
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2011 Wirtschaftsinformatik

2011

A Cost-Benefit-Based Analytical Model for Finding
the Optimal Offering of Software Services
Khin Swe Latt
Seoul National University, khinswelatt@gmail.com

Jörn Altmann
Seoul National University, jorn.altmann@acm.org

Follow this and additional works at: http://aisel.aisnet.org/wi2011

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2011 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Latt, Khin Swe and Altmann, Jörn, "A Cost-Benefit-Based Analytical Model for Finding the Optimal Offering of Software Services"
(2011). Wirtschaftsinformatik Proceedings 2011. 49.
http://aisel.aisnet.org/wi2011/49

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301351098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2011%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2011%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011/49?utm_source=aisel.aisnet.org%2Fwi2011%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A Cost-Benefit-Based Analytical Model for Finding the
Optimal Offering of Software Services
Khin Swe Latt

Technology Management, Economics, and Policy
Program (TEMEP)

College of Engineering, Seoul National University
599 Gwanak-Ro, Gwanak-Gu
Seoul 151-744, South-Korea

khinswelatt@gmail.com

Jörn Altmann
Technology Management, Economics, and Policy

Program (TEMEP) & Department of Industrial Engineering
College of Engineering, Seoul National University

599 Gwanak-Ro, Gwanak-Gu
Seoul 151-744, South-Korea

jorn.altmann@acm.org

ABSTRACT
In this paper, we introduce an analytical model for maximizing
social welfare, which can be used for finding the optimal offering
of a set of software services. The analytical model also explains
the impact of service flexibility on customer’s selection of
business services and on the revenue of service providers. The
analytical model is based on a utility model and a cost model. The
cost model uses the number of lines of code as the basic measure
for cost and applies linear and polynomial cost functions. The
utility model is derived from a customer-provider relationship
model, which relates the user’s utility to the functionality of
business services. The result of the analytical model shows that
the distribution of functions of an existing business service to a
large number of new business services does not generate any
additional revenues for the service provider from existing
customers. Instead, additional revenue is generated through the
offering of business services with fewer functions at lower price.
This business services attract customers, which could not afford
the original software service of the provider. The result of the
analytical model also shows that there is an optimal number of
business services that maximizes the net utility of customers.

Keywords
Service-oriented architectures, economics of digital products,
business process analysis, business service, customer satisfaction
model, software services, service science, customer preferences,
social welfare maximization and profit maximization of software
service development, cost modeling, economics of service
decomposition and service composition.

1. INTRODUCTION
The development of new software services is challenging in three
ways: First, software service development is usually costly to the
software vendor, who also may face the risk of increasing the
complexity for the user and the risk of not achieving service

flexibility at all [8]. Service flexibility is defined here as the
possibility of users to adapt their business process according to
their needs. Second, the existing service systems in enterprises are
composed of complicated processes, which are interdependent to
each other, making it difficult to separate these service systems
into software services [11]. Third, the individually provided
services are strongly tied to a specific service provider, which
limit service composition (i.e., reduce service flexibility) for
customers. This situation is known as the business process silo
problem [6].

To address these challenges as much as possible, enterprises seek
to apply the concept of software reuse. This concept reduces cost,
the time to market, and the response time to changes in customer
demand. However, it requires the decomposition of existing
software into modular software components. To support this,
Bennett et al. propose a dynamic service composition architecture
[4]. It supports the development of software that is capable to
meet changing business needs. An analysis of further software
component concepts has been conducted by Kraemer [14].

Service decomposition is useful if a customer requests a new
service, which requires a fraction of what the original software
service can deliver. It offers an option for substituting a complex
service with a set of simple services, potentially reducing costs
and improving service flexibility. Decomposition of services into
basic services can also benefit service providers. Any change in
customer demand does not increase the business risk for the
service provider and, therefore, has a low impact on the service
provider’s business. At the same time, by using these modular
software components as basic building blocks, several new and
innovative services can be composed [8].

As a preferred technology that supports these concepts, Web
services have been chosen. Web services allow dynamic service
compositions [15][18]. In a wider context, Web services belong to
an emerging technology concept, which is called service-oriented
computing (SOC) [14][20].

In order to enable customers of software services to align their
business processes with these set of IT services, a new discipline
called service science emerged. Besides the technology suites
(e.g., Web services), it comprises business process management
and performance assessment. Service science also deals with the
formalization of interactions between services, allowing
enterprises to evaluate the impact of business services on their
business processes [23].

10th International Conference on Wirtschaftsinformatik,
16th - 18th February 2011, Zurich, Switzerland

655

Figure 1. Service composition model.

Within this service science framework, we analyze the costs and
the value creation of software services. In particular, we propose a
conceptual model for software composition and software
decomposition (called service composition model), which allows
analyzing the value creation (i.e., user utility) in terms of
flexibility and cost (Figure 1). In particular, the model
conceptualizes the value creation of business processes. The
model also exhibits the dependencies of business services on the
composition of service components. In particular, the business
service functionality depends on the service components
composed and their modularized software components. The
software modules are the result of the decomposition of legacy
software.

