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ABSTRACT
The dynamics of Open Source Software development have
recently received a lot of attention from an organizational
learning perspective. Following a network theoretic approach,
we study the temporal development of communication net-
work structure and productivity in order to detect associ-
ations among these constructs. Thereby, we identify a re-
search gap in that related work either focuses on too few
projects or utilizes insufficient numbers of analyzed time-
frames. Our study is both multi-project and longitudinal in
order to detect holistic influencing factors of successful Open
Source Software development. First, we find that learning
effects are present since productivity increases over time.
Next, we observe that growth in team size impedes pro-
ductivity whereas the continuous concentration on central
nodes coincides with increasing productivity. Against our
expectation, we also find that increasing centralization does
not yield decreasing network density, possibly due to Open
Source Software developers deliberately avoiding the depen-
dence on bottleneck nodes.

Keywords
Open Source Software, software development, organizational
learning, productivity, network analysis

10th International Conference on Wirtschaftsinformatik,
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1. INTRODUCTION
Research on Open Source Software communities has flour-
ished as a consequence of scholars pointing to the vast po-
tential of information that is coded in these platforms, (e.g.,
[57]). Thereby, various research streams can be differen-
tiated. Researchers have been interested in questions re-
garding participation in Open Source Software communi-
ties and the motivational incentives for contributions therein
[6, 30, 50, 62]. Closely aligned with this view is the question
of how new members are attracted to a community [29]. It
frequently takes a network perspective that is also addressed
in the research streams of socialization [23] and social net-
works [8,65]. In addition to the different explanatory goals,
studies on Open Source Software are also conducted with dif-
fering focus. While a large stream of research rather takes a
focused view by observing the bug fixing process [17,19,66],
other works take a market perspective by analyzing the com-
petition with proprietary software [24,32,52].

Within this broad field of research on Open Source Software
development, this study’s objective is to explain productiv-
ity from a network theoretic perspective. Thereby, our re-
search intents to detect temporal effects in order to address
the dynamics of many Open Source Software projects. It is
hence in line with related work on organizational learning in
the field of software engineering in general [11,47] and Open
Source Software development in particular [31]. As will be
detailed in Section 4, we see a research gap in the design of
this analysis. Related work has primarily chosen an unbal-
anced relation between the number of Open Source projects
studied and the amount of temporal data available therein.
We address this research gap by conducting a study that
is both multi-project and longitudinal. With this research
design, we intent to answer the research question whether
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network theoretic constructs and productivity show corre-
sponding temporal developments. In other words, we ana-
lyze, e.g., whether increasing communication network cen-
trality coincides with increasing productivity. Due to study-
ing these associations for different projects at the same time,
we are able to holistically identify the dynamics of successful
Open Source Software development.

The remainder of this paper is structured as follows. In
Section 2, we present the theoretical foundation of our work.
From this foundation, research hypotheses are derived in
Section 3. Section 4 introduces our research design with a
special focus on differentiation from related work. Section 5
explains the data source analyzed in this study. Suitable
variables for the measurement of the postulated effects are
presented in Section 6 and analyzed in Section 7. Potential
implications of our results are discussed in the conclusions
in Section 8.

2. THEORETICAL FOUNDATION
Research on Open Source Software communities is frequently
based on two alternative theories. Crowston’s coordination
theory [16, 38, 39] is a suitable foundation for studies that
analyze process flows. It builds on a rather strict formal-
ization of the underlying process and hence does not op-
timally reflect the ‘creative chaos’ types of coordination in
communities. This view is rather supported by the second
frequently chosen theoretical basis being Granovetter’s em-
beddedness theory [25–27]. Studies on Open Source Soft-
ware communities that take this network embeddedness per-
spective usually analyze network structure and its associa-
tion with performance (e.g., [28]). Our work follows this
research stream and uses network embeddedness as its theo-
retical foundation. We hence believe that informal commu-
nication network structure is more important than formal
coordination processes. This view is in line with theories of
self-coordinating virtual communities that have appeared in
various research disciplines such as virtual online groups [49],
knowledge management [60], and information systems [40].

In addition to network embeddedness being the theoretical
foundation of this article, it also significantly draws from
organizational learning literature. This can primarily be at-
tributed to the longitudinal research design that facilitates
the analysis of learning effects over time. While researchers
have stated that the term ‘learning’ represents different con-
cepts in different research streams [61], organizational learn-
ing on an abstract level represents the need for firms and
their employees to continuously learn and transfer knowl-
edge [4]. Learning effects have consequently been studied
and identified in various industries including software en-
gineering (e.g., [11, 47]). Thereby, Open Source Software
development has been said to be “a particularly rich envi-
ronment for studying organizational learning” [31, p. 485].

