
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2011 Wirtschaftsinformatik

2011

The BabelNEG System - A prototype Infrastructure
for protocol-generic SLA Negotiations
Sebastian Hudert
University of Bayreuth, sebastian.hudert@uni-bayreuth.de

Torsten Eymann
University of Bayreuth, torsten.eymann@uni-bayreuth.de

Follow this and additional works at: http://aisel.aisnet.org/wi2011

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2011 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Hudert, Sebastian and Eymann, Torsten, "The BabelNEG System - A prototype Infrastructure for protocol-generic SLA Negotiations"
(2011). Wirtschaftsinformatik Proceedings 2011. 44.
http://aisel.aisnet.org/wi2011/44

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2011%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2011%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011?utm_source=aisel.aisnet.org%2Fwi2011%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2011/44?utm_source=aisel.aisnet.org%2Fwi2011%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

The BabelNEG System - A prototype Infrastructure for
protocol-generic SLA Negotiations

Sebastian Hudert
Department of Information Systems
Management, University of Bayreuth

Universitaetsstr. 30
95447 Bayreuth, Germany

sebastian.hudert@uni-bayreuth.de

Torsten Eymann
Department of Information Systems
Management, University of Bayreuth

Universitaetsstr. 30
95447 Bayreuth, Germany

torsten.eymann@uni-bayreuth.de

ABSTRACT
Visions of the next-generation Internet of Services are driven
by digital resources traded on a global scope. For the re-
sulting economic setting, automated on-line techniques for
handling services and resources themselves, for advertising
and discovering as well as for the on-the-fly negotiation of
proper terms for their use are needed. Hence, a flexible in-
frastructure for the respective management of services and
associated service level agreements is mandatory.

In this paper we present a novel approach for such an in-
frastructure, building on software-agent technology and an
expressive but still machine manageable protocol descrip-
tion language, capable of specifying a multitude of different
negotiation protocols. It supports the discovery of services
with appropriate SLA negotiation styles as well as the actual
SLA negotiations based on the chosen protocol description
documents.

Keywords
service level agreements, internet of services, electronic ne-
gotiations, software agents, quality of service

1. INTRODUCTION AND MOTIVATION
Current developments in the area of Information Systems
show a tendency towards massively distributed infrastruc-
tures, consisting of highly specialized digital resources. To-
day’s Internet of mainly human interactions will evolve to-
wards a socio-technical and global information infrastruc-
ture, where humans as well as software agents, acting on
their behalf, continuously interact to exchange data and
computational resources. This vision can be observed in
both research and industry alike and is commonly referred
to as the Internet of Services (IoS) [27, 25].

Building on currently applied computing paradigms, such as
Service-oriented [11], Grid [12] or Cloud Computing [6], the

10th International Conference on Wirtschaftsinformatik,
16th − 18th February 2011, Zurich, Switzerland

IoS vision defines highly dynamic networks of composable
services, offered and consumed on demand and on a global
scope. Taking such ideas one step further, it rigorously fo-
cuses on the goal of an Internet-based service economy, sim-
ilar to the real-world service sector. Digital services will be
offered over electronic service markets, purchased by respec-
tive customers and then combined with internal or other
external services to business workflows of varying complex-
ity.

Hence, the IoS will primarily focus on new business models
and the commercial application of distributed computing,
concerning trading processes down to the level of an indi-
vidual service, and the subsequent charging based on its
usage and delivered quality-of-service (QoS). In such a set-
ting even very small and specialized companies can find a
niche in the digital economy where they can compete with
the ubiquitous international enterprises, which in turn have
to face a much higher competition on the global market [9].

Summarizing the IoS scenario thus results in the following
characteristics [27]:

• The IoS focuses on a (potentially huge) set of electronic
services of varying complexity.

• These services will be employed in potentially mission-
critical business processes and thus have to fulfill a
(pre-negotiated) set of QoS guarantees as stated in a
Service Level Agreement (SLA)1.

• New business models will cope with the possibility of
trading even very fine-granular services and charging
them based on their actual usage.

• It will consist of a global set of SPs and SCs, negoti-
ating over digital services as well as some mediating
nodes, such as service brokers.

Two of the main challenges for the IoS, from a commer-
cial perspective, are reliability of the services traded and
the technical infrastructure underlying the service economy.

1A SLA is a structured document, describing a bilateral
agreement between a service provider (SP) and a service
consumer (SC) on the terms and conditions of the invoca-
tion(s) of an (electronic) service.

704

The need for guaranteed reliability and service quality be-
comes more prominent, as no longer the question of “who
provides the service?” matters but only whether he is able
to achieve the requested result.

Since such scenarios inherently lack the applicability of cen-
tralized QoS management, service guarantees must be ob-
tained in the form of bi-lateral SLAs assuring service quality
across individual sites [18]. These SLAs subsequently act as
a signed contract governing the actual service invocation [6],
enabling the structured monitoring and assessment of the
service’s compliance2.

A very crucial part of the SLA-based service life cycle can be
seen in the discovery and, above all, the negotiation phase.
All subsequent steps (binding, execution and monitoring,
post-processing etc.) depend on the SLA documents which
were agreed-upon in this phase. On that account, we focus
on a the negotiation and prior discovery of SLAs for our
work presented in this paper.