As Figure 1 shows, this conceptual model can be divided into a
user side and a software vendor side. From the user point of view,
the user selects the business services, which generate the highest
utility, and integrates (composes) these business services into his
desired business process. The selection of business services is
based on the user’s requirements, which could be a set of
functions (attributes). The user’s satisfaction is determined by
subtracting the user’s experience of the delivered business
services from his expectation of the business services offered.

From the software vendor (provider) perspective, the provider
tries to fulfill the user requirements by designing business

services accordingly. This task is part of the sales/marketing
department of a software company. These business services are
created from service components (Figure 1). A business service is
a workflow of service components. The pricing of the business
services is up to the sales department [21]. In order to maximize
profit, the provider has to set these prices carefully and has to
lower the cost of the service components, which are created by
the engineering department.

This separation between business service creation and service
component creation provides two advantages. First, it enables the
provider to respond quickly to changes in user requirements.
Second, the decomposition of existing software into services
allows the provider to lower the cost of service creation. By
decomposing software functionality of existing software into
small, atomic service components, these service components can
work as basic building blocks for new business services and,
therefore, reduce development costs.

In this paper, the service composition model is used to describe
the cost and benefits of service composition. We assume that the
software vendor decomposes existing complex software into
small, independent units (modules), representing a unique and
single function. Then, the provider combines these small units
into more complex, composite software components in
accordance with software development requirements (e.g.,

656

software reusability, cost). Consequently, this process incurs costs
for service decomposition, costs for combining modules into
software components, and cost for wrapping these software
components into service components (e.g., Web services), and the
costs of building service component workflows. This paper
explains these costs in detail and describes how the cost for
services, which are composed of small and independent modules
of legacy software, can be calculated. Furthermore, this paper
explains the costs for composing business services (i.e., the cost
for integrating business services into business processes).

The objective is to find a balance between the costs of offering a
large number of business services and meeting the requirements
of customers, which is a high flexibility in adapting their business
processes (i.e., in adapting the workflow of their business
services). Within this paper, we provide a solution to this problem
by introducing an analytical model for optimizing service
offerings.

The remainder of the paper is organized as follows: Section 2
describes the relationship between the customer and software
vendor (provider) and explains how customer satisfaction
influences the revenues of providers within the software services
area. Based on this, utility functions for business services and
business processes are introduced. In section 3, we introduce the
cost estimation model for software services. It includes the
definition of cost functions for business service components,
business services, and business processes. The model can deal
with workflows. Using this model, section 4 describes the net
utility maximization problem, the provider profit maximization
problem as well as the social welfare maximization problem for
software services. The final section briefly discusses the results
and concludes this paper.

2. UTILITY MODEL
2.1 Customer-Provider Relationship
In order to understand the value chain of the service composition
model, we develop and analyze a customer-provider relationship
model that is based on works of [2][10][13][25]. In particular, it
helps defining the framework for the utility model and the cost
model.

Vargo & Lusch (2004) proposed the service-dominant logic (S-D
Logic) [25], which defines services as the application of
specialized competences (i.e., knowledge and skills) through
deeds, processes, and performances for the benefit of another
entity or the entity itself. S-D logic further assumes that all
economies are service economies, all businesses are service
businesses, and customer and provider always co-create value (i.e.,
customers participate in the service creation process). Since the
customer-provider relationship can be described as a long-term
and dynamic process, the interactions (e.g., pre-sale and post-sale)
between customer and provider is very important [13]. Alter
(2008) stated that customer satisfaction is affected by the
complete set of activities, responsibilities, and experiences that
typical customers associate with acquiring, receiving, and
benefiting from a particular service [2]. Heskett et al. (1994)
discussed about the service-profit chain model, which exhibits the
relationships between profitability, customer loyalty, employee
satisfaction, loyalty, and productivity [10]. By using these
concepts, we develop the customer-provider relationship model

for the software services area as shown in Figure 2. It is a more
detailed view of the relationship between the user and the
software vendor (i.e., sales department), which is shown in
Figure 1.

Figure 2. Customer-provider relationship model.

Within this model, customer satisfaction is defined as the
satisfaction towards the business services the customer has
consumed. The satisfaction is impacted by the user’s experience
of the consumed business service and the user’s requirements for
the service. The different components of the general customer-
provider relationship model, as shown in Figure 2, are defined as
follows:

User requirements are the needs of the user expected to be
fulfilled by the provider (El-Kiki & Lawrence [9], and Lee & Ahn
[16]). In our model, the user requirement is the degree of
flexibility at a certain price. Price is the price of the business
service, which is the cost of the service to the customer.
Flexibility is defined as the ability to adapt the business process to
changes in the business.

