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ABSTRACT
Combinatorial Auctions (CAs) are promising to increase so-
cial welfare by enabling bidders to express their valuation
on any combination of items. A major issue of many CAs
is the requirement to optimally solve the NP-hard Combi-
natorial Allocation Problem. To release a centralized auc-
tioneer from that computational burden he can shift it to
the bidders. One of the few discussed decentralized auc-
tions is PAUSE, in which bidders suggest new allocations to
the auctioneer. In our theoretical analysis we examine the
bidders’ bid complexity and determine a worst case bound
concerning efficiency, if bidders follow a profit maximizing
strategy. Based on these results we conduct computational
experiments with different bidding and computation strate-
gies, and analyze their impact on efficiency, auctioneer’s rev-
enue and auction runtime. Surprisingly, even if agents de-
viate from the optimal bid price calculation, PAUSE still
achieves high levels of efficiency and auctioneer’s revenue
compared to the Combinatorial Clock auction.

Keywords
combinatorial auctions, bidding agents, computational ex-
periments

1. INTRODUCTION
The Internet allows for the exchange of complex preference
profiles and laid the foundation for the design of new market
mechanisms. The promise of these mechanisms is to increase
economic welfare by allowing market participants to reveal
more comprehensive information about cost structures or
utility functions. In the last decade, a growing literature in
management science and information systems is devoted to
the design of such smart markets [?, ?], with combinatorial
auctions (CAs) emerging as a pivotal example [?]. Alloca-
tion of spectrum licenses for wireless communication services
[?], transportation [?] and industrial procurement [?, ?] are
not nearly all domains in which there is an increasing re-
quirement and usage for multi-item auction mechanisms al-
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lowing complex bids. However, the auctioneer of a CA faces
the NP-hard Combinatorial Allocation Problem (CAP) [?],
for which an optimal solution is untraceable in larger in-
stances, although the availability of computing power grows.

Decentralizing the CAP is the approach of the Progressive
AdaptiveUser Selection Environment (PAUSE) auction pro-
posed by [?]. In PAUSE bidders submit not only their own
bids, the desired packages of items and the price, but have
to propose a new allocation including their new bids and
existing bids, being better than the current provisional allo-
cation. Checking bid validity and publishing accepted bids
remains the auctioneer’s only tasks. Another simplification
for the auctioneer is that there is no need for a price calcu-
lation mechanism in the iterative process like in most other
iterative CAs.

There is only little work in the literature on decentralized
auctions, therefore, we study PAUSE theoretically and ex-
perimentally. Our theoretical analysis shows the growing
complexity for the bidders in PAUSE and gives a worst case
bound concerning efficiency, if bidders follow a certain strat-
egy. The determination of a lower bound in CAs has to our
knowledge not been done and published yet, but it reveals
important insights what can go wrong concerning bidder be-
havior, value models and auction rules. In this context we
analyze PAUSE with computational experiments.

[?, ?] developed some sophisticated bidding strategies for
distributed auctions, however, in our experiments we focus
on more simple strategies in which bidders reveal as little
as possible about their valuations. Further, we use another
value model with more items, in which the advantage of not
having to calculate the CAP optimally is more decisive. To
compare and benchmark we run computational experiments
with the Combinatorial Clock auction (CC), which is a cen-
tralized CA and known for its sparse need of solving the
CAP [?].

2. THE PAUSE AUCTION
PAUSE especially concentrates on achieving the following
properties: It should permit bidders to submit any combina-
torial bid they choose (fully combinatorial) and allow losing
bidders to clearly see why they lost (transparent). Further-
more it should allow the auctioneer to determine the winner
easily for auctions of any size and achieve high auctioneer
payoffs. The basic idea of PAUSE is to place the computa-
tional burden of evaluating synergies on the bidder claiming
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those synergies. This leaves the auctioneer to simply check
that a bid is valid. He no longer faces the CAP. PAUSE is a
multi-round, multi-stage CA decentralizing the CAP [?]. A
PAUSE auction with m items has m stages.

Stage 1 consists of a Simultaneous Ascending Auction (SAA)
[?] on all items. During this stage bidders can only place
individual bids on items - no package bidding is allowed. The
stage ends when bidding ends and the auctioneer determines
the provisional allocation by simply choosing the best bid on
every item.

