much information (Iselin 
1988), and use heuristics such as representativeness, availability and anchoring-and-adjustment that 
introduce biases in the decision-making process (Tversky and Kahneman 1974). These information 
processing limitations constrain the effectiveness of a CA system that relies on humans to combine 
and analyze audit exception data.  

A consequence of not including aggregation and analysis support in the CA system is evident in Alles 
et al. (2006, 2008) and Debreceny et al. (2003), the only studies that have reported on the 
implementation of actual CA systems. In both these implementations, the authors reported problems 
with too many alarms being generated. The continuous assurance systems were effective in detecting 
anomalies, but the detected anomalies led to information overload--there were simply too many 
anomalies generated for the users to process. Alles et al. (2006) addressed the alarm overload problem 
by developing a manual solution where entire groups of controls could be turned on and off. Thus, by 
ignoring what was deemed to be the least severe anomalies, the auditors could analyze and respond to 
the most important exceptions. However, assuming that continuous assurance systems are 
implemented to detect exceptions that indicate potential problems, ignoring some of the exceptions 
can result in the loss of valuable information. Debreceny et al. (2003) deferred the alarm overload 
problem to future research. 

We extend existing continuous assurance architectures by proposing continuous assurance fusion 
(CAF)—an approach that specifically addresses the problem of exception handling with the goal of 
increasing the efficiency and effectiveness of continuous assurance services. We next provide a 
description of CAF and then provide an overview of the information fusion research stream within 
computer science that informs the design of CAF. 

3 Continuous Assurance Fusion 

CAF is grounded in continuous assurance architecture research and information fusion research, but 
also leverages artificial intelligence research and REA ontology research in accounting, and machine 
learning research in computer science. The overall architecture is designed based on information 
fusion models that use layered approaches for combining distributed information. More specifically, 
CAF has four major layers: event monitoring, information aggregation, object evaluation, and 
decision-making, as depicted in Figure 1. 



The monitoring layer of CAF is 
based on prior continuous assurance 
architectures and performs 
essentially the same function as in 
prior CA architectures, i.e., anomaly 
detection. The other layers of the 
hierarchy are unique to CAF and 
provide functionality such as 
handling alarm floods and audit trail 
generation, information aggregation, 
object evaluation and decision-
making. In the information 
aggregation layer, exceptions 
detected in the monitoring layer are 
used to generate object features by 
grouping exceptions based on their 
association to specific objects and 
computing additional object features. 
These object features are used by 
classifiers, i.e. statistical and 
machine learning algorithms like 
logistic regression and artificial 
neural networks, in the evaluation 
layer to make decisions about 
objects’ class membership. Finally, 
the decision layer combines the 
individual classifier object 
classifications into an overall CAF object class membership decision. The four layers are described in 
greater detail in Section 3. 

3.1 Rationale for Using Information Fusion in Continuous Assurance  

Information fusion is the process of producing estimates and knowledge about objects and situations 
based on data from various input sources (White 1987). The input sources are commonly sensors that 
capture different perspectives of the objects and situations of interest. The idea being that it is possible 
to get a more complete and accurate assessment of objects and situations if data from many sensors are 
combined and multiple models are used to evaluate these data. Although most distributed problems, 
where the data and/or decision makers are distributed, require some level of information fusion, the 
most commonly researched problem domains include: emergency response (natural catastrophe, 
terrorist attacks, etc); robotics; network security (intrusion detection systems); geoscience; and defense 
systems (Valet, et al. 2000). The three largest research areas employing information fusion concepts 
are defense systems, geoscience and robotics. 

Assurance providers perform tasks that require collecting, aggregating and analyzing information that 
is often distributed in nature, for example fraud detection, test of controls, assurance of accounts 
payable amounts, and going-concern assessments. Within the computer science domain, information 
fusion research focuses specifically on the aggregation and analysis of data, features and decisions in 
distributed problem solving. Information fusion has been used in a wide variety of domains but has not 
yet been leveraged in accounting or auditing research. CAF extends prior continuous assurance 
research by applying ideas from the information fusion domain to the problem of dealing with large 
volumes of detected exceptions.  