Customer satisfaction describes how the customer is satisfied
with a business service provided. Customer satisfaction is defined
as the difference between the utility from consuming a business
service with a certain set of attributes and the expected utility
from this business service.

Customer loyalty refers to a consumer’s commitment to
repurchase a preferred service of the same provider in the future
again.

Customer complaint refers to the user’s dissatisfaction with a
service provided (i.e., the service did not meet the user’s
requirements).

Business service is the service (product) created by the provider
to fulfill user requirements. The user experiences the quality of
the service.

Revenue is the income from the business service sold. Profit is
the gain from selling the services after deducting all expenses
incurred through the creation of the service.

Figure 2 shows that providers identify user requirements for
business services through market research. Based on this
information, providers try to address users’ requirements for
business services by producing and marketing services in
accordance with the user requirements. Created services satisfy
the user, if services meet the customer’s expectations about
quality of service and price.

657

Customer satisfaction is largely influenced by the net value
provided to the consumer. A high customer satisfaction leads to
user loyalty to services and providers. Customer loyalty makes
the customer decide to repurchase services of the same provider in
the future. Consequently, it increases the revenues of providers
and retains customers. Customer satisfaction also impacts the user
requirements, since satisfaction of a customer determines its
expectations of the quality of future services. Customer
expectation increases, if user requirements have been met in terms
of price and flexibility. Customer dissatisfaction, however, can
also lead to complaints of customers. This will happen, if services
do not fulfill customer expectations. As a consequence, customers
might not continue to purchase the services, reducing the revenue
of the provider. However, if customers explicitly express their
dissatisfaction, it is an opportunity for providers to improve their
service offerings. Concluding, customer satisfaction concerns the
improvements of business services and maintenance of customer
loyalty in competitive markets.

Based on this model, our customer satisfaction model for software
services is defined as the difference between the utility EBS, which
the customer gains from a service, and the utility UBS, which the
customer expected to get from that service:

 (1)

The utility UBS is assumed to be 1. The variable X refers to the
vector of all possible attributes xs

j, where j presents a specific
attribute of the business service s. These attributes are assumed to
be functional attributes (e.g., business functions) or non-
functional attributes (e.g., security, quality of service) and
independent of each other.

If the customer satisfaction CS = 0, then the customer is fully
satisfied. The provider has exceeded customer expectation, if CS
is greater than 0. This is possible, if a provider delivers better
quality on the non-functional attributes. For functional attributes,
the maximum value is CS = 0, showing that the functionality has
been delivered. If CS lies between -1 and 0, the customer
expectation has not been fulfilled at all. That means, certain
functional attributes have not been delivered or some non-
functional attributes have a lower quality than expected by the
customer.

2.2 Customer Utility Obtained from Business
Services
Using utility functions is most appropriate in this context, since it
helps identifying the value proposition of software services. In the
past, researchers used utility functions for evaluating resource
management approaches [22]. In particular, they used utility
functions to measure the performance of management systems.
Utility functions also have been applied for achieving QoS-aware
service composition. The utility functions were used to select the
most appropriate services (Alrifai & Risse [1]). Besides, the
utility concept has also been used in decision support systems for
scheduling tasks (Yang [26], Jimenez A. et al. [12]). In this paper,
we use utility functions to describe the functionality of business
processes and business services. The business service attributes
experienced by the user determine the overall utility obtained
from the business service.

To estimate the overall utility obtained from a business service,
we need to define the shape of the utility functions, the range of
possible service outcomes, and the weighting of attributes, which
expresses the relative importance of an attribute of the business
service to a customer. The weights for expressing the relative
importance are normalized and the sum of all weights is equal to
1. The relative weights could be determined by the user, using, for
instance, AHP or SAW [1][27]. The input parameters (i.e.,
attributes) are assumed to be independent to each other. Then,
after having obtained the weights, the overall value of the utility
function for a business service can be estimated, using an additive
function.

Customer utility EBS(X) for a business service s, which consists of
an vector X of n attributes, can be calculated by multiplying the
preference weights hs

j with the utility vj(x
s
j) of the service

attribute xs
j. A functional attribute xs

j is 1, if the business service
includes this functionality. Otherwise, it is 0. For functional
attributes, the utility vj(x

s
j) is 1, if xs

j = 1. Otherwise, it is 0. A
non-functional attribute xs

j, which may represent response time or
throughput (Menasce & Dubey [19]), is expressed as a real
number. The utility function vj(x

s
j) maps the attribute value onto a

scale between 0 and 1. Based on these definitions, the customer
utility EBS’ can be expressed as:

 (2)

Looking at the current situation in the software industry, it
becomes clear that customers demand more flexibility in the way
how they can use their software purchased from a software
vendor. To address this need, software vendors create services
that have a reduced number of functions. The functions of those
business services can easily be combined. Therefore, assuming
the total number of functional attributes to be constant, it can be
stated that the higher the number of business services is, the
higher the flexibility for the customer is. Equivalently, it can be
stated that the utility obtained from the flexibility of a set of
business services with the same functions as one single business
service is higher than the utility obtained from the flexibility of
the single business service. The following equation gives an
example, in which a single business service s is split into two
business services s1 and s2:

(3)

In equation 3, the functions (i.e., functional attributes) offered by
the business service s is equal to the functions of s1 and s2. The
only difference is in the utility flx(s) and flx(s1,s2) that are
obtained from flexibility. The utility of flexibility is larger for s1
and s2 than the utility of flexibility for s.

