
BISE – RESEARCH PAPER

Secure and Sustainable Benchmarking in Clouds

A Multi-Party Cloud Application with an Untrusted
Service Provider

Cloud computing entails a novel security threat: The cloud service provider is entrusted
with the data of all its customers. Encryption may provide the solution. Using the example
of collaborative benchmarking the authors present and evaluate the exemplary design and
implementation that operates on encrypted data.

DOI 10.1007/s12599-011-0153-9

The Author

Dr. Florian Kerschbaum (�)
SAP AG
SAP Research
Vincenz-Prießnitz-Str. 1
76131 Karlsruhe
Germany
florian.kerschbaum@sap.com

Received: 2010-06-14
Accepted: 2011-02-04
Accepted after three revisions by
Prof. Dr. Müller.
Published online: 2011-04-15

This article is also available in Ger-
man in print and via http://www.
wirtschaftsinformatik.de: Kersch-
baum F (2011) Sicheres und nach-
haltiges Benchmarking in der Cloud.
Eine Mehrparteien-Cloud-Anwen-
dung ohne vertrauenswürdigen Di-
enstanbieter. WIRTSCHAFTSINFOR-
MATIK. doi: 10.1007/s11576-011-
0267-1.

© Gabler Verlag 2011

1 Introduction

Cloud computing entails a novel secu-
rity threat: The cloud service provider is
entrusted with all of the data of all its
customers and may accidentally or mali-
ciously disclose it to third parties. While
the service provider may take the neces-
sary precautions in order to protect the
confidentiality of the data from outsiders
or other customers, the service provider
usually inadvertently learns the data and

a new trust relationship between cus-
tomer and service provider is inherent to
cloud computing.

For some applications this trust may
not be sustainable. Consider, for ex-
ample, highly confidential data about a
company’s operation. In order for the
customer to engage and sustain cloud
computing for applications operating on
such data confidentiality even against the
service provider is necessary. A long-
term and sustainable relationship be-
tween cloud service provider and cus-
tomer should be based on minimal trust
assumptions and this includes the trust
of the customer in the service provider.
Therefore, it would be advantageous for
the sustainability of cloud computing, if
the service provider could ensure the cus-
tomer of the confidentiality of his data.

Assurance and preventive security
measures are essential for confidentiality.
Contracts and fines or other detective
measures of protection require the ability
to prove a confidentiality breach which
can be difficult.

The technical means to provide assur-
ance of data confidentiality without a
reference monitor or policy enforcement
point is encryption. Standard public-
key or symmetric encryption as com-
monly used to secure data communica-
tions is inapplicable to sustainable cloud
computing, since it cannot be modified
once encrypted. Homomorphic encryp-
tion (Damgard and Jurik 2001; Gentry
2009; Paillier 1999) allows such modifi-
cations of encrypted data. Nevertheless it
is too inefficient for large-scale cloud ap-
plications. Secure Multi-Party Computa-
tion (Ben-Or et al. 1988; Cramer et al.
2001; Goldreich et al. 1987), an alterna-
tive cryptographic technique, is compu-
tationally more efficient, but requires sig-
nificant communication resources.

The research questions addressed in
this paper are the design choices for a sus-
tainable cloud information system based
on these techniques. The designer has
several options in the choice of encryp-
tion scheme, key distribution and secu-
rity model as well as the application’s
functions and features. He has to balance
the conflicting objectives of functionality,
security and performance.

We will explore these design options
using the case study of a confidentiality-
preserving cloud application we have
built. We have implemented a collabora-
tive business application for benchmark-
ing.

Benchmarking is the comparison of
key performance indicators (KPI) to
their statistics within a peer group. Our
cloud application computes these statis-
tics without disclosing the KPIs of any in-
dividual company.

Benchmarking is an important process
for companies to stay competitive in to-
day’s markets. It allows them to evalu-
ate their performance against the statis-
tics of their peers and implement targeted
improvement measures. Benchmarking
services have been proposed and im-
plemented before (Bogetoft and Nielsen
2005; Crotts et al. 2006), but none im-
plements sustainable security against the
service provider. The positive impact of
confidentiality protection on the willing-
ness of companies to share data has been
established in related studies (Eurich et
al. 2010).

We have designed, implemented and
evaluated a prototype for collaborative
benchmarking on encrypted data in the
cloud. To the best of our knowledge this
is the first cloud application that operates
on encrypted data. We will use a combi-
nation of homomorphic encryption and

Business & Information Systems Engineering 3|2011 135

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301351209?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:florian.kerschbaum@sap.com
http://www.wirtschaftsinformatik.de
http://www.wirtschaftsinformatik.de
http://dx.doi.org/10.1007/s11576-011-0267-1
http://dx.doi.org/10.1007/s11576-011-0267-1

BISE – RESEARCH PAPER

secure multi-party computation in or-
der to achieve the necessary performance
and functionality. Furthermore we ex-
plore several design options in greater de-
tail.
� Security vs. functionality (Sects. 3

and 4): First, we show that it is
not feasible to securely implement
all possible (benchmarking) functions
(Sect. 3). While it is always possible
to encrypt and compute on the en-
crypted data, the result of the com-
putation may reveal the protected in-
put. We give the necessary conditions
for confidentiality-preserving bench-
marking. Second, we show the impli-
cations of encrypted cloud comput-
ing on a rational player and the nec-
essary selection of statistical functions
(Sect. 4). We furthermore show how to
efficiently prevent a novel attack on en-
crypted cloud computing.

� Security vs. performance (Sects. 5
and 6): First, we review the design op-
tions for key distribution and manage-
ment and explain our choice (Sect. 5).
Second, we present a novel technique
for comparison using partially homo-
morphic encryption (Sect. 6). This
novel technique is less secure than
comparable cryptographic techniques,
but significantly more efficient. It also
simplifies the design of the entire ap-
plication, since then partially homo-
morphic encryption suffices.

� Functionality vs. performance (Sect. 7):
We present the software architecture
and its component structure, such
that confidentiality-preserving bench-
marking can be performed despite its
performance impact.

