
Association for Information Systems
AIS Electronic Library (AISeL)

MWAIS 2011 Proceedings Midwest (MWAIS)

5-20-2011

Improving the Data Warehouse Architecture Using
Design Patterns
Weiwen Yang
Colorado Technical University, Weiwen.yang@my.cs.colordotech.edu

Yanzhen Qu
Colorado Technical University, yqu@coloradotech.edu

Richard Fairley
Colorado Technical University, rfairley@coloradotech.edu

Follow this and additional works at: http://aisel.aisnet.org/mwais2011

This material is brought to you by the Midwest (MWAIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in MWAIS 2011
Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

Recommended Citation
Yang, Weiwen; Qu, Yanzhen; and Fairley, Richard, "Improving the Data Warehouse Architecture Using Design Patterns" (2011).
MWAIS 2011 Proceedings. 17.
http://aisel.aisnet.org/mwais2011/17

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fmwais2011%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mwais2011?utm_source=aisel.aisnet.org%2Fmwais2011%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mwais?utm_source=aisel.aisnet.org%2Fmwais2011%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mwais2011?utm_source=aisel.aisnet.org%2Fmwais2011%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/mwais2011/17?utm_source=aisel.aisnet.org%2Fmwais2011%2F17&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Yang et al. Improving the Data Warehouse Architecture Using Design Patterns

Proceedings of the Sixth Midwest Association for Information Systems Conference, Omaha, NE May 20-21, 2011 1

Improving the Data Warehouse Architecture Using Design
Patterns

Weiwen Yang

Colorado Technical University

Weiwen.yang@my.cs.colordotech.edu

Yanzhen Qu

Colorado Technical University

yqu@coloradotech.edu

Richard Fairley

Colorado Technical University

rfairley@coloradotech.edu

ABSTRACT

Data warehousing is an important part of the enterprise information system. Business intelligence (BI) relies on data

warehouses to improve business performance. Data quality plays a key role in BI. Source data is extracted, transformed, and

loaded (ETL) into the data warehouses periodically. The ETL operations have the most crucial impact on the data quality of

the data warehouse. ETL-related data warehouse architectures including structure-oriented layer architectures and enterprise-

view data mart architecture were studied in the literature. Existing architectures have the layer and data mart components but

do not make use of design patterns; thus, those approaches are inefficient and pose potential problems. This paper relays how

to use design patterns to improve data warehouse architectures.

Keywords

Data warehouse, business intelligence, ETL, design pattern, layer pattern, bridge.

INTRODUCTION

In order to maintain and guarantee data quality, data warehouses must be updated periodically. The monolithic approach

combines the extraction, transforming, and loading (ETL) operations into one step to pull data from sources to the data

warehouse. All data comes in different formats and sizes, and some may need to be synthesized before loading into data

warehouses. The one-step approach is long and complicated. Difficulty emerges not only in accommodating the changes

when the sources or schema change, but also in troubleshooting and fixing problems, as the components are sizable and

complex. In fact, the data sources and the output schema change once in a while. The monolithic approach does not easily

accommodate changes in sources and output schema. Some operations are complicated and massive in scale and may exhaust

too many resources to execute; running such a one-step, large-scale operation from the source to the data warehouse is not

efficient in that case. Therefore, it is necessary to break the complicated operation into multiple steps. The high-level

operation depends on lower ones. In general, the transformation depends on extraction, the validation depends on

transformation, and the loading operations depend on validation. The data warehouse layer depends on the reconciled data

layer, which depends on the source layer. The target system should be testable, easy to use and change, and efficient. Quality

attributes are testability, performance, reliability, usability, scalability, data quality, manageability, extensibility, and

modifiability. Testability refers to feasibility of testing a software system. Performance is how fast the software can run for a

specific task. Reliability is the probability of failure in a period of time. Usability is how easily software is used. Scalability is

the ability of a system to accommodate data growth. Manageability means how easily the system is administrated.

Extensibility means the ability to add a new component. Modifiability is ability to modify a component. A pattern is a

solution of the problem in a certain context (Alexander, 1979). A design pattern is a common recurring structure of the

system components that solve a general design problem in a specific context, and it offers well-tested solutions for such

problems experienced by many companies and academic institutions (Gamm, Helm, Johnson and Vlissides, 1993).