3.2 Information Fusion Models  

As a consequence of information fusion having its roots in defense research, most early work in the 
field focused on defense systems. When information fusion started being researched and used for 
applications in additional domains, such as robotics and geoscience, the information fusion field 
became divided into two sub-communities, one broader that includes all application domains, 
including defense, and one that is primarily focused on defense applications (Bedworth 2000). The 
existing fusion models mirror this division with some models focusing more on defense systems, for 
example the JDL (White 1987) model, while others are framed in more general terms, notably the 
Dasarathy (1997) model. In our work, which falls into the latter group, we base CAF on the Dasarathy 
model and follow Dasarathy’s definitions of the different fusion processes. Although we use the 
Dasarathy model to define CAF, there are also similarities between CAF and the JDL fusion model.   

In the Dasarathy model, depicted in Figure 2, the fusion process is described based on the input (data, 
features or decisions) it takes and the output (data, features or decisions) it generates. The Dasarathy 
model does not, however, explain how the processes generate the output from the input. Rather, the 
model highlights the fact that different fusion processes exist and can be combined to improve the 
fusion system. Entire research streams are devoted to the development of specific fusion processes. 
For example, multi-classifier combination research focuses on the Decision In – Decision Out fusion 
process, taking decisions from an ensemble of base-classifiers as input and producing an ensemble 
decision as output using a combiner method.  

The terms data, features, and decisions are not formally defined in Dasarathy (1997). The term data is 
used to refer to what is initially captured by sensors and has not yet been associated with a particular 
object (i.e., entity) of interest in the environment. Objects can exist at different levels of analysis, for 
example, in an audit where a transaction exception is detected, the object of interest might be the 
transaction itself, a control designed to mitigate risks in the transaction, the employee recording the 
transaction, or the manager approving the transaction. Thus, a single exception can be associated with 
multiple objects. Data can also belong to a particular object, but not yet be associated within the 
system to that object, and can even be processed in different ways but still be referred to as data (for 
example data can be combined to create new data). When the data are associated in the system with 
specific objects, the data become features of 
those objects. An object feature can be viewed 
as an attribute of the object, i.e., something that 
describes the object. For example, features of an 
employee recording a transaction might be the 
employee’s assigned duties, authorization levels, 
name, gender, tenure, etc, while features of a 
transaction might be the time of occurrence, 
amount, employee recording the transaction, etc. 
Finally, decisions are opinions about an object 
that are based on features of that object. 
Decisions are often in regards to the class 
membership or probability of class membership 
of the object. For example, an object can be a 
member of the class clean opinion or adverse 
opinion, fraud or not fraud, debt covenant 
violated or debt covenant not violated, etc.  

3.3 CAF and Information Fusion  

From an information fusion perspective, embedded audit modules, and monitoring and control layer 
techniques used in prior continuous assurance research are sensors that detect anomalies in the 



accounting environment by analyzing data and capturing exceptions. The exceptions, after they have 
been grouped and associated with a specific object of interest, become object features. However, 
before this association the exceptions are simply data. Thus, embedded audit modules and monitoring 
and control layer techniques perform data fusion and more specifically Data In – Data Out fusion. In 
prior research, the output data from the Data In – Data Out fusion was not processed further by the 
system. The main contribution of information fusion models lies in performing the additional steps to 
process the captured exceptions. In CAF, the additional fusion levels are defined using the Dasarathy 
model as Data In – Feature Out, Feature In – Feature Out, Feature In – Decision Out, and Decision In 
– Decision Out. 

After the exceptions have been captured in the monitoring layer, the next step in CAF is to create 
features from the exceptions. In CAF the process of identifying features is done by aggregators that 
use domain-ontology or hard-coded knowledge to associate the exceptions with various objects and to 
define how objects at different levels of analysis are related. Aggregators can also perform Feature In 
– Feature Out fusion. For example, aggregate statistics like average, count, and standard deviation, 
which are features of an object, can be calculated based on existing object features.   

Object evaluators then analyze the features output by the aggregators, and output object assessments at 
the decision level. Thus, object evaluators perform Feature In – Feature Out fusion. For example, 
artificial neural network and decision tree machine learners, and also logistic regression and 
discriminant analysis statistical functions, evaluate object features and output a probability assessment 
of object class membership. Finally, the decisions made by the different object evaluators are merged 
into an overall decision in a Decision In – Decision Out fusion process. The same techniques used in 
the Feature In – Decision Out fusion process can be used in the Decision In – Decision Out fusion 
process. In particular, so called meta-learners, or specialized ensemble base-classifier combiner 
methods can be leveraged.  