Aiming at the negotiation phase, economic reserach claims
that differences in system configuration, or the services actu-
ally traded, demand different negotiation protocols in order
to reach the highest-possible efficiency of the overall sys-
tem (see for example [19]). Based on these findings and
the global context of the envisioned scenario it is not likely,
or even efficient, that only one central marketplace for elec-
tronic services will emerge, offering a single, known protocol.
Instead a system of marketplaces offering different protocols
will probably emerge, each of which is best be suited for a
given context.

Fortifying this, we argue that restricting SCs in that they
are only able to interact with one distinct service market
they were implemented for (and are therefore only techni-
cally compatible with the applied negotiation protocol), un-
necessarily decreases the potential flexibility and efficiency
of the whole system. SCs should be able to buy, and there-
fore negotiate about, any fitting service, regardless of the
market it is offered in, and thus regardless of the protocol
with which it is offered. SPs, on the other hand, should be
able to offer their services with the protocol best fitting to
the current market situation instead of being restricted to a
given protocol by the market infrastructure.

Also, given the dynamic nature of distributed workflow ex-
ecutions and the increased complexity of global service se-
lection manual negotiations of the human users are by far
not efficient enough. This process should be automated by
electronic software agents that negotiate on the users’ behalf
[17].

The research goal of our work is thus to develop a service-
oriented infrastructure supporting software agents to dis-
cover and negotiate about electronic SLAs and not restrict-
ing them to a pre-defined negotiation protocol.

2In our work we focus on electronic SLAs as needed in the
anticipated fully automated setting. Such documents are
mainly used for resource management and scheduling in var-
ious research projects [22] and mark a promising approach
for representing real-world, legally binding, contracts in an
electronic way.

The remainder of this paper is structured as follows: In sec-
tion 2 we will present a short overview on related research
projects in the area of electronic SLA management systems
and the IoS. Next, the main contribution of this paper is
presented in section 3, the design of our SLA negotiation
infrastructure. Section 4 will provide information on the
developed proof-of-concept prototype system and the eval-
uation steps already conducted. Finally, we conclude our
paper with a short summary and the identification of future
work.

2. RELATED WORK
A significant amount of research projects exist, dealing with
distributed QoS management based on SLAs. Such efforts
have risen after traditional distributed systems came to ma-
turity and reliability came into focus. Some of the most
notable approaches were presented by Ludwig et al. [18],
Yarmolenko and Sakellariou [26] or Tosic et al. [30]. These
works mainly address the internal structure of SLAs, the rel-
evant service metrics and SLA-based resource management
and scheduling mechanisms.

Building on such theoretical works, an ever growing amount
of research projects, such as CoreGRID3 or SLA@SOI4 em-
ploy SLAs for resource management and designed respective
SLA management systems. Also the ongoing Web Services
Agreement [1] standardization effort at the Open Grid Fo-
rum5 shows the growing interest in SLA-based QoS manage-
ment from both research and industry.

On the other hand a variety of different negotiation settings
and respective protocols for both electronic and real-world
markets have been introduced (see for example [24] for very
fundamental work on negotiations). As a next step, these
findings were ported to the digital world, forming the new
research discipline of Electronic Negotiations [2]. This lead
to the definition of formal descriptions and characterizations
of given negotiation protocols [28] as well as first attempts
to software infrastructures for (electronic) negotiations (see
for example [32]).

After software agent technologies [31] reached maturity it
was only a logical next step to employ the mechanisms de-
veloped therein for the implementation of electronic markets
[23].

Surprisingly, there is little research done in combining the
economic considerations on the one hand and the technical
developments on the other hand. No more than a couple of
research groups address the agent-based, electronic negoti-
ation of SLAs; resulting infrastructures were presented for
example in [7] or [21]. Even those projects mainly focus on
static and centralized architectures within which only one
particular, and fixed, negotiation protocol is implemented.
Hence, they allow for the definition of individual service mar-
kets, but still lack the possibility for SCs to migrate from
one market, and thus one negotiation protocol, to another
(in analogy to a real-world economy).

3http://www.coregrid.net
4http://sla-at-soi.eu
5http://www.ogf.org

705

Although the need for protocol-generic systems is widely
agreed-upon (see for example [19]), only a few projects in-
corporate the mere possibility of different protocols within
one infrastructure; [17] and [3] being two of the most promi-
nent examples. However, both still lack important flexibility
by restricting the negotiation protocols to a small and fixed
set and by building on static, centralized architectures with-
out appropriate discovery mechanisms.

3. INFRASTRUCTURE DESIGN
Before describing the actual system design, we will now
present the results of a literature-based requirements analy-
sis, underlining the need for identified protocol-generic SLA
negotiation systems.

3.1 Requirements Analysis
Among the abovementioned researchers, a common agree-
ment exists on which requirements are posed on electronic
SLA management infrastructures for the IoS. The most sig-
nificant requirements concerning the discovery and negotia-
tion phases include:

R1 After the discovery phase all parties must have a com-
mon understanding of the protocol to be executed in
the negotiation phase [17].

R2 This common understanding must be generated dy-
namically at runtime [4].

R3 Services (and thus SLAs) of different complexity must
be negotiable [19].