For calculating the customer utility EBP(X) that can be obtained
from a set of business services s involved in the business process
BP, we add the utility of all business services, which are
purchased by the customer, and the value R that is obtained from
executing the business process. EBP(X) also considers the
flexibility flx(), which is expressed as the ratio of the number of

() () .BS BSCS E X U X 

1 1

where() (), 1.S

n n
BS S S S

j j j j
j j

E X h v x h
 

  

1 2

1 2

1 2

1 2where

() () () () (1, 2),

() () ().

S S S

S S S

BS BS BS
S S S

BS BS BS
S S S

E X flx s E X E X flx s s

E X E X E X

   

 

658

functions n and the average number of functions per business
process. Consequently, EBP(X) can be written as shown in
equation 4:

(4)

where m represents the number of business services that are
involved in the business process BP. The total number of
functions (functional attributes) offered by the service provider is
denoted as n. It is assumed to be larger than 0 (n > 0) and larger or
equal to m (n ≥ m). The sum of xj

s calculates the total number of
functions of a business service s. If all functions are included in
one business service then the service flexibility is 0. If one
function is included, then the flexibility equals the maximum,
which is n - 1.

3. COST ESTIMATION MODEL FOR
SOFTWARE SERVICES
The costs of business services and business processes depend on
software components (i.e., service components, or business
services) and the composition of those components. Therefore,
based on Figure 1, a more detailed illustration of the service
composition model, indicating that business processes BP are
workflows of business services and that business services BS are
workflows of service components, has been developed (Figure 3).

Figure 3. Cost estimation model for a business process.

A service component SC can be obtained by creating a service
from a software components C. A software component C is the
result of a composition of software modules, which have been
obtained from a decomposition of legacy software or have been
programmed from scratch. The cost calculation is explained in
detail in the following sub-sections.

3.1 Background on Cost Functions
The objective of this cost model is to base the cost estimation on
the programmers’ effort for developing software services (i.e., for

developing modules, software components, service components,
business services, and business processes).

Software development cost estimation comprises the entire
process of predicting the effort required to develop a software
system (Leung & Fan [17]). A precise estimation of cost of a
software project can help managers to manage projects
adequately.

There are different metrics to size software. Each of those can be
used as input to a cost model for software services. The line of
code (LOC) is the most popular software sizing metric. For
example, Uysal (2008) proposed a COCOMO-based equation that
uses the number of lines of code as a parameter [24]. Line of code
is also used in a Fuzzy logic model for measuring the software
development effort (Attarzadeh & Ow [3]). In this paper, we also
use the number of lines of code as the software sizing metric. By
counting the number of lines of code, we estimate the provider’s
effort in providing software services.

A linear cost function expresses cost as a linear function of the
number of lines of code. The proposed cost function C for our
model is as follows:

C(LOC) = A + B * LOC , (5)

where A is the fixed cost of producing software (i.e., provisioning
a software service), B is the marginal cost of an additional line of
code, and LOC refers to the lines of code in programs [17].

In general, the cost function can also be a polynomial function of
the number of lines of code. In this case, the cost function would
be defined as:

C(LOC) = A + B * LOC K , (6)

where A is the fixed cost of producing software, B is the marginal
cost of an additional line of code, and LOC refers to the number
of lines of code in the software. K is an empirically derived
constant, which has been identified to be in the range between
1.05 to 1.2 [17]. Within this paper, we set the constant to 1.15.

The difference between a linear cost function and a polynomial
cost function is the weighting of the number of lines of code.
Because of this fact, there is no difference in choosing one over
the other. The only implication is its impact on the selection of
the appropriate mathematical method for solving the optimization
problems that will be introduced in section 4.

Therefore, these cost functions can be applied to calculate the cost
for programming modules, software components, service
components, business services, and business processes. These cost
functions are the basis for providers to decide on how to structure
their software. For example, it can be used to decide on how
many service components should be created in order to be able to
offer many different business services to consumers. Ultimately,
these cost functions are the basis for finding a balance between
the costs of offering a large number of business services and
meeting the requirements of customers, which is a high flexibility
in combining services (i.e., the possibility to re-arrange business
processes). In the following subsections, the cost functions for
service components, business services, and business processes are
described in detail.