The main advantage of CAF is in the automation of processes that are left to human auditors in 
existing CA architectures. Specifically, the automation of Data In – Feature Out and Feature In – 
Decision Out in CAF results in the automatic processing of audit exception data to arrive at 
meaningful conclusions, avoiding the “alarm flood” situations resulting from CA systems that only 
capture exceptions. As noted earlier, such automation is advantageous as computers generally 
outperform humans in processing large amounts of data. Further, by fusing the data into features and 
ultimately decisions, auditors’ information processing load is reduced, thereby improving both the 
effectiveness and the efficiency of the system.2 We now describe the CAF architecture in greater 
detail.  

4 CAF Architecture  

The CAF architecture consists of four layers: the monitoring layer where exceptions are captured, the 
data aggregation layer where exceptions are processed, the object evaluation layer where specific 
audit-relevant conclusions are drawn, and the decision making layer where an overall decision is 
reached, if appropriate and necessary. The functionality of each layer is now discussed.  

4.1 Monitoring Layer  

The monitoring layer consists of sensors that detect exceptions, anomalies and changes in the 
environment, such as the recording of a transaction that violates certain business rules, changes in a 
control settings table or news of a certain kind being released. Upon detection, the exception, anomaly 

                                            
2 There is no reason why the system could not also output the raw exceptions.  This information could be used in parallel with 
CAF for manual review to reduce the risk of false negatives and to evaluate the effectiveness of the system. 



and environment change data are processed and sent to the aggregation layer. Note that the monitoring 
layer does not put the detected data into any context, i.e., there is no “processing” of the exception and 
other audit relevant data performed at the monitoring layer. The monitoring layer thus performs only 
the Data In – Data Out fusion process.  

For the continuous assurance to be conducted in real-time, these sensors would have to be embedded 
audit modules as opposed to monitoring and control layer sensors. However, when using embedded 
audit modules, in contrast to when the sensors are located in the monitoring and control layer, 
embedded audit modules require a high level of collaboration from transaction processing system 
owners and vendors and forces the continuous assurance system owners to cede some control over the 
monitoring layer (Alles et al. 2006). Thus, there is a trade-off between the two solutions and a 
combination of the two architectures provides the best solution. The exact combination of the two 
would be based on maximizing the net benefits of the assurance system, which is a function of domain 
and task specific costs and benefits. CAF might use database triggers (embedded audit modules) for 
monitoring process controls and general computer controls. For example, changes to purchase order 
approval thresholds and password controls could be monitored using database triggers. CAF can then 
query the host system (or a replicated database) on a frequent as opposed to continuous basis 
(monitoring and control layer) for data level monitoring. The data level monitoring could for example 
verify that all purchase orders have matching purchase requisitions. We refer the reader to Groomer 
and Murthy (1989) and Vasarhelyi and Halper (1991) for the seminal work on the two continuous 
assurance architectures that serve as the foundation for the monitoring layer of CAF, and Alles et al. 
(2006, 2008) and Debreceny et al. (2003) for examples of actual designs and implementations of these 
architectures. 

To provide a more formal description of CAF, we use the monitoring of purchase transactions as an 
example. In this example a purchasing process p, i.e., processing of purchase order 1015, can be 

classified as in control (j=0) or out of control (j=1), where j∈J given the index set of classes J={0,1}. 

Further, in the monitoring layer there are k monitoring modules m (software agents, database triggers, 
etc) in the index set M={1,…,k}. When monitoring module m detects a deviation it raises ep, an 

exception e for object p, where ep = {0,1} and e∈E where E is a set of all exceptions being monitored 

for the process p. That is, e for p is either not raised (ep = 0) or it is raised (ep = 1). For example, m 
monitors that when p is above a certain threshold p has appropriate supervisor approval, and if this is 
not the case then creates exception ep that signals that purchase order 1015 exceeds the threshold but is 
missing appropriate supervisory approval. Monitoring unit m can also collect ip and iep, which is 
information i that describes p and ep, respectively. Information i is not a known exception or anomaly 

type, i.e., I∩E = Ø, where i∈I. Rather, information item i might represent non-exception information 
regarding the process or simply other relevant non-process information of audit relevance. For 
example, i can describe relevant information such as the purchase order number, order date, the 
purchasing agent that created the purchase order, etc and iep can describe information about the control 
activity such as the threshold that was violated, by how much it was exceeded, etc. Upon gathering ep, 
ip or iep, these items are sent to the aggregation layer.  