The remainder of the paper is struc-
tured as follows. In Sect. 2 we describe
the problem of confidentiality-preserving
cloud computing, our protection goals
and compare the available approaches
of homomorphic encryption and secure
multi-party computation. We also ex-
plain collaborative benchmarking in de-
tail. In Sect. 8 we report on the im-
plementation and performance measure-
ments. In Sect. 9 we review related
work. Our conclusions are summarized
in Sect. 10.

2 Problem and Approach

Confidentiality-preserving cloud com-
puting attempts to reduce the trust as-
sumption in the service provider by en-
crypting the data by the customer be-
fore transmission to the cloud. There are

two cryptographic techniques to achieve
this: homomorphic encryption and se-
cure multi-party computation.

2.1 Homomorphic Encryption

Homomorphic encryption is a modern
encryption technique where one opera-
tion on the ciphertexts produces an en-
cryption of the result of a homomorphic
operation on the plaintexts. Its applica-
tion to confidentiality-preserving cloud
computing is straight-forward. The cus-
tomer encrypts the data, retains the key
and sends the ciphertext to the service
provider. The service provider performs
operations on the ciphertexts that map
to the homomorphic operations on the
plaintext.

Recently a fully homomorphic encryp-
tion scheme where the homomorphic
operation is “logical not-and” (NAND)
has been developed (Gentry 2009). It can
be used to implement any function on the
plaintext. Nevertheless this scheme is still
considered too inefficient to implement
secure functions. Instead we use more ef-
ficient encryption schemes where the ho-
momorphic operation is limited to addi-
tion of integers (modulo a key-dependent
constant) where not all operations can
be implemented on the plaintext. We will
later confirm that performance remains
a critical aspect. We used Paillier’s en-
cryption scheme (Paillier 1999) and its
threshold variant by Damgard and Jurik
(2001). Let EX(x) denote the encryption
of x with X’s public key and DX() the cor-
responding decryption with X’s private
key, then the following property holds:

DX(EX(x) · EX(y)) = x + y.

With simple arithmetic the following
property can be derived

DX(EX(x)y) = x · y.

2.2 Secure Multi-Party Computation

Homomorphic encryption cleanly sep-
arates computation from input, but is
limited to certain operations for perfor-
mance reasons. An alternative technique
is secure multi-party computation. In se-
cure multi-party computation the func-
tion is not computed by only one party
on the ciphertexts, but as a joint protocol
by all. At the end of the protocol a defined
subset of the parties will be able to recon-
struct the result, but all parties know how
the computation is performed regardless
whether they receive a result or not.

Protocols that can implement any
function have been proposed based on
secret sharing (Ben-Or et al. 1988), obliv-
ious transfer (Goldreich et al. 1987) and
homomorphic encryption (Cramer et al.
2001). Generally speaking, one can im-
plement additional functionality to the
homomorphic operation by using inter-
active protocols between the players.

Its application to confidentiality-
preserving cloud computing is less obvi-
ous. The customers and the cloud service
provider engage in a secure computa-
tion protocol. The service provider will
be treated just as another party. The
clients provide input and every party—
including the service provider—will
learn nothing except what can be inferred
from their input and output. Care must
be taken in order to balance the compu-
tational load in favor of the customers
(Kerschbaum 2009).

For secure multi-party computation a
formal security model has been defined
(Goldreich 2002). Recall that a party may
not learn anything that cannot be in-
ferred by its input and output. A proof
for security may define a simulator which
is given input and output and then show
that the statistical difference between the
simulator and a real protocol run is a
negligible function of a security parame-
ter. The two models defined by Goldreich
(2002) are semi-honest and malicious. In
the semi-honest model the adversary fol-
lows the protocol, but keeps a record of
all messages to infer additional informa-
tion. In the malicious the adversary may
behave arbitrarily.

There exists a compiler from protocols
secure in the semi-honest model to pro-
tocol secure in the malicious model (Gol-
dreich 2002), but the resulting protocols
are very inefficient. Furthermore the ma-
licious protocol does not prevent provid-
ing false input, such that we have to as-
sume the parties provide the correct in-
put in order to obtain the correct result.
We will revisit this problem in Sect. 4.

2.3 Collaborative Benchmarking
in the Cloud

Benchmarking helps companies to stay
competitive in today’s markets. A KPI is
a statistical quantity measuring the per-
formance of a business process. Exam-
ples from different company functions
are make cycle time (manufacturing),
cash flow (financial) and employee fluc-
tuation rate (human resources). A peer
group is a group of (usually competing)

136 Business & Information Systems Engineering 3|2011

BISE – RESEARCH PAPER

Fig. 1 Overview of
confidentiality-preserving
cloud computation

companies that are interested in compar-
ing their KPIs. Examples using different
characteristics include car manufacturers
(industry sector), Fortune 500 compa-
nies in the United States (revenue and lo-
cation), or airline vs. railway vs. haulage
(sales market).

Let there be n customers Xi and one
cloud service provider SP. Each customer
Xi has one KPI value xi—we consider
each KPI separately. They want to com-
pute several statistics about x1, . . . , xn

(we also treat every peer group sepa-
rately). The following functions are can-
didates commonly chosen in individual
benchmarking: average, variance, maxi-
mum, median and top quartile.

The cloud computing paradigm entails
that each customer Xi only communi-
cates with the service provider SP, i.e. we
prohibit any direct communication be-
tween the customers. Assuming a mali-
cious service provider this central com-
munication pattern corresponds to the
attacker controlling the network and we
inherit the security challenges from this
model, such as no key agreement without
a trusted third party.

Our protection goal is the confidential-
ity of the customer Xi’s KPI value xi, i.e.
neither any other customer Xj (j �= i) nor
the service provider SP should learn xi.