R4 Different marketplaces and protocols (fixed-price cat-
alogues, bargaining, auctions etc.) even within one
infrastructure are needed for different services to be
traded [19]. In order to cope with the highly dynamic
IoS environment the available set of protocols should
not be restricted a priori [15].

R5 Software agents should act as negotiators [17].

R6 Intermediaries, such as auctioneers or brokers, should
be present [6].

Although most of these requirements were even identified
in the context of either one of the abovementioned research
projects, no infrastructure to date fulfills all of them. Espe-
cially the claimed protocol-flexibility of SLA negotiations, in
particular at run time, is not reached or even not addressed
at all. In the following we will present the design of our
system, aiming at closing that gap.

3.2 Abstract Design Idea
The basic design idea underlying this work is to offer a given
product (SLA for an electronic service) independently from
the way an agreement concerning this product can be at-
tained (negotiation protocol). This allows for flexible combi-
nations of product and protocol to be chosen for each market
situation individually.

Such an approach has many analogies in real-world settings.
For example a TV set, offered at an electronic retailer im-
plicitly states that the only way to negotiate about it is to

accept the stated price. This protocol thus corresponds to
a classic cataloque pricing model. Then again, the same
TV set, sold on an online auction platform such as Ebay6,
implies that the consumers have to outbid each other un-
til a certain deadline occurs. This in turn corresponds to
an English Auction protocol. Although the product sold in
both cases is exactly the same (a new TV set of a given
type) the negotiation protocols applied are quite different.
Transferred into the electonic SLA management scenario,
this means that a given SLA (template7) under negotiation
could be offered with a whole set of different negotiation
protocols at different points in time, best fitting the current
market situation.

Since software agents will be employed for the service man-
agement within our systen (R5), the negotiation protocol
applied for a given service is not only decoupled from the
actual SLA but must also be made explicit in terms of its
communication rules. This allows for run time adaption of
the SC agents to the respective protocol.

To this end, the designed infrastructure will build on a con-
ceptual architecture of machine-readable description docu-
ments, as described in the following.

3.3 Service Description Documents
As just introduced, a set of service description documents is
needed enabling a) the discovery of an appropriate service
or respective SLA (template) and b) the description of the
negotiation protocol used to reach an agreement. For that
purpose three different data structures were designed:

• Service Type (ST): definition of the functional and
non-functional aspects, a given class of services can
offer.

• Extended SLA Template (EST): definition of initial
QoS guarantees (building on the non-functional as-
pects given in the respective ST) as an input for the
subsequent negotiation as well as the applied negotia-
tion protocol.

• Service Identificator (SI): identification of an individ-
ual service instance along with links to the associated
ST and EST documents.

Figure 1 gives a short overview on these documents and their
relations.

6http://www.ebay.com/
7Most of the present SLA (management) systems incorpo-
rate the possibility to define SLA templates (see for exam-
ple [1]). A SLA template is basically a partially filled out
SLA document, that is offered from the SP to potential cun-
sumers. It regularly marks the starting point for an actual
negotiation process, during which the already stated service
guarantees (also called service level objectives (SLOs)) are
altered according to the preferences of the negotiators until
the final SLA is reached. The internal structure of a SLA
template is equivalent to an actual SLA document. The
only difference is, that a set of rules is optionally defined,
helping the SC to identify (combinations of) SLOs that are
a) valid and/or b) acceptable by the SP (see for example [1,
pp. 30-33]).

706

Service
Description
Layer

Service
Instance
Layer

Service Type
Document

Extended
SLA Templates

Service
Identificator

ID

functional and
non-functional

properties

service
guarantees

negotiation
protocol

description

Links to:

service type

eSLA template

wsdl

bindings

SLA Context
SP
SC

service type
wsdl

template ID

service
guarantees final SLA

Service
Instance

1:N

N:1

N:1

1:1

Figure 1: Document-based Architecture

Note: All data structures were defined on the basis of XML
Schema [29] due to the massive adoption of XML [5] for
communications in service-oriented systems.

3.3.1 Service Type
The basic goal of the ST document is to describe a class of
service instances in terms of their functional capabilities and
the non-functional parameters, such as throughput or price.

The functional aspects are primarily used to search for a ser-
vice, taking into account the search criteria as received from
the user / service requestor. In contrast, the non-functional
parameters, or rather their actual values, are mostly the
very object of any SLA negotiation. These parameters’ ac-
tual values vary during run-time, depending on the current
workload. The incorporation of respective monitoring and
enforcement components at design-time however, offers the
management agents the possibility to negotiate about such
metrics and subsequently enforce the resulting guarantee,
even at run-time.

3.3.2 Extended SLA Template
In our work, the SLA template concept was not only also
used to define initial SLOs (R3), but additionally extended
to also include a description of the applied negotiation pro-
tocol8.

The respective part of the EST is created, building on a
negotiation protocol description language developed by the
authors (a previous version of which can be found in [14]).
It builds on simple parameters where possible and, if more
complex restrictions are needed, allows the application of
any desired (external) rule language within some of the lan-
guage elements.

A respective protocol description provides the querying SC
agent with information about the:

• negotiation context (permitted agents and their per-
missions and obligations),

8Since this aspect is very closely linked to the SLOs already
stated in the template it was considered appropriate to in-
tegrate it into the same data structure.