4.2 Data Aggregation Layer  

Within the data aggregation layer, CAF groups, aggregates and synthesizes data generated in the 
monitoring layer into object features that can be used in the Object Evaluation layer. The data 
aggregation layer determines the object type that the incoming information and exception data pertain 
to; assigns the input to a specific object; gathers additional missing features; computes additional 
object features; and establishes relations among the objects for object drill-down/roll-up. The 
assignment of information and exceptions to objects is a Data In – Feature Out fusion process, while 
the computation of additional features from existing features is a Feature In – Feature Out fusion 
process. Examples of the latter would be the calculation of object feature moving averages, standard 
deviations and financial ratios.   



To aggregate and synthesize the monitoring layer exceptions into object features, the data aggregation 
layer can either utilize a domain ontology that defines how different domain specific objects are 
related and the features of these objects, or hard-code needed object-feature and object-object relations 
directly into each data aggregation module. The former alternative is more costly upfront, but at the 
same time offers greater flexibility and adaptability, and is probably preferable if the system is 
intended to be implemented using agent technologies. Whether a specific CAF actually needs a 
domain and/or CAF specific ontology is as such a cost-benefit decision that depends on the purpose of 
the specific CAF and the domain that it is designed for.  

At a high level, an ontology consists of sets of constructs (objects, features and fusion modules are 
examples of constructs in CAF) and relations among these constructs that describe conceptualization 
of real world phenomena (Gruber 1993). Ontologies differ from theories in that they are used to 
describe, rather than explain or predict real world phenomena (Wand and Weber 2004) and differ from 
taxonomies in that they not only describe the constructs but also the relationships among the 
constructs. We propose that McCarthy’s (1982) Resources, Events, and Agents (REA) ontology can 
serve as the basis for the CAF aggregation layer processing. Exceptions flagged at the monitoring 
layer could be grouped based on the REA ontology using the following scheme:  

• Level 1: Exceptions grouped in terms of whether they relate to resources, events, or agents. That is, 
grouping in terms of ‘R’ exceptions, ‘E’ exceptions, or ‘A’ exceptions that relate to changes 
affecting a single R, E, or A object.   

• Level 2: Exceptions grouped in terms of event-resource relationships. Specifically, exceptions 
involving illegal operations on resources by events (e.g., placing an order on an out-of-stock 
inventory item). These exceptions might stem from operations in different subsystems and hence 
might not be detected as exceptions within those subsystems individually.   

• Level 3: Exceptions grouped in terms of event-agent relationships. Specifically, exceptions 
involving illegal operations by agents on events (i.e., a segregation of duties violation).  

• Level 4: Exceptions grouped in terms of event-event relationships. Specifically, exceptions that 
violate rules of precedence between events (e.g., a payment to a vendor without a preceding 
receiving report and a purchase order).  

• Level 5: Exceptions grouped in terms of resource-event-agent relationships. Specifically, 
exceptions that involve an illegal event executed by an agent that results in an invalid operation on 
a resource (e.g., a cashier processing a sales return that reduces cash and increases inventory).  

At the aggregation layer, incoming exceptions are automatically processed by way of grouping using 
the five levels, as a form of “Data In – Feature Out” fusion where exceptions are associated with 
different R, E, or A objects. While our initial use of the REA ontology is only to group detected 
exceptions using a generally accepted business process ontology, we recognize that the REA ontology 
can support augmented intentional reasoning directed towards continuous assurance objectives (Geerts 
and McCarthy 2000). For such reasoning, however, the REA ontology would need to be extended with 
continuous assurance specific objects, i.e., definitions of a control, exception, etc, and constructs 
describing CAF system components, i.e., knowledge, communication, fusion process, etc.  McCarthy 
et al. (2005) have proposed an extension to the REA ontology that addresses automatic enforcement of 
internal control procedures, but more research is needed in this area. 