Golfarelli and Rizzi (2009) introduced a study of the structure-oriented layer architectures and enterprise-oriented-view data

mart architectures. Sahama and Croll (2007) studied the enterprise data warehouse architecture, distributed data warehouse

architecture, and data mart architecture. Bontempo and Zagelow (1998) studied the IBM distributed data warehouse

architecture with a component approach based on IBM DB2 database systems with multiple ETL components including

extracting, transforming, filtering, and data validation. Inmon, Strauss and Neushloss (2008) discussed the active data

warehouse, star schema data warehouse, layer data warehouse, the federated data warehouse, and the data mart data

warehouse. Kelly (1997) reviewed data warehouse architecture essential requirements. Watson and Ariyachandra (2005)

discussed the independent data mart architecture, data mart bus architecture with linked dimensional data marts, as well as

hub-and-spoke architecture. Golfarelli, Maio and Rizzi (1998) created a conceptual model with tree structures for data

Yang et al. Improving the Data Warehouse Architecture Using Design Patterns

Proceedings of the Sixth Midwest Association for Information Systems Conference, Omaha, NE May 20-21, 2011 2

warehouses. Bonifati, Cattaneo, Ceri and Fuggetta (2001) proposed the identification and design of the data marts. Mazon

and Trujillo (2009) described a hybrid framework for multi-dimensional data warehouses. Gardner (1998) discussed how to

build the data warehouse.

In the traditional data warehouse architecture, the layers are designed in the monolithic approach. Breaking one layer leads to

the failure of the whole system. Separating into many layers also increases the runtime overall. How to handle the metadata,

alert, management information operation status such as job failures and completion in the data warehouse were not discussed.

ACM, IEEE, data warehouse books and Internet material searches yielded no literature pertinent to design patterns in data

warehouse architecture.

PROBLEM

The traditional architecture uses the layer approach or one-step approach from data source to data warehouse. The one-step

approach is monolithic, includes many operations in a single step, and requires a large amount of memory and disk resources

to run. If the required resources are more than actual resources the system can provide, it will not run. This one-step

approach will lead to longer run-time as it is not processed in parallel. Job status may include running, completed, or aborted.

An alert should be sent out to management if a job fails.. The management task may include starting a job, terminating a job,

and querying metadata (which refers to the table schemas) and job status. User applications may have different ways to

connect to the data warehouses. The existing architecture does not reveal how to implement the management and the user

application component; it also fails to follow the design pattern principles. Hence, it leads to potential problems: less

testability, less usability, less scalability, less reliability, and less efficiency.

METHODOLOGY AND BENEFITS OF DESIGN PATTERNS

The method herein involves applying the layer pattern with bridges, publisher-subscriber pattern, and model-view-controller

(MVC) model to the data warehouse architecture. The design patterns are as follows:

1. The layer pattern with bridges is applied to the ETL component (Figure 1). One-step, large-scale operations that

require more resources and have an exceptionally long runtime can be broken down into multiple operations to

improve performance, modifiability, and scalability. Because it is a smaller layer with common interfaces, it is

easily added or removed, thus promoting improved modifiability. Normal data flow moves from the data source

layer, to reconciled layer, validation layer, and then data warehouse layer. There are two bridges from source

data to data warehouse, and from reconciled layer to data warehouse. Data that is static and will not be modified

is directly loaded from source layer to the data warehouse layer by passing both the reconciled and validation

layer. Data not requiring validation can be loaded to the data warehouses by passing the validation layer.

Passing a layer results in reducing runtime.

2. The publisher-subscriber pattern is applied to the management component. Publishers can be classified into

many messages. The subscribers can receive the messages only if the subscriber subscribes to that message. The

subscriber has no knowledge about the publishers. It is easy to add messages, delete messages, as well as to add

and remove subscribers. This process improves scalability and flexibility.

3. The MVC model is used in the user-interface component and allows separation of the domain, actions, and

presentation. The user-interface logic is separated from the business logic. The model does not depend on the

view and controller, yet the view and controller depend on the model. The model, view, or controller can be

built and tested independently. This allows for more client applications to increase scalability, testability, and

usability.

NEW CONTRIBUTIONS

The new contributions of this paper are applying the layer pattern with bridges, the publisher-subscriber pattern, and MVC

model to the traditional data warehouse architecture.

GENERAL ARCHITECTURE

The layer pattern with bridges is used in the architecture. The management component has the alert system, metadata, and

management tools. The metadata is used by the ETL jobs. Management tools administer the jobs. An alert system is added to

the ETL operations; then, an alert is sent out if an operation fails. Anyone who is subscribed to the alert system receives an

email; this is the publisher-subscriber pattern. The data warehouse runs as a server, and the client can connect to the data

warehouse via an internet connection. Furthermore, the bridge from the source to the validation layer is used to improve

performance if the transformation is not needed. That is to say, the data of the source can be directly passed to the validation

Yang et al. Improving the Data Warehouse Architecture Using Design Patterns

Proceedings of the Sixth Midwest Association for Information Systems Conference, Omaha, NE May 20-21, 2011 3

layer if the transformation is not needed. An MVC model is used in the user application layer. The target architecture is

illustrated in Figure 1.