• object (actually negotiable SLOs),

• offer restrictions (constraints posed on the negotiable
SLOs, such as upper or lower bounds of acceptable
values),

• allocation (matching function applied for winner de-
termination),

• information policy (information access rules, as needed
for example to define sealed-bid or outcry negotiations)

• negotiation process (definition of the allowed behavior
of the involved agents, employing the event-condition-
action paradigm).

3.3.3 Service Identificator
Each individual service instance is finally defined within a
respective SI. Such a document describes where exactly this
service can be found (important for the actual binding pro-
cess), what its type is and which EST is offered for it. It
thus consists of the following elements:

• serviceID : identifier for this particular SI. This element
should be of the type URI in order to ensure unique-
ness in a global setting.

• serviceTypeID : link to the description of this service’s
type

• slaTemplateID : link to the EST offered for this service

• wsdlFile: reference to the WSDL [8] file, describing
the actual service interface in terms of operations with
input and output parameters as well as error types.

• negotiationCoordinator (NC) and serviceProvider : these
two elements represent role bindings for this service9.

3.4 Protocol Design
In order to support both, the discovery and the negotiation
of SLAs, a set of simple protocol primitives have been de-
veloped, building on the abovementioned data structures.

3.4.1 Discovery Phase
The discovery phase basically represents the set of activities
ultimately leading to a situation where potential business
transaction partners (SCs and SPs) know one another and
can start a negotiation process. This means the discovery
phase is supposed to support a given SC to find one or more
SI documents fitting the search criteria it received from the
user (R1 and R2). To this end, the SPs should be able
to publish the service it offers (in terms of the respective
description documents), in a way that it can be found by
potentially interested SCs.

For our proof-of-concept implementation, a very simple reg-
istry node, which can be found via a broadcast-based dis-
covery protocol, was chosen (see figure 2 for more details).
Such a simple architecture was considered sufficient for in-
vestigating the research question at hand. Future versions

9For more details on the role architecture, see subsection
3.5.

707

however, will probably favor more robust mechanisms, such
as Peer-to-Peer discovery approaches.

For either the registry discovery, the publication of one or
more service documents or the discovery of those a set of
message types was defined. These messages strictly foll-
low the internal structure of SOAP [13] messages to allow
a seamless integration into present Web Service infrastruc-
tures.

At first the SP, upon receiving a request to sell a given ser-
vice, publishes the respective service description documents
at the registry node. Subsequently it waits for a SC to re-
quest admission to the actual negotiation. The SC process
is on the other hand triggered by the reception of a user re-
quest for a particular service. In a first step, the SC requests
all SIs fitting the search criteria and retrieves the (until then
unknown) ST and EST documents from the registry. Given
a list of adequate SIs were found, the SC chooses one of
them and tries to start / join a negotiation via an explicit
admission step at the NC agent (for each negotiation proto-
col exactly one agent adopts this role; see subsection 3.5 for
more details). In case of a successful admission the SC and
SP now engage in the actual negotiation process.

3.4.2 Negotiation Phase
Since the main goal of our work is to define an infrastructure
for protocol-generic negotiations, no single negotiation pro-
tocol can be identified for this phase10. Rather, a set of ne-
gotiation message types along with their respective contents
was defined. These messages can then be used in a given
negotiation process, orchestrated according to the protocol
description in the EST document (R1, R2 and R4).

After a thorough literature review on currently applied ne-
gotiation protocols (as listed for example in online libraries
such as [10]), a minimally necessary set of such messages
could be identified, consisting of offer(toSell), accept, reject,
callForBids and stillInterested messages. Using these mes-
sage types a variety of different protocols can be described in
an EST document and subsequently processed by the service
management agents11.

3.5 Role-based Architecture
The developed prototype infrastructure builds on a defined
set of roles, the service management agents can adopt (see
figure 3):

The two basic roles present in this system are the SC and
the SP, representing buyer and seller agents.

Additionally a set of registry services / agents (RA) are
needed for supporting the publication and discovery of ser-
vice description documents. Finally, the NC role represents
the agents mediating negotiation processes as a broker agent
(R6).

10Therefore no distinct process model for this phase (ana-
logue to figure 2) can be given. Individual Negotiation
phases always differ, depending on the applied protocols.

11A set of mutually very different negotiation proto-
cols, designed only building on these message types, can
be found at https://sourceforge.net/apps/mediawiki/
simis/index.php?title=BabelNeg

Both SP and SC agents mainly offer an interface to one
another, allowing them to send and receive messages related
to the discovery and negotiation phases. Additionally, each
of theses roles offers one routine to external users of the
infrastructure: A SP agent offers a method for publishing
and selling and a SC one for discovering and purchasing a
service on a user’s behalf, respectively.

A RA only accepts discovery related messages as it does not
take part in any other phases of the life cycle. Finally, NC
agents are responsible for admission of SCs or SPs to and
potentially mediation of a given negotiation. Hence, they
again offer methods for exchanging respective messages.

In the following the internal routines of each role, as im-
plemented in the proof-of-concept prototype, will be further
detailed.