3. RESEARCH HYPOTHESES
It is common to many studies in the field of information
systems research to analyze variances in order to map input
factors to some kind of output measure. The definition of
output is thereby discussed controversially. While for in-
formation systems success from a customer perspective, De-
Lone and McLean’s [21] model has become the de-facto stan-
dard, software development is an information work process

whose productivity is difficult to define [3, 22]. Despite the
challenges to define a productivity centric outcome measure,
many studies in related work use this factor as a dependent
variable. In the context of organizational learning, it plays
an even more crucial role. The assumption that productivity
increases over time is the essence of organizational learning
theory (cf. [5]). Hence, we hypothesize that in Open Source
Software projects, learning effects are present and that pro-
ductivity and time are positively associated.

Hypothesis 1. Productivity increases over time.

Studies on organizational learning often only consider the
phenomenon from a productivity and time perspective [5].
However, many other factors are of interest and can re-
veal interesting learning effects. The remaining hypotheses
thereby do not directly focus the time construct but rather
discuss the associations of other pairs of factors that are
later on related to their temporal dynamics.

Mixed effects have been reported to exist in the association
of productivity and team size. According to [5], this can be
attributed to the opposed effects of large teams’ coordination
overheads and small teams’ resource utilization challenges.
The debate goes back to Brook’s [14] seminal writing on the
mythical man-month, in which he argues why doubling the
man-power of a project might not increase but even decrease
productivity due to the quadratical rise in potential commu-
nicative links. This effect has been found to also exist in the
context of Open Source Software development [1].

From an economic perspective, the association of productiv-
ity and team size can be related to the debate on economies
of scale in software engineering. Economies of scale are de-
fined to exist in scenarios of increasing average productiv-
ity with rising volume [53] and have been frequently an-
alyzed in the application context of software engineering
(e.g., [7, 34, 45]). However, these studies lack a consensus
on findings with studies reporting the full range of posi-
tive, negative, and not existing associations of productiv-
ity and size [34, 45]. As already outlined in the previous
section on the research design, many of these studies con-
duct a cross-sectional analysis of size and productivity levels
across projects. The advantage of our study’s approach to
analyze multiple Open Source Software projects longitudi-
nally is also evident in the analysis of economies of scale.
In accordance with our theoretical foundation on network
embeddedness theory, we postulate that the communication
overhead of large teams rather impedes productivity.

Hypothesis 2. Productivity and team size are negatively
associated.

The analysis of network structure and especially centrality
has gained popularity over the last decades in information
systems research and the social sciences [12, 44]. Network
centrality has also been identified to be an influential con-
cept in the research domain of Open Source Software de-
velopment [8, 37]. In fact, the onion-like, core/periphery
communication structures of a small, highly central group
of developers and a large, decentral group of users has been
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named an identifying characteristic of the Open Source Soft-
ware development model [20, 48, 51]. While many studies
find centrality to be beneficial for performance (e.g., [8]),
partly due to efficiency in information flow, others report
examples where too much centrality that ultimately takes
the form of separation also impedes performance in Open
Source Software development [17]. Due to our study’s fo-
cus on individual project, we hypothesize that centrality is
beneficial for development productivity since it resembles
the Open Source Software movements core/periphery char-
acteristic. If the focus would have been on larger collabo-
ration networks of active developers (as is the case in many
studies analyzing large parts of the Sourceforge.net commu-
nity, e.g., [29,55]), the opposite effect might have been more
predominant.

Hypothesis 3. Productivity and communication network
centrality are positively associated.

The fourth research hypothesis regards typical effects of net-
work theory and consists of two parts. At first, we postu-
late that communication becomes more difficult when many
nodes are present in the communication network. As Wu
and Goh state, “a higher project density makes the dissem-
ination of knowledge more time-consuming, as information
and knowledge needs to travel through the extended hierar-
chies of the project team.”[63, p. 4] Since density reflects the
number of present pairwise communicative links in relation
to all theoretically possible links in a network of the same
size, increases in size require quadratic increases in new com-
munication links in order for constant density. Hence, we
hypothesize that communication network density and team
size are negatively associated as it is very difficult for large
teams to be as connected as small ones.

Hypothesis 4a. Team size and communication network
density are negatively associated.