1

1 1

() () [1] ,
1

m
BP BS

s m n
Ss
j

s j

n
E X E X R

x
m



 

   
 

659

3.2 The Cost Function of Service Components
Service components are the basic units for composing a business
service. They are created by wrapping software components with
service interfaces (e.g., Web services). Software components are,
as mentioned, a set of software modules that work together
(Figure 1 and Figure 3). These different units of software code are
considered for defining the cost function of service components.

The cost of a service component is the sum of the cost for
wrapping a software component with a service interface (e.g.,
Web service), the cost for programming the component based on
modules, and the cost of the modules themselves. Therefore, the
cost of the service component CSC can be expressed as shown in
equation 7:

(7)

where LOCi
M is defined as the total number of lines of code of

module i, LOCj
C as the total number of lines of code for

component j, and LOCWC as the total number of lines of code
needed to wrap a software component with a service interface. xM
represents the cost per module line of code (i.e., the unit is
[$ / LOCM]), xC represents the cost per component line of code
(i.e., the unit is [$ / LOCC]), and xWC denotes the cost per
wrapping line of code (i.e., the unit is [$ / LOCWC]).

3.3 The Cost Function of Business Services
The cost function of business services is defined as the sum of the
service components costs and the cost for programming the
service components workflow. The cost of constructing a business
service CBS can be described with the following equation:

(8)

where CSCWF denotes the cost of programming a workflow of
service components, representing the cost of a business service.
LOCSCWF represents the total number of lines of code used in
programming the workflow of service components. xSCWF is
defined as the cost per service component workflow line of code.
The unit is [$ / LOCSCWF]. CSC represents the total cost of a
service component that is used within the business service
(equation 7).

3.4 The Cost Function of Business Processes
The cost function of a business process is defined as the sum of
the costs of all business services involved and the cost for
programming the workflow with business services. This cost for
constructing a business process CBP can be expressed with the
following equation:

(9)

where CBP equals CBSWF, representing the cost of programming
the workflow of business services. LOCBSWF denotes the total
number of lines of code used in programming a workflow of
business services. xBSWF represents the cost per business service
workflow line of code. The unit is [$ / LOCBSWF]. CBS is the cost
of providing a business service, as defined in equation 8. In this
case, it is assumed that all business services are build from a
disjoint set of service components. In case that business services
are build on some identical service components, equation 9 has to
be modified such that the CSC of those service components is not
counted twice.

Besides, the cost function of business processes is a polynomial
function, whereas the two cost functions for programming service
components (CSC) and for programming business services (CBS)
used linear functions (equation 7 and equation 8). The reason is
that the number of service components and software modules is
assumed to be fixed. The number of business services used for
programming the business process, however, is assumed to be
flexible. This is necessary as this paper investigates the effect of
the number of business services on the utility of customers and
the revenue of providers. A higher number of business services
increases the complexity of programming a business process.

4. ANALYTICAL MODEL FOR
OPTIMIZING SERVICE OFFERINGS
After having introduced the different cost functions in the
previous section, we introduce three optimization problems for
software services. The solutions to these optimization problems
help answering questions like how many business services should
be offered by a software vendor in order to maximize the profit of
the vendor.

Economics-based optimization has been proposed by many
researchers. Derbel et al. proposed an optimization approach
considering user preferences in multi-services IP networks [7].
Yang (2008) proposed a utility-based decision support system,
using separate utility functions for time and cost [26]. The
objective of optimization in our research is similar. The objective
is to maximize the net utility of the parties involved by
minimizing the cost and maximizing the flexibility in creating
new business services and business processes. In particular, we
formulate the following three optimization problems: customer
net utility maximization, provider profit maximization, and social
welfare maximization.

Within the following optimizations, we only calculate the
additional costs that incur if additional business services are
offered in addition to an existing software solution. The basis for
calculating the additional costs is the cost for providing the
software (e.g., a monolithic software solution) that solves the
entire business process need of a user.

4.1 Customer Net Utility Maximization
The calculation of the customer net utility that is gained from
buying software services can help customers (i.e., businesses) to
understand how many business services they should buy. Since a
business process generates utility to a customer, we calculate the
net utility at the business process level. Therefore, the customer
net utility Unet is calculated as the utility EBP gained from the
business process minus the cost of all business services being

1 1

* * * ,
k l

SC M M C C WC WC
i j

i j

C x LOC x LOC x LOC
 

   

1

* ,
d

BS SCWF SC SCWF SCWF
l

l

C C C x LOC


  

1.15

1

*[] ,
m

BP BSWF BS BSWF BSWF
s

s

C C C x LOC


  

660

used within the business process and the cost for programming the
workflow of business processes, as shown in the following
equation:

(10)

Consequently, the net utility maximization problem can be
expressed as:

(11)

where EBP(X) denotes the customer utility from consuming the
business process BP. CBP represents the cost for provisioning the
business process. X is the vector of all service attributes. Using
equations 4 and equation 9, equation 11 can be expressed as:

 (12)

In our model, the cost of programming the business process
workflow is only incurred for the customer. Besides, it is assumed
that the number of attributes n is fixed. For simplification, we
assume that n attributes represent n functional attributes (e.g.,
software functions). That means that the n attributes are
distributed across m business services. Therefore, the more
business services exist, the less attributes (i.e., functions) the
business service contains on average.