2.4 Solution Overview

In the next sections we review several de-
sign choices. In order to relate them to
the overall design we present Fig. 1 of the
confidentiality-preserving cloud compu-
tation. In this life cycle of the computa-
tion we first observe a key distribution
(Sect. 5). Then the parties submit their
encrypted input (Sect. 6) before the se-
cure computation takes place where we
discuss the functions to be computed
(Sect. 3). Then the (encrypted) result is
returned where special pre-cautions need
to be in place (Sect. 4).

3 Confidentiality

Secure multi-party computation can en-
sure the confidentiality of a single KPI,
single peer-group computation, but our
cloud application needs to handle multi-

ple peer groups and multiple KPIs. Com-
putation of multiple KPIs do not interfere
with each other, since they are indepen-
dent, but multiple peer groups may, since
they may share common parties.

Let λi,j = 1 if Xi participates in the
jth peer group and λi,j = 0. Since the
number of customers in a peer group is
known, the computation of the averages
s1, . . . , sj can be written as

�s = Λ�x.
In case Λ is invertible or pseudo-
invertible any party can compute the in-
put from the output. In this case any se-
cure computation (or homomorphic en-
cryption) is unnecessary. A security proof
for the plaintext protocol would be pos-
sible, but irrelevant. There is no security
mechanism that may prevent learning the
input from the output in this case and
therefore there is infeasible to construct
a confidentiality-preserving cloud appli-
cation for this function. This problem
arises if any subset of peer groups consists
of linearly dependent sub-vectors except
for the element which corresponds to the
party with the revealed KPI value.

Business & Information Systems Engineering 3|2011 137

BISE – RESEARCH PAPER

There are two possible countermea-
sures. First, the cloud service provider
can make only peer group assignments
that do not contain any such case. Sec-
ond, the customer only participates in
safe peer group assignments. The second
case has the advantage that the customer
can verify the confidentiality of his KPI
and there is no explanation necessary in
case participation is denied by the cloud
service provider. Furthermore, the choice
of participation by a party may make the
assignment unsafe for another party. The
only assignment scheme that prevents all
these problems is to assign each party’s
KPI to at most one peer group, since al-
ready in case of two peer groups partic-
ipation of one party can lead to linearly
dependent sub-vectors.

4 Incentive-Compatible
Mechanism

Any collaborative application imple-
ments a mechanism from game theory.
Given a utility function rational players
will behave in a way that leads to an equi-
librium. There are several seminal results
that we will revisit for our benchmarking
application.

The fundamental problem of
confidentiality-preserving computation
is that the input data can no longer be au-
dited by an external party. The cloud ser-
vice provider and other customers have
no assurance that a party submitted cor-
rect data. Even in the malicious security
model there is no security mechanism
for enforcing truth telling. A natural so-
lution is to investigate the incentives of
the players and whether it is in their best
interest to provide correct data. Game
theoretic analysis can assist when assum-
ing rational players.

The first observation is that we need to
assume that all players are interested in
obtaining the correct result of the com-
putation. Would just some players be not
interested in obtaining the correct result,
they would not provide the correct in-
put leading to an equilibrium where no
player is inclined to provide correct in-
put.

Problems arise when we assume that
players are also interested in obtaining in-
formation about the other players’ input
or withholding the result from them, i.e.
a mixed utility function.

The first seminal result is a spec-
ification of non-cooperatively com-
putable functions (Shoham and Ten-

nenholtz 2005). Loosely speaking, a non-
cooperatively computable functions is
one that is neither dominated by one’s
input (i.e. can be computed from one’s
input) nor invertible. In case of invert-
ible functions players would be inclined
to provide false input, then reverse the
function and recomputed it with correct
input. The conclusion of Shoham and
Tennenholtz (2005) is that sum, average
and maximum are not non-cooperatively
computable, while median and top quar-
tile are.

The second seminal result is that the
equilibrium in secure multi-party com-
putation protocols is to not compute,
since the players are not inclined to ex-
change the result shares (Halpern and
Teague 2004; Abraham et al. 2006). Every
party that sends its result shares to other
parties has only those parties profiting,
i.e. it does not act in its best interest, since
it only needs the shares from the other
parties to obtain the result. Halpern and
Teague (2004) presented the first proto-
col for overcoming this problem. Later
the result was improved by Abraham et
al. (2006).

Fortunately this second dilemma does
not arise in cloud computing. In cloud
computing we can assume that the ser-
vice provider has an interest in provid-
ing the correct result to its customers in
order to maintain a sustainable business
(Kerschbaum 2009). The service provider
can then act as an intermediary forward-
ing the results to all parties, since it profits
from forwarding and not only from the
result.

In confidentiality-preserving cloud
computing on encrypted data another
dilemma arises. Assume the service
provider has computed the result, but
it is still encrypted under the homomor-
phic encryption scheme where only the
customers hold the key. In a collabora-
tive application there is usually only one
result, but multiple customers that all
want to obtain the same result. Also de-
cryption in the computation phase and
result publishing are usually decoupled.
The following simple attack is rational
for the service provider: He submits to
all parties their input ciphertext, obtains
the plaintext and computes the result on
the plaintext which he publishes. In this
case he has delivered the correct result
(i.e. maximized its utility function) and
obtained all input information.

There are two options for preventing
this attack. First, the service provider may

only ask one customer to decrypt the re-
sult, but the customers are not supposed
to communicate among each other. So
the chosen one cannot determine it is
the only one. Second, the service provider
submits the same ciphertext to all cus-
tomers. This can be verified using sig-
natures from the customers. This pre-
vents any attack violating confidentiality
as long as the correct result is delivered
(Kerschbaum 2008).

5 Key Distribution
and Management

Homomorphic encryption requires a key
to protect the information. In order to
process the ciphertexts each ciphertext
needs to be encrypted under the same
key. This key needs to be protected, since
if it is leaked, confidentiality of the data is
at risk.

The architect has the following design
choices
� single or threshold key,
� static or dynamic key,
� key agreement secure against passive or

active adversaries.
The key agreement should be chosen

secure against the same type of adver-
sary as the secure computation proto-
col, since the composition will be secure
only against the weakest one. In Sect. 4
we have designed our protocol to be se-
cure against an economically motivated
active adversary and therefore key agree-
ment must be secure against a (stronger)
active adversary.