Continuing the purchase transactions monitoring example; in the aggregation layer there are s 

aggregators represented by indices a in the index set A={1,…,s}. Aggregator a, a∈A, receives ep, ip 

and iep from m, and requests additional features ip, i∈I and exception states ep and information iep, 

e∈E, for purchasing transactions p, as needed. Using ip, iep and ep, aggregator a completes the Data In 
– Feature Out fusion, and generates feature set fa for the specific object that the system is aggregating 
information about, where fa = iep U ip U ep. For example, the aggregator a might aggregate information 
on different types of R, such as the type of inventory/services being purchased, the type of payment 
used, etc., E, such as the processing of transaction 1105, the approval process itself, the purchase order 
preparation process, etc, or A, such as the purchasing agent that created the purchase order without 



appropriate approval, the supervisor, the vendor, etc, objects. In this example we will assume that a is 
aggregating information about the approval process itself.  Aggregator a then sends feature set fa to the 
object evaluation layer. The aggregator knows what features fa should contain before fa is sent to a 
specific evaluator c. This feature set might contain things such as the number of threshold violations 
reported in the past week, the trend in report violations, the time of day the violation occurred, whether 
the violation occurred on a weekend or a holiday, by how much the threshold was violated, how long 
since the control was implemented, etc. 

4.3 Object Evaluation Layer  

The object evaluation layer performs Feature In – Decision Out fusion. This layer receives input from 
the aggregation layer and provides decision output to the decision layer. To clarify, consider the 
example of an audit of the purchasing subsystem. The input from the aggregation layer would be 
various control anomaly exceptions, for example instances where payments were made for invoices 
without matching purchase orders (an event-event exception), or instances where an unauthorized 
agent executed a purchase return resulting in an invalid increase in returned merchandise inventory (a 
resource-event-agent exception). Classifiers, i.e., machine learning models and statistical models, 
would evaluate these features along with other object features and generate probability estimates about 
the “in control” or “out of control” state of the auditee’s purchasing subsystem. For example, an 
artificial neural network (ANN), after being trained, would use these features as input and make a 
probabilistic decision about the state of the auditee’s purchasing subsystem. To train the ANN, prior 
known “out of control” and “in control” cases would be used by the ANN along with features used to 
describe the purchasing subsystem. The ANN would use these data to learn complex relations between 
the features (input data) and the known outcomes by adjusting weights placed on different potential 
interneuron connections.  

Various classification algorithms proposed in both the machine learning domain, for example neural 
networks, support vector machines and decision trees, and in the statistics domain, for example 
logistic regression and discriminant analysis, can be used in the evaluation layer for Feature In – 
Decision Out fusion. In addition to using learning algorithms (that require data to learn), artificial 
intelligence based expert systems using hard-coded if-then type rules or simple heuristics could also be 
used to perform the Feature In – Decision Out fusion. Note that these algorithms have been used in 
prior artificial intelligence accounting research to improve the classification performance in various 
accounting classification problems, i.e., going concern decisions, financial statement fraud, control 
risk assessments, etc. (Calderon and Cheh 2002).  More directly related to continuous assurance, 
Koskivaara and Back (2007) implemented an ANN for continuous auditing of financial data, while 
Lee and Han (2000) used a fuzzy cognitive map to model the causal relationships among various 
control components and the effect of those components on overall system performance. However, 
while prior research has developed algorithms that are readily available to be used in the object 
evaluation layer and that have been used for related classification problems, there is a need and the 
time is ripe for research that integrates artificial intelligence accounting research with continuous 
assurance research (Kuhn and Sutton 2006). CAF fills this void by providing the architecture for 
directly integrating these two research streams.  