Figure 4 illustrates the different cost factors, the utility, and the
customer net utility Unet, depending on the number of business
services m. It shows that the cost of programming shifts from the
software vendor to the user with increasing flexibility.

Figure 4. Customer net utility.

In particular, Figure 4 illustrates that there is a net utility
maximum with respect to the number of business services. This
point is indicated with a vertical line crossing the Unet curve. This
means that the customer should try to reach this number of
business services. Only in this case, the customer can obtain the
maximum benefit from service flexibility. The reason is the cost

of programming of the business process workflow. It is a
significant cost factor that reduces the benefit obtained from
service flexibility.

4.2 Provider Profit Maximization
The calculation of the provider profit helps providers to
understand the impact of adapting their existing software to a
service environment on their revenues. In general, the profit F’ of
a service provider is defined as the revenue HS from selling one
business service minus the cost CBS of provisioning the business
service:

(13)

By applying equation 13 to all business services, the profit F can
be calculated by adding the revenue Hs from each business
services sold minus the costs for provisioning the business
services s:

(14)

A business service comprises different functionality with different
costs. In order to increase customer satisfaction (i.e., improve the
flexibility for the customer in creating his business processes), the
service provider should produce as many business services as
possible. However, since the cost for creating business services
also increases, an optimum has to be found. The question is how
many business services should be produced in order to maximize
the profit. Thus, the provider profit maximization problem is:

(15)

Applying equation 8, equation 15 can be re-written as:

(16)

where m represents the number of business services and d the
total number of service components that have been created. Hs is
the revenue from business service s. pSCWF denotes the cost for
one line of code and LOCSCWF the cost for programming a service
component workflow. Cl

SC is the cost of service component l.

For our analysis, we assume that the cost of all service
components is equal. This is justified if we assume that the entire
software is split into code segments of equal size and that the
existing software had been structured into components following
software management principles from the very beginning.
Furthermore, we assume that the total number of service
components is fixed. Any business service is created based on
these fixed number of service components.

The costs for programming a business service (i.e., a workflow of
service components) is assumed as high as the cost for providing
the monolithic solution. Because of that, the cost of business
service programming increases linearly. (Note: The cost would

() .net BP BPU E X C 

max[()] ,BP BPE X C

1

1 1

1.15

1

max [() [1]
1

[*[]]] .

s

m
BS

m nm ss
j

s j

m
BS BSWF BSWF
s

s

n
E X R

x
m

C p LOC



 



  

 


 



' - .BS
SF H C

1

[-] .
m

BS
s s

s

F H C




[-] .
m

BS
s s

m
s=1

max H C

[[*]] ,
m m d

SCWF SCWF SC
s s l

m
s=1 s 1 l 1

max H p LOC C
 

   

661

actually be decreasing with increasing number of business
services, since programming effort is shifted to the user.
Therefore, this programming effort of the user is depicted as a
polynomial increasing curve in Figure 4.) We consider this an
upper bound.

The cost is incurred once for each business service, independent
of the number of sales of the business service. Therefore,
assuming that there is only one customer, who would have
belonged to the customer base of the monolithic software
solution, the profit from all business services is the same, Y. That
means that Y is independent of the number of business services
offered by the provider:

 (17)

These discussion results are illustrated in Figure 5.

Figure 5. Provider profit in case of a single user.

In particular, Figure 5 depicts that the provider does not get any
additional revenue from offering more business services (i.e.,
from a set of business services with the same functionality as the
monolithic software) to its existing customer base. After creating
a certain number of business services, the provider would even
incur some losses. Even if we would assume that the provider sets
the price such that it catches the net utility Unet that the customer
gets from service flexibility (Figure 4), business service creation
were finally to result in losses. Therefore, we can state that
adapting existing software to a service environment does not
allow extracting any additional surplus from existing customers. It
simply helps to increase customer satisfaction and stay
competitive within the software market.

However, the revenue of providers Hs will change, if we assume
that the software vendor could attract new customers. Those new
customers are businesses, who could not afford to buy business
services that provide the full functionality but have sufficient
funds available to buy business services with less functionality.
Figure 6 illustrates the customer distribution with respect to the
budget and the number of business services consumed.

Figure 6. Budget distribution and customer distribution

Although we can only assume the amount of increase in
customers through offering new business services (Figure 6), i.e.,
business services with less functionality than the monolithic
software, any increase will have an impact on the revenue of the
provider. Figure 7 illustrates this impact. It shows the revenue of
the provider, the profit of the provider, and the same cost as the
cost shown in Figure 5.

Figure 7. Provider profit in case of many customers.