Key agreement protocols secure against
active adversaries require a trusted third,
e.g. the certificate authority in public key
infrastructures (PKI). Our key agreement
protocol therefore requires one as well
and the service provider cannot be this
trusted party, since this would reduce se-
curity to security against passive adver-
saries (i.e. the trusted third party is as-
sumed to behave as expected).

If a third party needs to be involved
in key agreement, two service providers
would be required. It can therefore be ad-
visable to choose static keys and limit the
third party to a one-time interaction. Dy-
namic keys require a key agreement pro-
tocol for each round of computation and
should only be used in case the key agree-
ment can be performed without the in-
teraction of the trusted third party, e.g.
using PKI. Note that, public keys in PKI,
as any static, break anonymity, since they
can be used a static pseudonym.

138 Business & Information Systems Engineering 3|2011

BISE – RESEARCH PAPER

The impact of the choice between sin-
gle and threshold key is not always clear
cut. On the one hand a single key if
leaked compromises the security of the
entire system, but this is more critical
for static keys which have to be stored
on disk. Nevertheless any collusion be-
tween service provider and any other
party breaks the security of the system,
even in case of dynamic keys. On the
other hand a threshold key does not au-
tomatically imply security against collu-
sions between service provider and other
parties, because intermediate results are
often necessary to enable the functional-
ity using partially homomorphic encryp-
tion. In the case of benchmarking secur-
ing the protocol against collusions be-
tween service provider and other parties
has proven to make the protocol too inef-
ficient, even when using a threshold key.

In summary, we chose a single, dy-
namic session key for the homomorphic
encryption which is established using a
key agreement protocol secure against
active adversaries without the active in-
volvement of the PKI certificate authority
as a trusted third party.

6 “Homomorphic” Comparison

When computing statistics, a key prob-
lem next to addition is comparison.
Comparison is essential for statistical
quantities, such as the median. In case
of the benchmarking platform the inputs
are encrypted using homomorphic en-
cryption.

Let E(x) denote the encryption of x ∈
Zn in the homomorphic encryption sys-
tem. The problem is to construct an al-
gorithm or protocol, such that given E(x)
and E(y) the service provider can com-
pute E(c) where c = x < y (represented
by elements from Zn). Clearly fully ho-
momorphic encryption can perform this
task, but also Fischlin (2001) described
how this can be performed using the ho-
momorphic encryption system by Sander
et al. (1999). In this encryption scheme
each bit of the input is encrypted as its
own ciphertext, such that additions of in-
tegers are no longer possible. We there-
fore propose a solution using additive ho-
momorphic encryption.

Our solution is based on multiplica-
tive blinding. We map the integers from
[−n/2,n/2] to the integers [0,n − 1]
similar to two-complement notation, i.e.
0 → 0, n/2 → n/2, −n/2 → n/2 + 1 and

−1 → n − 1. We can then encrypt the in-
tegers [−n/2,n/2] using homomorphic
encryption (modulo n).

Given E(x) and E(y) the service
provider will choose random numbers
0 < r and 0 ≤ r′ < r and compute

E(c) = (E(x)E(y)−1)rE(r′)
= E(rx − ry + r′).

It holds that

x < y ⇔ c < 0.

6.1 Information-Theoretic
Confidentiality

Correctness of the homomorphic com-
parison is easy to verify, but security is
difficult. We hide the difference a = x −
y of the plaintexts using multiplication
with a random number r.

b = ra + r′.
Our security model is information-
theoretic and not cryptographic. Conse-
quently we can ask the question what
does b reveal about a. First, note that if
the bit length of r is likely to be known,
then the bit length of b reveals the bit
length of a, since

	lgr
 + 	lga
 − 1 ≤ 	lgb

≤ 	lgr
 + 	lga
.

We therefore choose the bit length of the
number r first and then the remaining
bits uniformly.

One can now assess the security of
the homomorphic comparison under a
number of attacks. In the simplest case a
ciphertext-only attack is performed on a
given b. The information theoretic mea-
sure for leakage of b about a is the condi-
tional entropy

H(A|B) = −Σp(B = b)Σp(A = a|B = b)

× log p(A = a|B = b).

Unfortunately we cannot assess it an-
alytically, but we can sample it. Ker-
schbaum (2010) has conducted a large
scale experiment and estimates a leakage
of 0.11 bit for a single sample with 16 bit
a and 512 bit r chosen using normal dis-
tribution.

7 System Architecture

7.1 Components and Use Cases

So far we have only considered the cryp-
tographic aspects of the benchmarking

protocol, but the entire system consists of
several components and use cases (Ker-
schbaum 2007). We briefly describe here
the use cases of our benchmarking plat-
form.
� Registration: A party approaches the

service provider to participate in the
benchmarking process. This includes
creation of account, payment, in case
of a static key its distribution and trig-
gers peer group formation. The par-
ticipants of registration are the party,
the service provider and the certificate
authority. The only pre-condition for
registration is a system setup between
the trusted third party (certificate au-
thority) for key agreement and the ser-
vice provider. In case of PKI this is the
installation of the root certificate at the
service provider. The post-condition of
registration is that the peer group for-
mation use case can afterwards be per-
formed.

� Peer Group Formation: Registration
triggers peer group formation where
the party is assigned a peer group to
benchmark against. We consider this
a separate use case due to the com-
plexity of the function and different
implementation alternatives involving
different parties. We describe an al-
gorithm to assign each party a peer
group. Recall that for confidentiality
reasons each party can be in at most
one peer group. The peer group for-
mation may affect the peer group as-
signment for parties other than the
one that just joined, but we can per-
form formation completely automatic,
such that the only participant of this
use case is the service provider. The
pre-condition is that sufficiently many
parties have registered at the service
provider. The post-condition is that
the remaining two use cases of statistics
computation and statistics retrieval
can be performed.