3.5.1 Service Provider
A SP agent’s basic purpose is to publish a given service to
potential customers and sell it to them subsequently. On an
abstract level a SP agent first receives the request for pub-
lishing a service and the respective description documents
(triggering a state change from IDLE to PUBLICATION).
Now it stores all respective documents at a RA node (which
potentially has to be discovered first). If successful, it tran-
sits to the BUSY state, in which the service is continuously
offered, negotiated about and executed. The SP only exits
this state when the service is taken off-line or is re-deployed.

3.5.2 Service Consumer
The default process for a SC is to receive a service request
and move to the discovery phase, during which a set of fitting
SI documents are retrieved. After choosing an appropriate
SI the SC agent requests admission to the respective nego-
tiation, joins the negotiation process if admission was suc-
cessful and finally invokes the service in the EXECUTION
state if it could win the negotiation.

A fundamental principle was implemented all along the pro-
cess of a SC agent: the reluctant escalation backtracking in
terms of internal states. In case of a failed attempt to move
to the next state (e.g. from the DISCOVERY to the INI-
TIATION NEGOTIATION state) it checks its options for
another such attempt. In this case it checks whether or not
any other SI was found, for which it could request admission
to the respective negotiation. Only if no such options are
available it moves back to the predecessor state and checks
whether it can start over from there or if even there no other
options are available and so on. This principle ensures the
agent to fully exploit all possibilities it could discover for
reaching an agreement.

3.5.3 Protocol-generic SC Strategy Component
During the actual negotiation phase a protocol-generic strat-
egy component is employed by the SC agents. All routines
needed for adaption to a new negotiation protocol are im-
plemented herein.

When admitted to a negotiation process, the SC instantiates
such a generic negotiator (GN) component and passes over
the ST, EST and SI documents, as applied for the respective

708

Process Overview

Service Consumer

Request Service

Query ServiceIdentificators

Query unknown ServiceTypes
and SLATemplates

Choose SI

Request admission

NEGOTIATION PHASE

Instantiate GenericNegotiator

Registry

Retrieve SIs and send results

Retrieve ServiceTypes / SLA
templates and send results

Store documents

Service Provider

Publish Service

Publish SI and if not known
ServiceType and SLATemplate

Wait for admission requests

Admission
possible

Send admission ACK

NEGOTIATION PHASE

No

YesYes

No

Figure 2: Discovery Phase Sketch

negotiation, as well as all internal constraints received from
the user (such as reservation values for certain SLOs).

Once all this information was extracted the GN checks whether
it has to start the negotiation (pro-active protocol). If so,
two possible actions can be defined: this agent can be al-
lowed to post an offer or to simply accept all the the val-
ues stated in the EST (corresponding to a catalogue pricing
model).

Here a basic principle of the GN becomes obvious: it always
seeks to maximize its utility and thus will always choose
some actions over others (if both are allowed). In this case it
will first check, whether an offer is possible (such checks are
always done by inspecting the respective event-condition-
action tuples stated in the EST), which could further im-
prove the currently offered agreement. If so, an offer will be
sent; if not it will simply accept the current values, as no
negotiation on them is allowed (if they are acceptable).

The same principle applies throughout the whole negotiation
process. Whenever a negotiation message is dispatched to
the GN it checks its options: In case of a reject or accept
message the negotiation is over. It simply processes the
result in that it passes the respective information / reached
agreement to the SC agent. In case of a callForBids message
it creates an offer and sends it to the SP agent12. All these

12Offer messages are simply created by iterating over all not
yet fulfilled user constraints and creating a counter offer
value for each. These values are then combined to one offer
message.

possibilities are straightforward, as they don’t give the GN
any option to choose among a set of possible actions.

When receiving an offer, this could potentially change. If
the offer is not completely rejectable (this is checked by it-
erating over all involved slo constraints) and a counter offer
is possible, the GN will always do so. A counter offer is al-
ways the best option, as it potentially increases value of the
agreement for the user. If this is not possible, the GN will
check whether a stillInterested-message is allowed, provid-
ing it with the possibility of an ongoing negotiation, even
if it cannot actively influence the changing of the negoti-
ated values. If even this is not possible it will finally check
whether the received offer can be accepted or in the end re-
jected completely and do so. This routine gives the GN the
possibility to react on incoming messages in a way that max-
imizes its further options during the negotiation and in the
end potentially its utility in terms of the reached agreement.

3.5.4 Registry
The RA node is basically just a placeholder element for
any discovery mechanism used in future versions. It was
designed to simply receive register messages and store the
corresponding data into an internal data structure. This
is for example used when a SP publishes a new SI doc-
ument. Supporting the discovery of service documents it
also offers the possibility to query the stored SI, EST and
ST documents. No complex internal states are maintained
and changed throughout its life time. It simply processes
requests to register or query service documents or answers
registry discovery messages.

709

Service
Management

Layer

Economy
Sub-Layer

Service
Layer

Market
Sub-Layer

Registries
(RAgent)

Service Provider and
Consumer Processes

Service Management
Agents

(SPAgent,
SCAgent)

Mediators
(NCAgent)

manage

bid
agree
upon

SLA

lookup

invoke

Figure 3: System Architecture

3.5.5 Negotiation Coordinator
The main task of a NC agent is to handle the admission of
SCs to a given negotiation. For this it offers the possibility
to submit respective messages along with a set of creden-
tials, as needed for the admission decision. Additionally, if
the negotiation phase is also assigned to the NC (mediated
negotiation), it must also be able to process incoming ne-
gotiation messages. Just as described for the SP and SC
agents, these are simply forwarded to a negotiation strat-
egy component, which in turn provides the protocol-specific
functionality.