In each round of a successive stage h = 2, 3, . . . ,m a bidder
is required to submit a composite bid (denoted by XCB),
which covers all items and includes only disjoint package
bids each of maximum cardinality of h. Bidders are allowed
to use bids that other agents have placed in previous rounds.
The bid price p(XCB) of a composite bid is the sum of its
package bid prices. For each new package bid in a composite
bid, the bidder has to outbid the currently winning compos-
ite bid by the minimum increment ε. After each round the
auctioneer declares the highest composite bid as the provi-
sional allocation and registers the highest submitted package
bids in the database. A stage ends when bidding finishes.
At the end of each stage h, all agents know the best bid for
every subset of size h or less so far.

3. THEORETICAL RESULTS
For our theoretical analysis we assume bidders follow a
straightforward strategy, by bidding on the package which
yields the highest possible payoff at current prices. Since
there is no known equilibrium bidding strategy in PAUSE
this assumption is justified by the typical use in game theo-
retical analysis and as it seems natural since bidders reveal
as little information as possible keeping the chance for high
profits. We assume further that the straightforward bidders
do not consider a combination of their package bids, since
they are able to bid on those combinations in a single pack-
age bid in later stages, thus avoiding a possible exposure
problem, which would leave a bidder winning a package of
items at prices he is not willing pay.

Let K = {1, ...,m} denote the set of items and I = {1, ..., n}
the set of bidders indexed by i. In general, bidders have dif-
ferent valuations for packages S ⊆ K. Let vi(S) > 0 indicate
the valuation of bidder i for package S ⊆ K. Each bidder i
has a demand setDi,h := {S : vi (S) ≥ pj (S) , i 6= j ∧ |S| ≤ h},
i.e. it contains all packages S for which bidder i has a higher
valuation than the price of the current highest bid from an-
other bidder j (pj (S)) and the cardinality of S must not be
greater than h. If bidders want to determine the ask-price for
a package S, they have to calculate the price (p

(
XCS (S)

)
)

of a set of complement disjoint bids, not overlapping with S
and covering all items in K\S.

[?] designed PAUSE under the premises of an OR-bidding
language, meaning a bidder can win more than just one of his
bids, and super-additive valuation functions. We adopted
these assumptions in our analysis of the Bid Determination
Problem (BDP) and the worst case efficiency bound.

Definition 1. The Bid Determination Problem: To maxi-

mize bidder i’s current payoff πi ∈ R+
0 , he has to bid on the

package(s) S determined by:
max
S∈Di,h

(
vi (S)− p

(
XCB

)
+ p

(
XCS (S)

)
− ε
)
≥ πi

The inequation ensures that bidder i bids on package(s) S
only, if the prospective payoff will not be less than his current
payoff. The optimal determination of p

(
XCS(S)

)
is NP-

hard, as it is a CAP on the complementary set, which has
to be calculated for every package S ∈ Di,h to determine the
straightforward bid.

The following example in Table 1 shows valuations of bid-
ders in I = {1, 2} for the items in K = {1, 2} and sketches
the PAUSE auction process with straightforward bidders.
PAUSE does not achieve the efficient allocation indicated
by the asterisks, but terminates with 51.5% efficiency.

1 2 1, 2 p(XCB) π1 π2

v1 100∗ 0 103
v2 0 100∗ 103

Stage1 11 12 0 2 99 99
Stage2 0 0 31 3 100 0

0 0 42 4 0 99
...

Termination 1031 103 0 0

Table 1: Bidders’ valuations and auction process -
an example of low efficiency in PAUSE

Theorem 1. PAUSE terminates with an allocation that
is at least 1/m efficient, if all bidders follow the straightfor-
ward strategy and have superadditive valuations.

Proof : The proof leans towards the example in Table 1.
Given the premises stated in the theorem, inefficiencies can
only occur in PAUSE, if the auction terminates allocating
big packages, although disjoint subsets of them would sup-
port the efficient allocation.