� Statistics Retrieval: Once a party has
registered and been assigned a peer
group, it can start to benchmark.
Benchmarking involves an analysis of
one’s KPIs in comparison to the peer
group for which the statistics need to
be retrieved from the service provider.
Note that a party can start to bench-
mark right after peer group formation
and does not have to wait for statis-
tics computation, i.e. it can retrieve the
statistics even if its own KPIs have been
involved in the computation. This in-
creases the benefit for the customer by
eliminating waiting time. The service

Business & Information Systems Engineering 3|2011 139

BISE – RESEARCH PAPER

provider maintains a database of the
statistics which the party may access.
The pre-condition is that peer group
formation has been completed. There
is no post-condition.

� Statistics Computation: Triggered by
the service provider the benchmark-
ing protocol starts to compute the
statistics. The challenge is, of course,
to perform the computation on en-
crypted data. The computation is de-
coupled from the retrieval, i.e. off-line.
The participants of the protocol are
all members of a peer group and the
service provider. Pre-condition is that
peer group formation has been com-
pleted and there is no post-condition.

The principle to decouple user interac-
tion (benchmarking) from secure com-
putation is very vital in handling the per-
formance constraints of computation on
encrypted data. It is a deviation from
most cloud computing approaches, but
has been adopted in the other deployed
secure computation as well (Bogetoft et
al. 2009).

7.2 Peer Group Formation

Peer group formation is triggered by the
registration of a new party, but per-
formed non-interactively by the service
provider. The goal of peer group forma-
tion is to identify the groups that are
likely to benefit most from benchmark-
ing against each other. The assumption is
that the more similar peer group mem-
bers are, the better the benchmarking re-
sult.

We view the peer group formation
problem as a data classification prob-
lem. We try to assign each party a classi-
fier, its peer group. First during registra-
tion each party publishes non-sensitive
characteristics about itself to the service
provider. These characteristics should be
rather stable for a company but vary be-
tween companies. They should be rele-
vant to the business model of the com-
pany and their combination should be al-
most identifying, i.e. unique.

These characteristics form an m-
dimensional space in which each party
represents a point. The data classifica-
tion problem is to divide the space, such
that the data points in the resulting sub-
spaces have low spatial extension. This is
commonly called data clustering.

The fastest partitional data clustering
algorithm is k-means clustering. Given a
parameter k, it identifies k clusters mini-
mizing the average distance to the cluster

center. K-means clustering is a random-
ized algorithm, i.e. it does not necessarily
find the optimum, but its output ranges
over a number of near-optimal solutions
depending on a random input parameter.

K-means clustering, as any standard
clustering algorithm, is not directly ap-
plicable to peer group formation. In or-
der to preserve the confidentiality of the
KPI values each peer group must be
of minimum size. This constraint must
be observed in the data clustering algo-
rithm. Bennett et al. propose using lin-
ear programming (LP) in order to min-
imize the distance to the cluster centers
while observing the constraints (Bennett
et al. 2000). Unfortunately for the prob-
lem sizes considered in peer group for-
mation LP does not scale and we need a
solution that preserves the superior per-
formance of k-means clustering.

Kerschbaum (2007) introduces k, l-
means clustering which is a greedy vari-
ation of k-means clustering where each
cluster has to have at least size l. The ba-
sic idea is as follows. In each round of the
algorithm we iterate through the clusters
until each cluster has size l. If a cluster has
less than l members it “grabs” the near-
est ones until it has l members. We keep
track if a data point has been reassigned
to a new cluster and each data point may
be reassigned at most once in order to
prevent infinite loops. At the end of this
iteration each cluster has at least l mem-
bers.

We performed an analysis of the qual-
ity of peer group formation. In collabo-
ration with industry experts we defined a
measure for quality of a peer group. The
maximum distance in any characteristic
is used a quality measure: The smaller
this distance, the better the cluster. We
evaluated k, l-means clustering using dif-
ferent distance norms and cluster sizes.
Astonishingly the distance norms made
little difference and we settled for the Eu-
clidean distance, but the clustering per-
formed better if the minimum cluster
size l was increased if there were artifi-
cially introduced cluster in the popula-
tion. This implies that k, l-means cluster-
ing performs better than k-means cluster-
ing, if the size l of the clusters is known.

As described in Sect. 7.1 peer group
formation is triggered by a new party
joining the service provider. It is therefore
sufficient to assign this new party to an
existing cluster instead of performing a
full data clustering for reassignment. This
also limits the number of peer groups
where statistics need to be recomputed.

Consequently we simply choose the best
peer group for the new party and split
this group into two if exceeds a threshold.
For splitting we can use k, l-means clus-
tering again. The difference between the
quality of incrementally assigning peer
groups and the quality of always per-
forming a full peer group assignment is
negligible.

8 Performance

Performance for computations on en-
crypted data remains critical and very few
experimental evaluations exist. Our pro-
tocol has quadratic O(n2) computation
and communication cost. We therefore
implemented the benchmarking protocol
for the statistics computation use case.
Following current practice in industry
we implemented the protocols over web
services as a communication mechanism
(Kerschbaum et al. 2009). Each client
and server runs its own web application
server with a web application for the pro-
tocol implementation. The implementa-
tion is entirely written in Java with the
crypto modules taking advantage of the
BigInteger arithmetic of Java’s standard
library.

We evaluated our implementation in
an experimental study in the following
setup. The service provider was deployed
on a Pentium 4 3.2 GHz machine with
1.5 GB of memory. All clients were de-
ployed on a Xeon Dual 3.6 GHz machine
with 8 GB of memory. Between the client
and server machine we deployed a WAN
emulator as a router. The WAN emula-
tion software was the dummynet pack-
age for FreeBSD (Rizzo 1997). All ma-
chines are physically connected via a non-
dedicated Gigabit Ethernet switch.

In a first experiment we increased the
number of clients from 5 to 45 in steps of
5 and we increased the latency on the net-
work connection from 0 to 100 millisec-
onds in steps of 25. The latency or delay is
used to simulate WAN conditions as over
the Internet. A delay of 100 ms results in a
round-trip time (RTT) of 200 ms, which
roughly corresponds to the RTT between
Germany and Japan over the Internet.