Similarly to the RA nodes, a NC thus does not expose com-
plex internal states and state changes. Admission requests
are evaluated and answered based on the received data and
the implicit service availability information, and negotiation
related messages are simply forwarded to the strategy com-
ponent.

4. PROTOTYPE IMPLEMENTATION AND
EVALUATION

The presented mechanisms were implemented in a Java-
based proof-of-concept prototype infrastructure, building on
the agent-based IoS simulation toolkit SimIS13. The simula-
tion experiments, presented in the following, represent one
evaluation step for our work, allowing us to model differ-
ent environmental settings (i.e. market configurations) and
demonstrate the feasibility of our approach therein. In a
second step, future versions of the developed components
will be ported to a productive IoS platform dealing with the
whole service life cycle.

13http://sourceforge.net/projects/simis

SimIS was co-developed by the authors and aims at pro-
viding researchers with a comprehensive framework for in-
vestigating distributed algorithms or protocols within the
context of the IoS vision. Building on the generic Recursive
Porous Agent Simulation Toolkit (REPAST) [20], it pro-
poses a two-tiered architecture dividing the overall system
into an Application Layer and an Infrastructure Layer (see
figure 4).

Application Layer

Infrastructure Layer

Service Management Agents

Infrastructure Nodes

Figure 4: SimIS Toolkit

The Infrastructure Layer models topological settings of the
IoS. The basic idea is that all Application Layer Agents /
Services are linked to a single Infrastructure Agent each,
which is representing their server platform, mainly perform-
ing message handling tasks.

Within the Application Layer the actual services of the IoS
vision are modelled, communicating via the offered message
objects and routing functionality. Each service, i.e. Appli-
cation Layer Agent, is to be implemented as a plain Java
class and can therefore exploit the full potential this pro-
gramming language offers. A more detailed description of
the SimIS toolkit can be found in [16].

710

The agent types developed for our infrastructure prototype
were consequently implemented as specific Application Layer
agents within SimIS. Each of the management agents (SCs
and SPs) is accompanied by a strategy object, the SCs with
the protocol-generic negotiator and the SPs with a strategy
distinctly fitting to the offered protocol (as parameterized
during startup).

In a first step the document-based architecture and the re-
spective discovery mechanism were tested by running a vari-
ety of different configurations within the simulated IoS set-
ting (varying numbers of SCs and respective service requests,
SPs with a given service / protocol combination, and RAs
supporting the discovery process). Both the protocol steps
applied and the RA implementation were able to prove ef-
fectiveness very well.

Secondly an initial set of negotiation protocols was chosen to
be a) described with the developed language and b) applied
within SimIS to show whether or not the GN is able to
correctly extract the relevant information and take part in
the subsequent negotiation.

For the subsequent evaluation runs the Alternate Offers, an
English Auction and Double Auction Protocol were instan-
tiated. This selection covers 1:1 (Alternate Offers), 1:N (En-
glish Auction) and M:N (Double Auction) settings and can
thus be regarded as a representative subset of the most com-
monly used negotiation protocols 14.

In the Alternate Offers Protocol, both parties basically ex-
change offer messages. Upon receving such a message the
agent has three options: accepting the offered values, reject-
ing them ultimately or creating a counter-offer message. In
the English Auction, the SP offers a given value for the ne-
gotiated metric (in the shown experiments, the price) to all
SCs, which in turn can answer with stillInterested messages,
given they are still interested in the negotiated service under
the offered conditions. In the next round the SP increases
the value of the negotiated SLO and offers it to all remaining
SC in the same way. This process is repeated until only one
SC is left that accepts the offered value. During a Double
Auction both, SP and SC, post messages indicating their
service offers or demands. The broker (NC) subsequently
matches these according to a defined matching function and
passes the results to back to the SPs and SCs.

For demonstration purposes, we configured the simulator
with ten infrastructure nodes, upon which 40 SPs and 50
SCs are placed. Each SP offers the same service, however 8
of those with the Alternate Offers, 12 with the English Auc-
tion and the remaining 20 with the Double Auction proto-
col, as described above. Additionally one registry node for
storing and retrieving the service and protocol description
documents as well as one broker for the Double Auction are
present.

The SCs generate service requests at random points in time
(mean duration between two request arrivals: 50 ticks), start-

14The used protocols, described in terms of UML Sequence
Diagrams as well as a respective EST documents, can
be found at: https://sourceforge.net/apps/mediawiki/
simis/index.php?title=BabelNeg

ing at tick 60; this way start-up effects of the simulation can
be avoided. Each of these agents starts with the same valua-
tion for the offered service but adopts its valuation over time
(in case of a successful negotiation it decreases its valuation
by 0,05, in case of an unsuccessful negotiation vice versa).
Additionally, a set of timeouts were employed for timing of
new auction rounds or in case of not answering opponents.
The experiments were delimited to a maximum tick count
of 20000.