Lets assume stage 1 terminates with bids

pi(i) = maxi6=j vj(i) + ε ∀i ∈ I (1)

W.l.o.g. these bids can be considered to support the efficient
allocation. The current auctioneers revenue Πh=1 would be∑
i pi(i).

In order to terminate with another allocation we demand no
improvement on any of these individual bids. That means
once any of these bids pi(i) /∈ XCB ⇒ ∃S ∈ K which applies
to

vi(S)− (p(XCB)) > vi(i)− (p(XCB)− p(XCS(i)))
∧ |S| ≤ h

(2)
i.e. bidder i has a better alternative than bidding on the
individual item i once his provisional payoff drops to zero.

If vi(S) is part of the final allocation, we want p(XCS(S))
to be as small as possible considering the worst case. Thus
we determine S = K. That means as long as h < m every
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bid pi(i) for all i is part of the composite bid, which further
means that no new bids are submitted before stage m. In
stage m the following must apply:

∃i ∈ I with vi(S)− (Πm) > πi (3)

Since in this case bidder i bids on the package S, all other
bidders j ∈ I\ {i} have a current payoff πj = 0 and thus
also the following inequation must hold:

vj(S)− (Πm + ε) > vj(j)− (pj(j) + p(XCS(j)))∀j 6= i
(4)

Efficiency is then calculated by

E(XCB) = maxi vi(S)∑
i vi(i)

(5)

To determine the worst case efficiency we need to minimize
the numerator and maximize the denominator. Thus we can
determine w.l.o.g. v(S) = vi(S) and v(i) = vi(j)∀i.

Since the most strict condition on vi(S) is

vi(S) >
∑
j pj(j) + vi(i)− bi(i) + ε (6)

the worst case efficiency results in:

minv E(XCB) = minv
vi(S)∑
i vi(i)

ε=1︷︸︸︷
= m+v(i)+1

m·v(i)
v(i)→∞︷︸︸︷

= 1
m

(7)

Note assuming a bid increment ε = 1 the equations 7 only
apply if the valuation v(i) is sufficiently large, i.e. depending
on m this valuation must be greater than 2 or 1 respectively.
�

While such situations which lead to 1/m efficiency can be
considered degenerated cases that will not happen too often
in practice, it is very likely to achieve high efficiency on
average with more realistic value models.

4. EXPERIMENTAL DESIGN
To analyze the impact of our theoretical results on the out-
come of the PAUSE auction in realistic settings, we conduct
computational simulations, which consists of three main com-
ponents. A value model, which defines valuations of all pack-
ages for each bidder, auction formats, which define the rules,
and bidding agents, who follow certain strategies.

4.1 Value Model
We use a 3 x 6 Real Estate value model that is based
on the Proximity in Space model from the Combinatorial

Auction Test Suite (CATS) in [?]. Our model contains
two different bidder types, one big bidder, interested in all
items, and five smaller bidders. Each small bidder is in-
terested in a randomly determined preferred item, all hor-
izontal and vertical neighbors and their respective neigh-
bors. This means small bidders are interested in 6 to 11
items with local proximity to their preferred item. An ex-
ample is shown in Table 2, in which the preferred item of
a small bidder is Q, and all gray shaded items in the prox-
imity of the preferred item have a positive valuation. For

A B C D E F
G H I J K L
M N O P Q* R

Table 2: The value model with the preferred item Q
of a small bidder. All his positive valued items are
shaded.

each bidder we draw the baseline item valuation vi(k) from
a uniform distribution separately. Complementarities occur
upon vertical and horizontal adjacent items based on a lo-
gistic function to determine package valuations: vi(S) =∑
C∈P

((
1 + a

100(1+eb−|C|)

)
∗
∑
k∈C

vi(k)

)
, with P being the

partition of S containing maximal connected packages C.
This complementarity structure takes the lack of economies
of scale with small packages and a saturation effect with
larger packages into account. For our experiments we choose
a = 320 and b = 10 for the big bidder and a = 160 and b = 4
for all small bidders, and draw the baseline valuations for the
big bidder on the range [3, 9] and for the small bidders on
the range [3, 20].

4.2 Auction Formats
We analyze two different auction formats in our economic
environment. The PAUSE auction, as described in Section 2
with a minimum increment of 3 and the CC auction [?].