Figure 7 shows that additional revenue is generated from offering
different business services, which differ in their combination of
functions. The revenue curve, which is based on the one in
Figure 6, is justified, since a large variety of business services can
address a larger variety of needs of customers.

4.3 Social Welfare Maximization
Social welfare SW is the sum of all user’s benefits (Courcoubetis
& Weber [5]), i.e., the sum of all customer surplus and producer
surplus. It is the sum of the net utility of all customers and the
provider profit PP:

(18)

The equation 18 is equivalent to the utility of all customers minus
the costs of programming a business service workflow for each
customer, the cost of programming all service component
workflows, and the cost of producing all service components.
Since the revenue of the provider is equal to the costs of business
services for all customers, they are not shown in the social
welfare equation:

1

.
m

s
s

H Y m


 

1

.
u

net

i

SW U PP


 

662

 (19)

where the first term of the equation represents the utility of the
customers, while the second, third, and fourth term shows the
three cost factors. Note, the utility used is the sum of the utility of
all u customers that are served by the service provider. R is
assumed to be an average utility across all customers. Then, the
social welfare maximization can easily be formulated as:

(20)

Since the utility function is concave and the cost function is
convex, the social welfare maximization problem can be solved
by applying the Lagrange approach.

Having the same assumptions as in the previous two sections,
Figure 8 illustrates the social welfare from offering business
services within this service system.

Figure 8. Social welfare.

In particular, it illustrates that in a service-based industry, the
flexibility of services and costs of delivering the flexibility impact
the social welfare of the system of customers and provider. In
order to improve the social welfare of customers and provider, it
is necessary to balance the amount of functionality offered with
business services. That means, on the one hand, customer
satisfaction and profit increase can be achieved by splitting
functionality into many different business services. On the other
hand, the cost for splitting the existing software into many
business services increases the cost for consumers. Therefore, the
provider has to find a set of business services that satisfies the
customers’ demand for flexibility at a reasonable cost. Only then,
a pre-requisite for a successful software service industry has been
fulfilled.

5. DISCUSSION AND CONCLUSION
In this paper, we introduced a cost-based analytical model for
analyzing software service provisioning in a service system. The
benefit of this study is the gain in understanding of how
customers and service provider interact in an on-demand service-
oriented business environment, how costs vary with respect to the
customer requirement in flexibility, and how to optimize the
consumption and provisioning of business services.

The analytical model is based on a customer-provider relationship
model, a utility model, and a cost model for service provisioning.
The customer-provider relationship model describes the
interdependencies between customer satisfaction, user
requirements, business services, and service quality. The utility
model defines the customer utility functions for business services
and business processes. The utility function allows describing
service composition with respect to customer satisfaction for
functional and none-functional attributes. The cost model
describes in detail the cost of business processes, business
services, and business service components. It explains how the
costs of services are incurred, especially focusing on costs of
service workflow creation. The service provisioning cost is
assumed to depend on the programming effort, which is measured
in units of line of code.

In particular, the analytical model describes the interdependency
between revenue and service provisioning. It explains the
conditions under which an increase in the number of service
offerings would be profitable and under which an increase would
incur losses. The model also explains how to determine the
maximum of the customer net utility.

Finally, the analysis of the social welfare of the service system
shows that it is necessary to balance the amount of functionality
offered per business service. On the one hand, customer
satisfaction and profit increase can be achieved by splitting
functionality into many different business services, meeting
customers’ demand for flexibility. On the other hand, for
consumers, the cost of integrating business services into business
process has to be limited by offering consumers a minimum set of
business services. Only if both is achieved, social welfare is
maximized.

6. ACKNOWLEDGMENTS
This research was supported by the International Research &
Development Program of the National Research Foundation of
Korea of the Ministry of Education, Science and Technology of
Korea (Grant number: K21001001625-10B1300-03310).

7. REFERENCES
[1] Alrifai, M. and Risse, T., 2009. Combining global

optimization with local selection for efficient QoS-aware
service composition. 18th International Conference on
World Wide Web, WWW2009.

[2] Alter, S., 2008. Service system fundamentals: work system,
value chain, and life cycle, IBM Systems Journal, 47, 1.

[3] Attarzadeh, I. and Ow, S.H., 2009. Software development
effort estimation based on a new fuzzy logic model.
International Journal of Computer Theory and Engineering,
1, 4.

1 1

1 1

1.15

1

1 1

[() [1]]
1

[*[]]

[*] ,

s

u m
BS

um n
si s
j

s j

u
BSWF BSWF

i
m d

SCWF SCWF SC
s l

s l

n
SW E X R

x
m

p LOC

p LOC C

 

 



 

   



 

 
 



 

max .
m

SW

663

[4] Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay
L., and Munro, M., 2000. Service-based software: the future
for flexible software. IEEE APSEC 2000, Asia-Pacific
Software Engineering Conference, IEEE Computer Society,
214-221, Singapore.