Continuing with the purchasing process example; in the evaluation layer, evaluators c∈C use the 

feature vector fa associated with aggregated information for object a to determine the posterior 

probability estimate qcaj in [0, 1] that a belongs to class j∈J. For example, the system uses an already 
trained artificial neural network model that takes the feature vector fa as input and outputs a likelihood 
qcaj that a, the approval process, is ineffective. Note that qcaj = {0,1} for evaluators c that output crisp 
decisions, i.e., the decisions are in nominal rather than continuous form. These individual decisions qcaj 
are then sent to the decision making layer where a decision maker combines the individual decisions 
qcaj into CAF’s overall probability estimate Qsj in [0, 1] that system S, i.e., the entire accounting 
information system or sub-component of this system, belongs to class j.  



4.4 Decision Making Layer  

The decision layer is the highest layer in the CAF architecture. This layer takes object evaluation 
decision output as input and makes a system wide object classification decision. The decision maker in 
CAF performs Decision In – Decision Out fusion by combining the decisions from the evaluation 
layer into an overall decision. This layer has, to our knowledge, not received any attention in the 
accounting, auditing, or specifically the continuous auditing literature. There are, however, other 
research streams that focus on decision fusion, for example multi-classifier combination and meta-
learning in data mining, that can be leveraged in the decision layer of CAF.  

In multi-classifier combination, the outputs from a group or ensemble of classifiers (i.e., the object 
evaluators in CAF) are combined to improve the classification performance in various classification 
problems (Suen and Lam 2000). These individual classifiers, commonly referred to as base-classifiers, 
classify objects based on inputs consisting of object feature vectors. The base-classifiers’ 
classifications or decisions are then combined using a combiner method into a single decision about an 
object’s class label. In the context of CA at the business process level, the “single overall decision” 
could pertain to whether the auditee’s information system as a whole or a specific sub-system is 
functioning reliably, or error-free. The basic idea behind multi-classifier combination is that different 
classifiers in an ensemble have different strengths and weaknesses, and therefore provide 
complementary information about the classification problem.  These differences can be leveraged to 
improve classification performance by combining base-classifiers’ decisions (Kittler, et al. 1998). 
Again, in the context of CA at the business process level, there could be exceptions of varying severity 
that occur in individual subsystems, but it is at the final decision layer in CAF that an overall 
conclusion is drawn about whether the auditee’s overall information system or sub-system is 
functioning properly. 

In the context of CAF, the purpose of (or potential advantage of) Decision In – Decision Out fusion in 
the decision layer is perhaps less clear. In general, base-classifier ensemble research has shown that 
base-classifiers, i.e., object evaluators in CAF, often make different types of errors and that it is 
therefore possible to improve performance by combining decisions from multiple base-classifiers 
(Kittler, et al. 1998). Additionally, Decision In – Decision Out fusion allows different object 
evaluators to specialize in different decision tasks and increases redundancy. The use of Decision In – 
Decision Out fusion could also reduce the possibility of a single part of the system becoming a 
bottleneck and could allow multiple decisions to be made in parallel (Lee et al. 2000).  

Continuing the purchasing transactions example; decision maker d receives the posterior probability 

estimate qcpj from evaluators c∈C in the objective evaluation layer. Through a Decision In – Decision 

Out fusion process, d combines the individual qcpj into an overall system reliability decision system S, 
i.e., probability estimate Qsj that system S belongs to class j. The decision Qsj can be evaluated against 
threshold h and if Qsj > h then S is classified as “out of control.” The threshold can be set using 
Markovian or Bayesian control concepts (Dittman and Prakash 1979). When S is classified as “out of 
control” then CAF would notify the assurance professional and provide Qsj and feature vector fpj. 
Alternatively, Qsj, and all qp and fpj can be output to the assurance professional, who would then decide 
which aspect of the purchasing system should be investigated further. This alternative might be 
preferred when for example the user wants more control over the selection process, costs associated 
with false positive and false negative classifications are unknown, or the assurance professional 
chooses to investigate as many cases as possible. 

Note that in both CAF and in existing continuous assurance architectures the assurance professional 
has to investigate the potential fraud. However, in existing continuous assurance architectures, as 
opposed to CAF, the assurance professional has to additionally aggregate and evaluate raw exceptions, 
form opinions about the objects of interest, and select objects to investigate before actually 
investigating the object. These tasks require a tremendous amount of work on the part of the assurance 
professional, which has resulted in information overload in existing implementations (Debreceny, et 



al. 2003; Alles, et al. 2006, 2008). By performing these information processing steps, CAF improves 
the efficiency of the overall CA system. Further, due to human information processing limitations, 
which lead to the use of heuristics that can introduce biases, CAF also has the potential to improve the 
effectiveness of the assurance.  