The CC auction is also a multi-round auction, in which bid-
ders are able to place new bids in every round according to
new calculated linear ask prices. The price for a package is
simply the sum of item-prices. Bidders use an OR-bidding
language. Prices for all items are initially zero. In every
round bidders identify a package of items, or several pack-
ages, which they offer to buy at current prices. If two or
more bidders demand an item then its price is increased by
the minimum bid increment of 1 in the next round. This
process iterates. In a simple scenario in which supply equals
demand, the auction terminates and the items are allocated
according to the current round bids. If at some point there
is excess supply for at least one item and no item is over-
demanded, the auctioneer determines the winners to find an
allocation of items that maximizes his revenue by consider-
ing all submitted bids. If the solution displaces a bidder,
who was active in the last round, the prices of items in the
corresponding bids rise by the bid increment and the auction
continues. The auction ends when no prices are increased
and bidders finally pay their bid prices for winning packages.

4.3 Bidding Agents
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In PAUSE we use two different bidding strategies and two
different approaches to determine the bid price. As intro-
duced in Section 3 we implement the straightforward (BR)
bidding strategy, and a Greedy bidding strategy that allows
the agents to reduce their demand set to one package cal-
culated by max(vi(S)/|S|),∀S ∈ Dh,i in every stage. As
shown by our theoretical analysis the optimal calculation
of the corresponding complement set XCS (S) is NP-hard,
therefore we explore two different types of calculating it, an
optimal (oCS) and a heuristic (hCS) approach. We propose
the following heuristic, with k

(
XCS

)
denoting the set of

items covered by the bids in XCS :

1) XCS := ∅
2) while k

(
XCS

)
6= K\S

XCS = XCS ∪ arg max
pi(T )|

T⊆K\(S∪k(XCS))
pi(T )

We start with an empty complement set XCS , determine all
active bids not overlapping the current considered package
S, choose the bid with the highest price and add it to our
complement set XCS . Then we determine the next bid, not
overlapping S and k(XCS) with the highest bid price. We
repeat until our complement set covers all items of K\S.

For our experiments with the CC auction we use the straight-
forward bidder and a heuristic bidder (5of20 ) bidding on
5 of his 20 best packages in every round, more details to
this in [?]. Additionally we implemented a preselect bidder
(pres10 ) who determines his 10 most valuable packages be-
fore the auction starts, and bids in each round on all of them
applying to vi(S) ≥ p(S).

5. RESULTS
We run 50 simulations for every of the 4 bidding agents in
PAUSE and for the 3 different bidding strategies in CC. All
experiments run on an Intel Core2Duo processor with 2.67
GHz, 4 GB of RAM, Windows Vista and the open source
IP solver ”lp solve”.

A primary measure for the quality of an auction mechanism
is the allocative efficiency (X∗ denotes the best allocation
and vi(X) bidder i’s valuation for the allocation X):

E(X) =

∑
i∈I vi(X)∑
i∈I vi(X

∗)

A further measure is the auctioneer’s revenue share:

R(X) =

∑
i∈I pi(X)∑
i∈I vi(X

∗)

Bidders revenue share is:

B(X) = E(X)−R(X)

As expected by our theoretical analysis, straightforward bid-
ding in PAUSE with more items and higher competition
leads to a better efficiency than the lower bound. We find
that BRoCS agents achieve in many cases a solution near
the efficient one (Figure 1) and a high auctioneer’s revenue
(Table 3). In PAUSE all considered agents are able to find

a highly efficient solution, even Greedy agents, who gener-
ate only ∼60% final bids compared to BR agents. Surpris-
ingly, calculating the complement setXCS with our heuristic
(hCS) leads only to a small deviation in all measures (except
the runtime) from the results with agents calculating XCS

optimally.

Result 1. Determining the complement set XCS sub-
optimally has only a small impact on the auction outcome.