LAYER PATTERN WITH BRIDGES

The architectural layer pattern decomposes the tasks into groups of subtasks, where each group represents a specific level of

abstraction (Buschmann, Meunier, Rohnert, Sommerlad and Stal, 1996). The context is such that the large system needs

decomposition. The problem is that this system has the property of mixing high-level layers with low-level ones, with the

higher level relying on the lower. A data warehouse can spread into multiple data centers and have up to millions of

operations; those operations can be separated into groups, each whose operations represent a specific level of abstraction. As

shown in Figure 1, the modified hub-and-spoke architecture includes the source, reconciled, validation, and data warehouse

layer (Figure 1). The ETL process for building the data warehouse contains four layers and bridges:

1. The data source layer contains operational data, market data, business data, image, video, audio, and text—

which are structured and unstructured data. The data is extracted into a table with a specific table schema in the

staging area that prepares input for the reconciled layer.

2. The reconciled layer receives input from the data source layer and includes transformations. Data is transformed

into a table in the staging area which will be used by the validation layer.

3. The validation layer will get input from the reconciled layer or source layer if the bridge is used. Data

warehouses contain only dimension and fact tables. The dimension and fact data is validated according to some

predefined business rules in the validation layer. The result will be stored in the staging area.

Data Source Layer

Reconciled Layer

Extract

Load

Figure 1. Modified hub-and-spoke architecture.

Validation Layer

Read

Input

Data Warehouse

Layer

Bridge

Reporting

tools

OLAP

tools

Data mining

tools

What-if

analysis tools

Bridge

Management

Component

(Alerts,
Metadata, and

Management)

Yang et al. Improving the Data Warehouse Architecture Using Design Patterns

Proceedings of the Sixth Midwest Association for Information Systems Conference, Omaha, NE May 20-21, 2011 4

4. The data warehouse layer will get input from the validation layer, and the qualified data will be loaded into the

data warehouse layer eventually.

5. The bridge from the source to the data warehouse layer is adopted if the transformation and validation are not

needed. Sometimes the validation is simple and can be combined with the extraction. This will bypass the

reconciled layer to reduce runtime, thus improving performance.

6. The bridge from the transformation to the data warehouse layer is adopted if the validation is not needed.

Sometimes the validation is simple and can be combined with the transformation.

PUBLISHER-SUBSCRIBER PATTERN

The publisher-subscriber pattern maintains the state of cooperating party synchronization (Buschmann et al., 1996). The

publisher notifies all subscribers if any change occurs. The alert system sends the alert to management or related personnel if

the operation fails. Users who subscribe to the alert system can receive emails from the alert system. The idea is that a system

needs to keep the state of cooperating parties synchronized. Data can be changed in one place, but other components depend

on those data. The solution is that one component has the role of publishing, called publisher, and all the components that

depend on the changing state of the publisher are called subscribers. The publisher has a registry of information on the

currently subscribed components of the system. A dependent component can subscribe and unsubscribe to the publisher. The

publisher may have different topics, and the subscriber subscribes to the topic of the publisher. When the publisher changes

its state, it sends notification to all its subscribers. In this paper the subscriber can subscribe to the topic of invalid source

data, extraction failure, transformation failure, validation failure, and loading failure of the publisher.

An alert is bound to each operation. If the operation fails, the alert will be sent to the subscriber. The first step is to check the

data source based on some predefined business rules and send out an alert if it does not meet the predefined conditions. The

second step is to extract the data if the data is valid and then send out an alert if extraction fails. The third step is to transform

the data and send out an alert if transformation fails. The fourth step is to validate the data and send out an alert if validation

fails. The fifth step is then to load the data into the data warehouse and send out an alert if the loading operation fails.

MODEL-VIEW-CONTROLLER PATTERN

The model-view-controller pattern (MVC) model (Figure 2) separates the application into three components representing the

data, logic, and functionality (Buschmann et al., 1996). The views show the information to the users, and the controllers deal

with the input and interact with the model to propagate the information to the views. The context is that an interactive

application needs a flexible human computer interactive interface to present to the users. The problem occurs when a user

interface receives changing requests from users. When the functionality of an application is extended, the corresponding

menus need to be modified to access new functions. The user may call for a specific interface, or a system may be required to

adapt to another platform with different ―look and feel‖ criteria. Different users may input conflicting requirements to the

user interface.

Event

Controller

View Model

Update view if data changes.

Get data from model.

 Controller changes model. Controller changes view.

 Event is sent to controller.

 Figure 2. MVC model.

Yang et al. Improving the Data Warehouse Architecture Using Design Patterns

Proceedings of the Sixth Midwest Association for Information Systems Conference, Omaha, NE May 20-21, 2011 5

The MVC model was first introduced in SmallTalk-80 (Krasner and Pope, 1988). The model component encapsulates the

main data and functions of the applications and is independent of specific input data or output results. The view component

displays data to the user, and a view obtains data from the model. A model can have multiple views. Each view is associated

with the input of the controller. The controller receives inputs or events from the mouse, keyboard, or other input devices,

and the event is translated into requests. Users interact with the system through controllers. The purpose of separating the

model from the view and the controller is to allow multiple views for the same model.