It became apparent that in this exper-
iment the network performance plays a
significant role. For 45 clients and a delay
of 100 ms the time spent for communica-
tion is almost half of the overall running
time.

140 Business & Information Systems Engineering 3|2011

BISE – RESEARCH PAPER

For the next experiment we modified
the server implementation. Instead of se-
quentially calling each client, we cre-
ate a thread for each client that asyn-
chronously handles the communication.
This is made possible by our benchmark-
ing protocol, since each round for each
client only requires input of the previ-
ous round and all clients can run con-
currently. The order of the clients does
not matter for the protocol’s semantics.
The necessary synchronization between
rounds is achieved using a barrier.

We conducted the same series of exper-
iments for the concurrent implementa-
tion. We increased the number of clients
and independently increased the network
delay. The results are depicted in Fig. 2.
The impact of the network performance
has significantly decreased and is almost
negligible compared to the impact of the
computational effort. For 45 clients and a
delay of 100 ms the time spent for com-
munication is only 6% of the overall run-
ning time.

We conclude that computation on en-
crypted in the cloud can be implemented,
such that its performance is almost inde-
pendent of the network performance, i.e.
for the overall performance it nearly does
not matter whether the clients are located
on the same LAN or half-way around the
world over the Internet.

9 Related Work

Collaborative benchmarking service plat-
forms have been first proposed and
implemented by Bogetoft and Nielsen
(2005). In addition to parametric (statis-
tical) they implemented non-parametric
benchmarking using data envelope anal-
ysis (DEA). DEA is based on linear
programming which is currently out of
reach of practical secure computation, al-
though theoretical protocols exist (Li and
Atallah 2006; Toft 2009).

Secure computation for benchmarking
has been first proposed by Atallah et al.
(2004). They implement a number of se-
cure division protocols for implement-
ing time series. In our case of statistical
benchmarking time series can be com-
puted on the local data and the computed
statistics, both in plain text. Encryption
is unnecessary, since the protection of the
KPIs stems from the aggregation as statis-
tical quantities.

There also exist a number of secure
computation protocols for computing
statistics. Most notably (Aggarwal et al.

Fig. 2 Performance of benchmarking on encrypted data

2004) describes an efficient protocol for
computing the median. As with any se-
cure computation protocol, the model is
based on distributed, mutually distrust-
ful parties, and it is not clear how to ap-
ply it in the cloud service provider case.
When applied straightforwardly it is no
more efficient than our protocol.

There are also a few protocols for se-
curely computing statistics using a cen-
tral service provider. Di Crescenzo (2000)
describes a protocol for the sum and
Di Crescenzo (2001) describes a proto-
col for the maximum. Both use a semi-
honest service provider and thereby avoid
the problem of key agreement, but, of
course, introducing a certificate author-
ity does not make the protocols secure in
a stronger security model.

One challenge is to combine the proto-
cols for the different statistics and remain
efficient. To the best of our knowledge
the homomorphic comparison is the first
and most efficient proposal for a compar-
ison operation on homomorphically en-
crypted data (Kerschbaum and Terzidis
2006). A related proposal has been made
later by Sakuma and Kobayashi (2007).
Their security “proof” is questionable,
since it does not compare the probabil-
ity of the different cases, but only shows
that there is at least one for each combi-
nation of numbers. Therefore the leakage
as proposed by us provides a much better
analysis.

Our homomorphic comparison com-
petes with a huge number of secure in-
equality comparison protocols, to name a
few (Damgard et al. 2008; Fischlin 2001;
Yao 1986). These protocols implement
secure “greater-than” comparison of two
private values, also known as Yao’s mil-

lionaires’ problem after the initial proto-
col by Yao (1986). The currently fastest
protocol by Damgard et al. uses one pub-
lic value and we have shown that the
fastest with two private values by Fischlin
is significantly slower than our homo-
morphic comparison (Kerschbaum and
Terzidis 2006).

The only other practically deployed se-
cure computation has been described by
Bogetoft et al. (2006; improved in 2009).
It implements a secure auction protocol.
They implement the same decoupling be-
tween user interaction and computation
as we do and limit computation to a con-
stant sized set of servers, i.e. they com-
pute using several, but mutually distrust-
ful service providers. While this model is
not readily applicable to the cloud, it may
give rise to a new type of service provider
that obviously participates in a secure
computation. Their reported computa-
tion times are on the same order as ours.

There exist a number of other frame-
works for secure computation which
are based on general protocols. The
first for secure two-party computation
was FairPlay (Malkhi et al. 2004). Later
VIFF (2010), ShareMind (2010) and Fair-
PlayMP (Ben-David et al. 2008) fol-
low for secure multi-party computation.
Since all of them are based on general
secure computation protocols which can
implement any functionality, but are not
optimized for the functionality, it re-
mains to be seen whether they will ever
be practically used due to the high com-
putational requirements.

To the best of our knowledge no com-
putations on encrypted data in the cloud
using any form of homomorphic encryp-
tion (Gentry 2009) have been reported so

Business & Information Systems Engineering 3|2011 141

BISE – RESEARCH PAPER

Abstract
Florian Kerschbaum

Secure and Sustainable
Benchmarking in Clouds

A Multi-Party Cloud Application
with an Untrusted Service Provider

Cloud computing entails a novel secu-
rity threat: The cloud service provider
is entrusted with the data of all its cus-
tomers. This may not be sustainable for
highly confidential data. Encryption, or
more generally cryptography, may pro-
vide a solution by computing on data
encrypted by the customers. While this
solution is theoretically appealing, it
raises a number of research questions
in information system design.

Using the example of collaborative
benchmarking the author presents and
evaluates an exemplary design and im-
plementation of a cloud application
that operates only on encrypted data,
thus protecting the confidentiality of
the customer’s data against the cloud
service provider. The cloud applica-
tion computes common statistics for
benchmarking without disclosing the
individual key performance indicators.