●
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●
●
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●
●●●

●
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●
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PAUSE
BRoCS

PAUSE
BRhCS

PAUSE
GreedyoCS

PAUSE
GreedyhCS

CC
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CC
5of20

CC
pres10

0.
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0

E
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ci
en
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Figure 1: Auction efficiency with different bidding
strategies and auction formats

In contrast to PAUSE, the CC auction mostly ends in allo-
cations with lower efficiency and auctioneers’ revenue. We
suspect mainly the high number of unsold items (Table 3)
to lead to such inefficiencies, together with the bigger size
of winning packages (∅6.5 with BR agents vs. ∅5.03 with
BRoCS agents vs. ∅5.45 in efficient solutions) and the lower
number of final bids. To analyze the pure impact of unsold
items we ran additional simulations with CC auctions, in
which we enforce the agents to bid in the first round on all
items they are interested in and found, that the efficiency
increases to 89.93% on average with BR agents.

Result 2. An auction mechanism forcing agents to bid
also on smaller packages, guides them in solving their coor-
dination problem.

Result 3. CC needs fewer rounds to clear than PAUSE
auctions.

This results from the only moderate increasing of the allowed
package size and from the package increment vs. the linear
item increment in CC auctions.

Concerning bidders’ calculation complexity shows Figure 2
that with an increasing number of items a small BRoCS
agent is interested in, the required calculation time in the
auction increases exponentially. We omit the result of the
big bidder, who needs around six hours (particularly ∅ 21.451
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PAUSE CC
BRoCS BRhCS GreedyoCS GreedyhCS BR 5of20 pres10

∅ Efficiency in % 97.71 97.52 90.54 91.01 81.81 91.70 90.95
∅ Auctioneers’ revenue in % 88.02 88.44 73.62 73.54 76.22 87.96 88.68
∅ Bidders’ revenue in % 9.69 9.08 16.92 17.48 5.59 3.74 2.27
∅ Rounds 126.98 127.74 101.48 101.32 43.14 47.02 44.88
∅ Unsold items 0.00 0.00 0.00 0.00 3.96 1.66 1.50
∅ Auction runtime in sec. 22714.29 2166.12 26.85 25.37 44.81 45.34 11.10
∅ Number of final bids 54.95 55.07 33.33 33.14 35.49 145.35 52.63
∅ Size of winning packages 5.03 5.60 2.87 2.75 6.50 5.34 10.58

Table 3: Summary of simulation results
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Figure 2: Bidders’ required time over the auction
dependent on the number of items they are inter-
ested in

sec.) per auction. The boxplot further exhibits, with 7 items
or more of interest, a single BRoCS agent in PAUSE re-
quires more calculation time than the complete CC auction
process.

Result 4. Determining the straightforward bid in PAUSE
drastically increase the bidders’ complexity.

Comparing the BR bidders in PAUSE with the pres10 bid-
ders in CC or the Greedy bidders in PAUSE with the BR
bidders in CC we find the following result.

Result 5. With a similar number of active bids, PAUSE
leads to higher efficiency.

PAUSE collects package bids of every size due to the re-
strictions of the package size in every stage. This helps to
find allocations with high revenue, while in CC more bigger
sized package bids are collected which often overlap with
each other and so prohibit a ”good” allocation.

6. CONCLUSION

We provide a deeper theoretical insight in the decentral-
ized PAUSE auction and present experimental results of two
different auction mechanisms. We analyzed effects of the
straightforward bidding strategy in PAUSE. First we dis-
cover following this strategy leads to a growing bid determi-
nation complexity, as bidders are not allowed to submit new
package bids without embedding them in a new allocation.
Secondly if all bidders follow the straightforward strategy,
we determine a worst case bound of 1/m efficiency.

Since our theoretical analysis promises better efficiency and
auctioneer’s revenue by the use of more realistic value mod-
els, we conducted computational experiments to verify this
prediction. We used an agent-based system to compare dif-
ferent bidding strategies and auction mechanisms and find
straightforward bidding with optimal bid price determina-
tion in PAUSE leads to very high efficiency and auction-
eer revenue. Surprisingly, deviating from the optimal bid
price determination does not have a significant impact on
the auction outcomes, while the auction runtime is reduced
drastically. The comparison to the CC auction exhibits that
PAUSE is a better guide solving the bidders’ coordination
problem since it collects different sizes of package bids.

PAUSE shows some desirable properties, however, before
taking it to the field it needs further research concerning
bidder behavior and auction rules.
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