0 0.5 1 1.5 2

x 10
4

0

20

40

60

80

100

120

140

Tick

A
m

ou
nt

English Auctions
Minimum # English Auctions per Agent
Maximum # English Auctions per Agent

Figure 5: Successful English Auctions

0 0.5 1 1.5 2

x 10
4

0

200

400

600

800

1000

1200

1400

Tick

A
m

ou
nt

Alternate O�ers Negotiations
Minimum # Alternate O�ers Negotiations
Maximum # Alternate O�ers Negotiations

Figure 6: Successful Alternate Offers Negotiations

The main statement to be proven with these experiments is
that the GN node is at all able to adapt to different proto-
cols, only based on their description in the EST documents
(proof-of-concept). Given the results shown in figures 6,
5 and 7, this assertion can be approved. Each of the in-
troduced protocols was successfully integrated in the actual
market behaviour; each protocol type present was executed
by a significant number of agents.

This fact is underlined by figure 8 which shows that each

711

0 0.5 1 1.5 2

x 10
4

0

50

100

150

200

250

300

Tick

A
m

ou
nt

Double Auction Matchings
Minimum # Double Auction Matchings
Maximum # Double Auction Matchings

Figure 7: Successful Double Auctions

0 1000 2000 3000 4000 5000 6000 7000
0

0.5

1

1.5

2

2.5

3

Tick

Ra
ng

e

Minimum Range of di�erent Protocols
Maximum Range of di�erent Protocols

Figure 8: Range of used Protocols

agent could successfully take part in at least two different
negotiation protocol types. On the other hand, there exist
SC agents that have successfully taken part in all available
protocols.

We will now shortly relate the developed system to the re-
quirements stated in section 3.1.

R1 and R2: Dynamically generated understanding of nego-
tiation protocol, during discovery phase

Each SC enters the discovery phase with no prior knowledge
about the protocol that is executed in the subsequent nego-
tiation phase. All information needed for a successfull par-
ticipation in a respective negotiation is coded in the service
description documents, which are queried during discovery.
Therefore the requirements R1 and R2 are fulfilled by our
system.

R3: Support for SLAs of different complexity

The ST, EST and SLA documents provide a very generic
service (SLA) description structure. By offering free-form
text elements along with the pre-defined and typed elements
for quantitatively measurable service aspects, a comprehen-
sive service description can be created. The defined docu-
ment structures also enable the usage of external, standard
languages for describing service characteristics (for example
WSDL when describing the service interface).

R4: Support for different negotiation protocols

By employing a structured protocols description language
in the EST document, each service (and SLA template re-
spectively) can be offered over a different protocol. The GN
strategy component, being able to adapt to the described
protocols, supports all protocols that can be described in
that language, thus fulfilling R4.

R5: Software agents acting as negotiators

The system architecture, as implemented in the proof-of-
concept prototype, heavily builds on sofware agents as in-
stantiations of a particular role. Such components are the
basic actors in our system.

R6: Need for intermediaries

Our system incorporates an explicit intermediary role, used
for the definition of market brokers, the NC. Therefore R6
is fulfilled by our infrastructure proposal.

5. CONCLUSION AND FUTURE WORK
In this paper we presented a novel infrastructure for the dis-
covery and protocol-generic negotiation of SLAs. For this we
employed a set of structured document types and software-
agent technology for managing the incoming requests to buy
and sell electronic services and negotiate about SLAs respec-
tively. We evaluated our system subsequently, with a set
of different negotiation protocols and system configurations,
within the context of an IoS simulation toolkit.

Future work will comprise the simulative investigation of
more complex scenarios in which a multitude of different
brokers and other negotiation protocols are present at the
same time. Such evaluation runs will especially focus on
the utility gain a protocol-generic infrastructure can pro-
vide over one offering only one single protocol. Also, a more
thorough investigation of negotiation strategies, able to effi-
ciently cope with different protocols, has to be done.

6. REFERENCES
[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey,

H. Ludwig, T. Nakata, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web services agreement
specification, version 03/2007. 2007.

[2] M. Bichler, G. Kersten, and S. Strecker. Towards a
structured design of electronic negotiations. Group
Decision and Negotiation, 12(4):311–335, 2003.

[3] I. Brandic, S. Venugopal, M. Mattess, and R. Buyya.
Towards a meta-negotiation architecture for sla-aware
grid services. In Workshop on Service-Oriented

712

Engineering and Optimizations 2008. In conjunction
with International Conference on High Performance
Computing 2008 (HiPC2008), Bangalore, India,
December 17 - 20, 2008.

[4] I. Brandic, S. Venugopal, M. Mattess, and R. Buyya.
Towards a meta-negotiation architecture for sla-aware
grid services. Techreport, University of Melbourne,
August 2008.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
and F. Yergeau. Extensible markup language (xml)
1.0 (fourth edition). W3C, August 2006.

[6] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and
I. Brandic. Cloud computing and emerging it
platforms: Vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computer Systems, 25(6):599 – 616, 2009.

[7] M. B. Chhetri, J. Lin, S. Goh, J. Y. Zhang,
R. Kowalczyk, and J. Yan. A coordinated architecture
for the agent-based service level agreement negotiation
of web service composition. In ASWEC ’06:
Proceedings of the Australian Software Engineering
Conference (ASWEC’06), pages 90–99, Washington,
DC, USA, 2006. IEEE Computer Society.