Benchmarking is an important pro-
cess for companies to stay competitive
in today’s markets. It allows them to
evaluate their performance against the
statistics of their peers and implement
targeted improvement measures.

Keywords: Cloud computing, Encryp-
tion, Cryptography, Homomorphic en-
cryption, Secure multi-party computa-
tion, Benchmarking, Collaborative busi-
ness applications

far. Our experiences building the bench-
marking platform are therefore the first
and we hope they provide sufficient in-
sight in order to inspire future research
in the topic.

10 Summary and Outlook

In this paper we examined confiden-
tiality-preserving cloud computing, i.e.
the computation on encrypted data in the
cloud. We presented the available design
choices using an example cloud applica-
tion for collaborative benchmarking. It
addresses the security threat of a confi-
dentiality breach by the service provider
by computing on encrypted data thereby
reducing the necessary trust assump-
tions. We compare the different models
of homomorphic encryption and secure
computation and implemented a hybrid
model for improved performance. Our
experience from building this cloud ap-
plication revealed a number of insights
some contrary to common belief.

First, encrypting data is not enough. The
information revealed by the result may
imply the input by inverse computation.
It is therefore necessary to carefully de-
sign and evaluate the functionality imple-
mented on encrypted data. In our case
it was necessary to restrict each party to
participate in at most one peer group per
KPI. We can show that if the size of the
peer group is large enough, the KPIs re-
main private.

We note that there are no formal tools
or methods yet for this type of analysis
and all work needs to be performed man-
ually by skilled researchers and engineers.
This is a clear opportunity for future re-
search in providing formal methods and
tools for verifying the security of the ap-
plication.

Second, security should match the busi-
ness objectives. It is difficult, if not impos-
sible, to prevent all attacks by malicious
adversaries on encrypted cloud comput-
ing, since the input is encrypted open-
ing wide the door to denial-of-service at-
tacks. It is therefore necessary to align the
objectives of the cloud application with
the economic objectives of the partici-
pants.

In our benchmarking application we
use incentive-compatible statistics and
enhance the security against economi-
cally motivated adversaries. This implies
that some simple protocols secure against
only passive adversaries are no longer ap-
plicable, such as key exchange using the

cloud service provider, and we need a
trusted third party (certificate authority)
for the key exchange. Nevertheless, to the
best of our knowledge, our benchmark-
ing protocol is the first instance of a pro-
tocol that is more efficient against a ra-
tional attacker than a malicious one. We
believe that there will be many more such
cases and look forward to this research
and development.

Third, inequality comparison of homo-
morphically encrypted integer plaintexts is
possible. Our result predates the develop-
ment of fully homomorphic encryption
and has applications outside of compar-
ison. Our comparison method does not
fit existing formal security models, but
we devised a new one and hope to see
many more research results in this area.
In particular it seems challenging to ex-
tend the method to other computations
beside comparison and general results are
required.

Fourth, computational performance will
remain the bottleneck. While we can show
that performance for benchmarking is
acceptable, more complicated computa-
tions are likely not. The benchmarking
functionality can be computed locally in
15 ms. In comparison to our benchmark-
ing protocol this is a factor of roughly
60.000. This comparison is not entirely
fair, since a secure cloud application al-
ways implies some overhead for secure
transmission and storage of data, but we
could show that network performance
can be effectively reduced by paralleliza-
tion. The main obstacle therefore re-
mains computational performance.

In this respect our homomorphic com-
parison also significantly improves over
other homomorphic encryption, such
as Gentry’s general construction (Gen-
try 2009) or Fischlin’s bitwise compari-
son (Fischlin 2001), because our perfor-
mance matches that of partially (addi-
tive) homomorphic encryption.

We anticipate that the improvement of
performance will remain the major re-
search challenge for computation on en-
crypted data. In fact it is a question of
simple economics whether the applica-
tion justifies the expenditure for the com-
putational capacity and response wait
time. In case cryptography does not pro-
vide sufficiently efficient solutions suf-
ficiently fast, industry is likely to look
for alternatives. In the current boom of
cloud computing this may be a missed
opportunity, since there seems to be no
technical alternatives for preventive mea-
sures against confidentiality breaches by
the service provider.

142 Business & Information Systems Engineering 3|2011

BISE – RESEARCH PAPER

Fifth, separating user interaction and
computation may provide an alternative.
In applications, such as our collaborative
benchmarking, that allow this separation
it may provide an alternative way of de-
signing the system that a user can accept.
Furthermore, since the service provider
can then schedule the computation this
enables better load balancing. Already the
first application appeared (Bogetoft et al.
2009) and we anticipate many more fol-
lowing this design choice.

References

Abraham I, Dolev D, Gonen R, Halpern JY
(2006) Distributed computing meets game
theory: robust mechanisms for rational se-
cret sharing and multiparty computation.
In: Proc 25th ACM symposium on principles
of distributed computing, pp 53–62

Aggarwal G, Mishra N, Pinkas B (2004) Secure
computation of the kth-ranked element. In:
Proc Eurocrypt, pp 40–55

Atallah M, Bykova M, Li J, Frikken K, Topkara M
(2004) Private collaborative forecasting and
benchmarking. In: Proc ACM workshop on
privacy in an electronic society, pp 103–
114

Ben-David A, Nisan N, Pinkas B (2008) Fair-
playMP: a system for secure multi-party
computation. In: Proc 15th ACM confer-
ence on computer and communications
security, pp 257–266

Bennett K, Bradley P, Demiriz A (2000)
Constrained K-means clustering. Microsoft
technical report

Ben-Or M, Goldwasser S, Wigderson A
(1988) Completeness theorems for non-
cryptographic fault-tolerant distributed
computation. In: Proc 20th ACM sympo-
sium on theory of computing, pp 1–10

Bogetoft P, Christensen D, Damgard I,
Geisler M, Jakobsen T, Kroigaard M,
Nielsen J, Nielsen J, Nielsen K, Pagter J,
Schwartzbach M, Toft T (2009) Secure
multiparty computation goes live. In:
Proc 13th international conference on
financial cryptography and data security,
pp 325–343