[5] Courcoubetis, C., Weber, R., Coe, M., 2003. Pricing
communication networks: economics, technology, and
modeling, Wiley-Interscience Series in Systems and
Optimization, Wiley, ISBN 978-0470851302.

[6] Demirkan, H., Kauffman, R. J., Vayghan, J. A., Fill, H.-G.,
Karagiannis, D., and Maglio, P. P., 2008. Service-oriented
technology and management: perspectives on research and
practice for the coming decade. Electronic Commerce
Research and Applications, 7.

[7] Derbel, H., Agoulmine, N., and Salaun, M., 2007. Service
utility optimization model based on user preferences in
multiservice IP networks. IEEE DANMS, Washington, D.C.,
USA.

[8] Dörr, E and Winiwarter, W., 2004. Decomposition and reuse
of mobile services. 6th International Conference on
Information Integration and Web-based Applications and
Services, OCG Press, Vienna, Austria.

[9] El-Kiki, T. and Lawrence, E., 2007. Mobile user satisfaction
and usage analysis model of mGovernment services. Second
European Conference On Mobile Government, Brighton, UK.

[10] Heskett, J. L., Jones T. O., Loveman G. W., Sasser, W. E.,
and Schlesinger, L. A., 1994. Putting the service-profit chain
to work. Harvard Business Review. 164–174.

[11] IBM SSME Symposium, 2007. Succeeding through service
innovation: a service perspective for education, research,
business and government. Cambridge Service Science,
Management and Engineering Symposium, Churchill
College, Cambridge, Uk.

[12] Jimenez, A., Rıos-Insua, S., and Mateos A., (2002). A
decision support system for multiattribute utility evaluation
based on imprecise assignments. Decision Support Systems
36, 65–79.

[13] Kowalkowski, C. and Malmgren, M., 2008. Dynamics of
value co-creation in buyer-supplier relationships. Australian
& New Zealand Marketing Academy Conference, ANZMAC,
Sydney, Australia.

[14] Krämer, B. J., 2008. Component meets service: what does
the mongrel look like? Innovations Syst Softw Eng, 4, 4, 385-
394.

[15] Krämer, B. J., Papazoglou, M. P., Schmidt, H. W., 1998.
Information systems interoperability. Advanced software
development series (6). Research Studies Press, Taunton,
Somerset, England. ISBN 0-86380-228-1.

[16] Lee, D.-J. and Ahn, J.-K. ,2007. Factors affecting
companies’ telecommunication service selection strategy.
Omega, 35, 5, 486-493. doi:10.1016/j.omega.2005.09.004.

[17] Leung, H., and Fan, Z., 2002. Software cost estimation.
Handbook of Software Engineering, Hong Kong Polytechnic
University.

[18] Liu, D. and Deters, R., 2008. Management of service-
oriented systems. SOCA, 2, 51–64. DOI 10.1007/s11761-
008-0028-1.

[19] Menasce, D. A and Dubey, V., 2007. A heuristic approach to
optimal service selection in service oriented architectures.
IEEE International Conference on Web Services (ICWS).

[20] Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann, F.
Krämer, B.J., 2006. Service-oriented computing: a research
roadmap. Dagstuhl Seminar Proceedings, 05462, Schloss
Dagstuhl, Germany.

[21] Rohitratana, J. and Altmann, J., 2010. Agent-based
simulations of the software market under different pricing
schemes for software-as-a-service and perpetual software.
Workshop on the Economics of Grids, Clouds, Systems, and
Services, GECON 2010, Springer LNCS, Ischia, Italy.

[22] Rohloff, K., Ye, J., Loyall, J., and Schantz, R., 2006. A
hierarchical control system for dynamic resource
management. In: 2006 IEEE Real-Time and Embedded
Technology and Applications Symposium, San Jose, CA,
USA.

[23] Spohrer, J., Anderson, L. C., Pass, N. J., Ager, T., and Gruhl,
D., 2008. Service science. Journal of Grid Computing, 6, 3,
313–324 . DOI 10.1007/s10723-007-9096-2.

[24] Uysal, M., 2008. Estimation of the effort component of the
software projects using simulated annealing algorithm.
World Academy of Science, Engineering and Technology, 41.

[25] Vargo, S. L. & Lusch R. F. 2004. Evolving to a new
dominant logic for marketing. Journal of Marketing, 68, 1–
17.

[26] Yang, I.-T., (2008). Utility-based decision support system
for schedule optimization. Decision Support Systems, 44,
595–605.

[27] Zahedi F., and Ashrafi, N., 1991. Software reliability
allocation based on structure, utility, price, and cost. IEEE
Transactions on Software Engineering, 17, 4.

664

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2011

	A Cost-Benefit-Based Analytical Model for Finding the Optimal Offering of Software Services
	Khin Swe Latt
	Jörn Altmann
	Recommended Citation

	Microsoft Word - ss_cost_model_khinswelatt_altmann_v62_wi.doc