4.5 Evaluation of CAF architecture  

This research follows the design science paradigm in proposing a new architecture for CA, employing 
information fusion concepts. To evaluate our CAF approach, we apply the design science evaluation 
guidelines proposed by Hevner et al. (2004). The seven guidelines are: (1) design as an artifact; (2) 
problem relevance; (3) design evaluation; (4) research contribution; (5) research rigor; (6) design as a 
search process; and (7) communication of research. As Hevner et al. (2004) note, these guidelines are 
not to be used as a static set of absolute criteria, rather they are guidelines for assisting in evaluating 
design science research while exercising judgment in the process. In this section we use the seven 
Hevner et al. (2004) guidelines to provide a self-assessment of our CAF approach.   

By extending existing continuous assurance research, through the integration of ideas from this 
research with information fusion research, and to some extent machine learning and REA ontology 
research, CAF is a novel IT artifact that provides a solution to the information overload problem noted 
in prior continuous assurance research (Debreceny, et al. 2003; Alles, et al. 2006, 2008. The CAF 
artifact improves the effectiveness of extant CA systems by automatically aggregating and processing 
detected exceptions, which is a significant advantage given that humans have a limited ability to 
process and integrate large volumes of data (Tversky and Kahneman 1974; Iselin 1988; Kleinmuntz 
1990). The solution to this problem is of importance given the increasing need to be able to provide 
continuous assurance, a need that has been acknowledge by researchers over the years (Groomer and 
Murthy 1989; Rezaee, et al. 2002; Dull, et al. 2006), institutions (CICA/AICPA 1999) and 
practitioners alike (Woodroof and Searcy 2001; PwC 2006).   

The proposed IT artifact, CAF, thus provides a novel solution (guideline 1: design as an artifact) and 
also addresses a relevant problem (guideline 2: problem relevance). The development of CAF 
contributes (guideline 4: research contribution) to both research and practice.  CAF extends research 
by providing a solution to a continuous assurance problem and thus adds to the existing design science 
research knowledgebase. Furthermore, given that (1) the basis for the lower fusion levels of CAF have 
been implemented in prior continuous assurance projects (Data In – Data Out fusion) (Debreceny et al. 
2003; Alles et al. 2006, 2008), (2) the basis for the upper fusion levels of CAF (Feature In – Decision 
Out, and Decision In – Decision Out fusion) have been implemented in prior machine learning 
accounting research (Suen and Lam 2000; Calderon and Cheh 2002; Lee and Han 2000), and (3) 
information fusion architectures have successfully been used in a wide variety of domains (Dasarathy 
1997; Bedworth 2000), this research also contributes to practice by providing an implementable 
continuous assurance architecture that organizations can use when developing continuous assurance 
systems.  

CAF solves an accounting problem by integrating existing architectures and models from the 
knowledgebase developed by continuous assurance research and information fusion research. We 
argue that in addition to being implementable, evidence from prior research of the utility provided by 
the various components of CAF, i.e., the monitoring layer (Debreceny et al. 2003; Alles et al. 2006, 
2008), the object evaluation layer (Calderon and Cheh 2002; Lee and Han 2000), and the decision 
layer (Suen and Lam 2000), and their integration, i.e., the information fusion architecture (Dasarathy 
1997), serves as evidence of the utility of CAF (guideline 3: design evaluation). The true value of 
CAF, however, will not be known until a system is built, implement and evaluated in a real-world 
setting. We consider this evaluation to be outside of the scope of this research and a valuable avenue 
for future research and CA practitioners. Furthermore, by leveraging existing research in information 
fusion and REA ontology, the research rigor is enhanced. Additionally, the descriptions of CAF 



include both narratives and set theory notations to further improve the research rigor (guideline 5: 
research rigor).  