[8] R. Chinnici, J.-J. Moreau, A. Ryma, and
S. Weerawarana. Web services description language
(wsdl) version 2.0 part 1: Core language. W3C, March
2006.

[9] T. P. Consortium. Texo: Business webs im internet
der dienste (german). http://theseus-
programm.de/anwendungsszenarien/texo/default.aspx,
2009. last checked: 2010.01.13.

[10] T. F. for Intelligent Physical Agents. |”www.fipa.org.
last checked: 17. 07. 08.

[11] I. Foster. Service-oriented science. Science,
308(5723):814–817, 2005.

[12] I. Foster, C. Kesselman, and S. Tuecke. The anatomy
of the grid: Enabling scalable virtual organizations.
International Journal of Supercomputer Applications,
15:2001, 2001.

[13] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau,
and H. F. Nielsen. Soap version 1.2 part 1: Messaging
framework. W3C, June 2003.

[14] S. Hudert, T. Eymann, H. Ludwig, and G. Wirtz. A
negotiation protocol description language for
automated service level agreement negotiations. In
Proceedings of the 11th IEEE Conference on
Commerce and Enterprise Computing (CEC 09),
Vienna, Austria, 2009.

[15] S. Hudert, H. Ludwig, and G. Wirtz. Negotiating slas
- an approach for a generic negotiation framework for
ws-agreement. Journal of Grid Computing,
7(2):225–246, June 2009. ISSN: 1570-7873 (Print)
1572-9814 (Online).

[16] S. König, S. Hudert, and T. Eymann. Socio-economic

mechanisms to coordinate the internet of services Ű
the simulation environment simis. Journal of Artificial
Societies and Social Simulation (JASSS), 13(2), 2010.

[17] A. Ludwig, P. Braun, R. Kowalczyk, and B. Franczyk.
A framework for automated negotiation of service
level agreements in services grids. In Lecture Notes in
Computer Science, Proceedings of the Workshop on
Web Service Choreography and Orchestration for

Business Process Management, 2006, volume
3812/2006, 2006.

[18] H. Ludwig, A. Keller, A. Dan, R. King, and
R. Franck. A service level agreement language for
dynamic electronic services. Journal of Electronic
Commerce Research, 3:43–59, 2003.

[19] D. Neumann, J. Stoesser, C. Weinhardt, and J. Nimis.
A framework for commercial grids - economic and
technical challenges. Journal of Grid Computing,
6(3):325–347, September 2008. ISSN: 1570-7873.

[20] M. J. North, N. T. Collier, and J. R. Vos. Experiences
creating three implementations of the repast agent
modeling toolkit. ACM Trans. Model. Comput. Simul.,
16(1):1–25, 2006.

[21] M. A. Oey, R. J. Timmer, D. G. A. Mobach, B. J.
Overeinder, and F. M. T. Brazier. Ws-agreement
based resource negotiation in agentscape. In AAMAS
’07: Proceedings of the 6th international joint
conference on Autonomous agents and multiagent
systems, pages 1–2, New York, NY, USA, 2007. ACM.

[22] M. Parkin, R. M. Badia, and J. Martrat. A comparison
of sla use in six of the european commissions fp6
projects. Technical Report TR-0129, CoreGRID, 2008.

[23] S. Paurobally, V. Tamma, and M. Wooldridge. A
framework for web service negotiation. ACM Trans.
Auton. Adapt. Syst., 2(4):14, 2007.

[24] H. Raiffa. The Art and Science of Negotiation.
Harvard University Press, Cambridge, Mass., 1982.

[25] R. Ruggaber. Internet of services sap research vision.
In WETICE ’07: Proceedings of the 16th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, page 3,
Washington, DC, USA, 2007. IEEE Computer Society.

[26] R. Sakellariou and V. Yarmolenko. On the flexibility
of ws-agreement for job submission. In MGC ’05:
Proceedings of the 3rd international workshop on
Middleware for grid computing, pages 1–6, New York,
NY, USA, 2005. ACM.

[27] C. Schroth and T. Janner. Web 2.0 and SOA:
Converging concepts enabling the internet of services.
IT Professional, 9(3):36–41, 2007.

[28] M. Stroebel and C. Weinhardt. The Montreal
Taxonomy for electronic negotiations. Journal of
Group Decision and Negotiation, 12:143–164, 2003.

[29] H. S. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. Xml schema part 1: Structures,
second edition. W3C, October 2004.

[30] V. Tosic, K. Patel, and B. Pagurek. Wsol - web service
offerings language. Lecture Notes in Computer
Science, 2512/2002:57–67, 2002. ISSN 0302-9743.

[31] M. Wooldridge. Agent-based software engineering.
IEEE Proceedings Software Engineering, 144(1):26–37,
1997.

[32] P. R. Wurman, M. P. Wellman, and W. E. Walsh. The
Michigan Internet Auctionbot: A configurable auction
server for human and software agents. Second
International Conference on Autonomous Agents, May
1998.

713

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2011

	The BabelNEG System - A prototype Infrastructure for protocol-generic SLA Negotiations
	Sebastian Hudert
	Torsten Eymann
	Recommended Citation

	tmp.1303151720.pdf.0K6yh