The structure contains model, controller, and view components. The model component includes the functional core of the

user application and has the appropriate data and export procedure to process application requests. Controllers invoke the

procedure for the users. The model provides functions to access the data. The change-propagation mechanism of the MVC

pattern has a registry of the dependent components in the model. All views and the corresponding controllers register for

informing about changes. Changing the state of the MVC model triggers the above change-propagation mechanism. The

MVC pattern is based on the publisher-subscriber pattern. The MVC has components of model, view, and controller that are

separated components and that communicate with each other via the registry and callback mechanism. The model is

considered the publisher.

SUMMARY AND CONCLUSION

The data warehouse architectures were reviewed. The layer design patterns with bridges, publish-subscriber pattern, and the

MVC model are added to the data warehouses to improve facets including usability, testability, performance, scalability,

extensibility, and modifiability. The monolithic approach adds complication, consumes too many resources, and has

excessive runtime. A smaller operation takes fewer resources and is easier to run compared a larger operation. Thus, breaking

down the one-step operation into multiple, smaller operations in appropriate layers can improve performance. The layer

pattern, publisher-subscriber pattern, and model-view-controller pattern are adopted to address the modifiability,

manageability, performance, scalability, and extensibility in the architecture level.

The weakness is that breaking down into layers increases the number of layers for management. The failure of one layer may

cause the entire data pipeline to fail. However, as discussed earlier, small operations require fewer resources and are more

stable as compared to the monolithic operations. Adding the global component, validation, and alert component may increase

the overhead somewhat, but they are essential to both the data quality and manageability. Overall, the approach still presents

some disadvantages, yet those are outweighed by the advantages. Future research may include asynchronous, management,

proxy, and communication patterns in the architecture.

REFERENCES

1. Alexander, C. (1979) The timeless way of building, Oxford University Press, 247.

2. Bontempo, C. and Zagelow, G. (1998) The IBM data warehouse architecture, Communications of the ACM, 41, 9, 38-48.

3. Bonifati, A., Cattaneo, F., Ceri, S. and Fuggetta, A. (2001) Designing data marts for data warehouses, ACM Transactions

on Software Engineering and Methodology, 10, 4, 452–483.

4. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M. (1996) Pattern-oriented software architecture: A

system of patterns. Hoboken, NJ: John Wiley & Sons, 25-339.

5. Gamm, E. Helm, R., Johnson, R. and Vlissides, J. (1993) Design patterns: Abstract and reusable of object-oriented design,

Proceedings of ECOOP93, 406-431.

6. Gardner, S. R. (1998) Building the data warehouse, Communications of the ACM, 41, 9, 52-60.

7. Golfarelli, M., Maio, D. and Rizzi, S. (1998) Conceptual design of data warehouses from E/R schemes, IEEE, 1060-3425.

8. Golfarelli, M. and Rizzi, S. (2009) Data warehouse design: Modern principles and methodologies, Columbus, OH:

McGraw Hill, 7-16.

9. Inmon, W. H., Strauss, D. and Neushloss, G. (2008) DW 2.0: The architecture for the next generation of data warehousing,

Burlington, MA: Morgan Kaufmann, 14- 21.

10. Kelly, S. (1997) Data warehousing in action, Hoboken, NJ: John Wiley & Sons, 95-118.

Yang et al. Improving the Data Warehouse Architecture Using Design Patterns

Proceedings of the Sixth Midwest Association for Information Systems Conference, Omaha, NE May 20-21, 2011 6

11. Krasner, G. E. and Pope, S. T. (1988) A cookbook for using the Model-View-Controller user interface paradigm in

Smalltalk-80. Journal of Object-Oriented Programming, 1, 3, 26-49, August/September 1988, SIGS Publications, New

York.

12. Mazon, J. and Trujillo, J. (2009) A hybrid model driven development framework for the multidimensional modeling of

data warehouses, SIGMOD Record, 38, 2, 12-17.

13. Sahama, T. R. and Croll, P. R. (2007) Data warehouse architecture for clinical data warehousing. Australian Computer

Society, First Australian Workshop on Health Knowledge Management and Discovery (HKMD).

14. Watson, H. J. and Ariyachandra, T. (2008) Data warehouse architectures: Factors in the selection, decision, and the

success of the architectures, Communications of the ACM, 51, 10, 147.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	5-20-2011

	Improving the Data Warehouse Architecture Using Design Patterns
	Weiwen Yang
	Yanzhen Qu
	Richard Fairley
	Recommended Citation

	Improving the Data Warehouse Architecture Using Design Patterns