Bogetoft P, Damgard I, Jakobsen T, Nielsen K,
Pagter J, Toft T (2006) A practical imple-
mentation of secure auctions based on
multiparty integer computation. In: Proc
10th international conference on financial
cryptography and data security, pp 142–
147

Bogetoft P, Nielsen K (2005) Internet based
benchmarking. Group Decision and Nego-
tiation 14(3):195–215

Cramer R, Damgard I, Nielsen J (2001) Multi-
party computation from threshold homo-
morphic encryption. In: Proc Eurocrypt, pp
280–299

Crotts J, Pan B, Dimitry C (2006) Hospitality
performance index: a case study of devel-
oping an internet-based competitive anal-
ysis and benchmarking tool for hospitality
industry. In: Proc conference of travel and
tourism research association

Damgard I, Geisler M, Kroigard M (2008) Ho-
momorphic encryption and secure com-
parison. International Journal of Applied
Cryptography 1(1):22–31

Damgard I, Jurik M (2001) A generalisation,
a simplification and some applications of
pailliers probabilistic public-key system. In:
Proc international conference on theory
and practice of public-key cryptography,
pp 119–136

Di Crescenzo G (2000) Private selective pay-
ment protocols. In: Proc 4th international
conference on financial cryptography and
data security, pp 72–89

Di Crescenzo G (2001) Privacy for the stock
market. In: Proc 5th international confer-
ence on financial cryptography and data
security, pp 269–288

Eurich M, Oertel N, Boutellier R (2010) The im-
pact of perceived privacy risks on organiza-
tions’ willingness to share item-level event
data across the supply chain. Electronic
Commerce Research 10(3–4):423–440

Fischlin M (2001) A cost-effective pay-per-
multiplication comparison method for mil-
lionaires. In: Proc RSA security cryptogra-
pher’s track, pp 457–471

Gentry C (2009) Fully homomorphic encryp-
tion using ideal lattices. In: Proc 41st ACM
symposium on theory of computing, pp
169–178

Goldreich O (2002) Secure multi-party com-
putation. http://www.wisdom.weizmann.
ac.il/~oded/pp.html. Accessed 2011-02-07

Goldreich O, Micali S, Wigderson A (1987)
How to play any mental game. In: Proc 19th
ACM symposium on theory of computing,
pp 218–229

Halpern J, Teague V (2004) Rational secret
sharing and multiparty computation: ex-
tended abstract. In: Proc 36th ACM sympo-
sium on theory of computing, pp 623–632

Kerschbaum F (2007) Building a privacy-
preserving benchmarking enterprise sys-
tem. In: Proc 11th IEEE international EDOC
conference, pp 87–96

Kerschbaum F (2008) Practical privacy-
preserving benchmarking. In: Proc 23rd
IFIP international information security
conference, pp 17–31

Kerschbaum F (2009) Adapting privacy-
preserving computation to the service
provider model. In: Proc 1st IEEE interna-
tional conference on privacy, security, risk
and trust, pp 34–41

Kerschbaum F (2010) A privacy-preserving
benchmarking platform. Dissertation.
Karlsruhe Institute of Technology

Kerschbaum F, Dahlmeier D, Schröpfer A,
Biswas D (2009) On the practical impor-
tance of communication complexity for
secure multi-party computation protocols.
In: Proc 24th ACM symposium on applied
computing, pp 2008–2015

Kerschbaum F, Terzidis O (2006) Filtering
for private collaborative benchmarking. In:
Proc international conference on emerging
trends in information and communication
security, pp 409–422

Li J, Atallah M (2006) secure and private col-
laborative linear programming. In: Proc 2nd
international conference on collaborative
computing, pp 1–8

Malkhi D, Nisan N, Pinkas B, Sella Y (2004)
Fairplay—a secure two-party computation
system. In: Proc USENIX security sympo-
sium, pp 287–302

Paillier P (1999) Public-key cryptosystems
based on composite degree residuosity
classes. In: Proc Eurocrypt, pp 223–238

Rizzo L (1997) Dummynet: a simple approach
to the evaluation of network protocols.
ACM Computer Communication Review
27(1):31–41

Sakuma J, Kobayashi S (2007) A genetic
algorithm for privacy preserving combi-
natorial optimization. In: Proc conference
on genetic and evolutionary computation,
pp 1372–1379

Sander T, Young A, Yung M (1999) Non-
interactive crypto-computing for NC1. In:
Proc 40th IEEE symposium on foundations
of computer science, pp 554–567

ShareMind (2010) http://research.cyber.ee/
sharemind/. Accessed 2011-02-07

Shoham Y, Tennenholtz M (2005) Non-
cooperative computation: boolean
functions with correctness and exclu-
sivity. Theoretical Computer Science
343(1–2):97–113

Toft T (2009) Solving linear programs using
multiparty computation. In: Proc 13th in-
ternational conference on financial cryp-
tography and data security, pp 90–107

VIFF (2010) http://www.viff.dk/. Accessed
2011-02-07

Yao A (1986) How to generate and exchange
secrets. In: Proc 27th IEEE symposium on
foundations of computer science, pp 162–
167

Business & Information Systems Engineering 3|2011 143

http://www.wisdom.weizmann.ac.il/~oded/pp.html
http://www.wisdom.weizmann.ac.il/~oded/pp.html
http://research.cyber.ee/sharemind/
http://research.cyber.ee/sharemind/
http://www.viff.dk/

	Secure and Sustainable Benchmarking in Clouds
	Introduction
	Problem and Approach
	Homomorphic Encryption
	Secure Multi-Party Computation
	Collaborative Benchmarking in the Cloud
	Solution Overview

	Confidentiality
	Incentive-Compatible Mechanism
	Key Distribution and Management
	"Homomorphic" Comparison
	Information-Theoretic Confidentiality

	System Architecture
	Components and Use Cases
	Peer Group Formation

	Performance
	Related Work
	Abstract
	Summary and Outlook
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