When examining various information fusion frameworks for fit with the continuous assurance problem 
domain we conducted an informed search process to select a specific solution among many possible 
(guideline 6: design as a search process). Furthermore, by leveraging existing continuous assurance 
research and extending this research, our research is part of a larger well established domain of 
research aimed at designing and developing effective and efficient continuous assurance systems. 
Finally, the research has been communicated at a level that we believe is appropriate for this journal’s 
audience without being too technical or too general. Through the use of figures, descriptions and 
notations, we have sought to clearly articulate the CAF architecture (guideline 7: communication of 
research). Accordingly, we submit that the CAF approach proposed in this paper adequately conforms 
to the Hevner et al. (2004) evaluation guidelines.  

5 Discussion and Conclusion  

In this paper, we present a novel architecture for continuous assurance that addresses one of the key 
outstanding problems in the CA literature, that is, a mechanism for dealing with detected exceptions.  
As actual CA implementations have revealed, when the systems operate as designed they can produce 
an overwhelming number of exceptions causing information overload for assurance professionals 
tasked with handling and parsing the exceptions.  Put simply, there is a need for “intelligent 
summarization” of detected audit exceptions, such that assurance professionals have a logical basis for 
targeting their efforts to areas that are most in need of their attention.  The architecture presented in 
this paper, referred to as Continuous Assurance Fusion, performs intelligent summarization of audit 
exceptions through algorithmic aggregation and analysis.  The architecture leverages prior research in 
continuous assurance, computer science, and information fusion research. The main idea behind 
information fusion is to collect and analyze data from multiple sources regarding an object of interest 
to eventually draw some conclusions about the state of the object.   

A strength of the CAF architecture is that it leverages prior research in accounting and information 
systems, in both continuous assurance and REA.  The data gathering component of the architecture 
relies on previous continuous assurance architectures, while the data aggregation component is based 
on REA ontology concepts to categorize exceptions.  Specifically, focusing on exceptions related to 
resources, events, agents, and the relationships between them, the data aggregation component is able 
to group exceptions in terms of the degree of severity.  Beyond the initial data aggregation step, 
techniques in artificial intelligence and machine learning are used to make inferences about the states 
of assurance objects of interest.  For example, if the object of interest is the accounts receivable 
amount, an appropriately designed CAF that monitors the credit sales, sales returns, and collections 
from customers subsystems could aggregate and analyze all audit exceptions dealing with these 
subsystems and apply appropriate machine learning algorithms to arrive at an overall conclusion 
regarding whether the accounts receivable account is misstated.  In this manner, the CAF architecture 
we present moves beyond the process of merely detecting exceptions to actually process them with the 
goal of drawing meaningful audit-relevant conclusions.  

This paper contributes to the CA literature by introducing the notion of information fusion and 
describing an architecture that blends concepts of information fusion, REA ontology, artificial neural 
networks, and machine learning.  Although we do not present an actual implementation of a CAF 
system, we contend that the architectural details presented in this paper are of sufficient detail to guide 
a CAF implementation. Furthermore, there is sufficient evidence in prior research and practice 
regarding the successful implementation of individual components of CAF, specifically the monitoring 
layer (Debreceny et al. 2003; Alles et al. 2006, 2008), the object evaluation layer (Calderon and Cheh 
2002; Lee and Han 2000), and the decision layer (Suen and Lam 2000).  Future research in a design 
science vein could focus on the development of a functioning CAF system, to demonstrate the process 
of aggregating and analyzing exception data to arrive at an overall holistic conclusion about the target 



system.  Practitioners engaged in designing and implementing CA systems should be particularly 
interested in the CAF architecture, as it addresses the key unresolved issue in the existing CA 
literature, i.e., the process of handling large volumes of detected exceptions through a process of 
intelligent summarization to guide further audit investigation.  

Future research could also investigate the design and implementation of CAF using agent-based 
technologies. For example, a CAF system could be described using the multi-agent-based integrative 
business modeling language (MibML) grammar (Kishore et al., 2006) and ontology (Zhang et al., 
2007).  Another avenue for future research is to investigate the relative efficacy of CAF for tasks such 
as employee fraud detection, assessment of internal control systems, or financial statement fraud 
detection.  To conclude, the main contribution of this paper is in presenting a novel architecture called 
Continuous Assurance Fusion, which blends concepts of information fusion, REA ontology, artificial 
intelligence, and machine learning to address the problem of handling large volumes of detected audit 
exceptions. 
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