The second part of Hypothesis 4 also regards network den-
sity. We hypothesize that networks with high centrality re-
quire less communication links among peers due to the ex-
istence of key players. Information is efficiently routed over
these central nodes and information paths become shorter
[8]. As a consequence, we assume that network density can
be low for these highly central networks since less commu-
nicative links are required when a lot of pairwise communi-
cation is routed over central nodes.

Hypothesis 4b. Communication network density and cen-
trality are negatively associated.

4. RESEARCH DESIGN
The research designs of related work primarily differ in two
dimensions. First, different data sources are chosen. Some
studies make use of surveys among developers (e.g., [36]).
Data acquisition by means of questionnaires has the advan-
tage to retrieve diverse information ranging from age, gen-
der, cultural background to experience. It is, however, also
very limited in size. The alternative data acquisition strat-
egy is to access existing archival data sources (e.g., [43]).
Software engineering is a digitized process with large amounts

of information available in databases. While less informa-
tion can be retrieved per individual in comparison with sur-
veys, archival data sources have the advantage that they
are nearly unlimited in size and structural properties of net-
works are often only visible at this scale [35]. We hence
conduct our research on the basis of archival data such as
bug tracking systems and mailing list archives.

The second important dimension of research design regards
the temporal nature of the study. Many works analyze static
phenomena in cross-sectional studies (e.g., [62]). While this
design has the advantage to thoroughly acquire data and
measure effects, it neglects the dynamics of the fast moving
software engineering domain. Hence, a second stream of re-
search conducts longitudinal studies that explicitly analyze
temporal development of effects (e.g., [50]). We follow this
stream and analyze the dynamics of Open Source Software
development teams.

Several studies in related work can be identified that share
our research design. However, our work differs from these
studies in the implementation of the longitudinal, multi-
project study. Some studies shift the focus towards rich in-
formation regarding the time factor. However, this comes at
the expense of analyzing a reasonably large number of differ-
ent projects. The works of [43,50,56] fall into this category.
Other studies shift their focus in the opposite direction and
analyze many projects at the expense of very limited data
on timing. Often, factors are measured for a large number
of projects at two points in time and a delta-study of these
two measurements is conducted in order to reveal temporal
effects (e.g., [54]). Our research design aims at providing
a sufficient number of measurements for both projects and
time slots. This well-balanced selection of projects and time
slots comes at the expense of applicable research methodol-
ogy. Just like the analysis of [18], our sample does not allow
for standard time-series analysis. As will be elaborated on
in Section 7, it is, however, suitable for correlation analysis
and can reveal other and potentially more interesting find-
ings than one of the two other research designs discussed
above.

5. DATA SOURCE
For our analysis of communication patterns and Open Source
Software project’s productivity on a reasonable number of
projects over time, there are several constraints on data ac-
quisition. The biggest challenge is to identify projects that
fulfill the criteria of consistent data over time. The analy-
sis of communication network structure requires rather big
projects in order to be confronted with interesting network
effects that can reasonably be analyzed by means of stan-
dard social network analysis techniques. While large parts
of related work on Open Source Software development use a
large number of Sourceforge.net projects, we could not solely
rely on this vast data source since it does not host very
many big projects that are suited to our analysis of com-
munication structures over time. We hence aggregated can-
didates from various Open Source Software directories and
manually identified projects that provide sufficient amounts
of data. Thereby, automated approaches such as that of
[2] are not feasible in our setup since not all information is
publically available. Instead, in some cases, we need to con-
tact the projects’ administrators and ask them for mailing
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list archives. We do not believe that our data acquisition
strategy introduces a serious bias since small Open Source
projects, which were not covered by our study, do not often
represent truly collaborative and already successful projects.

Thereby, we use the archived mailing lists of eleven different
Open Source projects for analyzing communication patterns
and structures. For a given period of time, a network graph
is constructed, where each node represents a person. The
graph’s edges linking the persons represent the e-mails that
have been exchanged. The edges’ weights indicate the num-
ber of e-mails that have been exchanged between the cor-
responding two participants. Formally, a graph or network
is given by G = (VG, EG), where VG is the set of vertices
and EG is the set of edges that constitute the graph. We
do not consider directed networks that show the direction of
the sent e-mails, as this is not relevant to our analysis.

For measuring productivity, we use the Open Source Soft-
ware projects’ bug tracking databases, which is in line with
related work [33]. In the case of the analyzed projects, these
additional data sources are freely accessible. They represent
a type of workflow management system and help the devel-
opers to organize the bug fixing process. For each listed bug,
the system keeps track of several attributes, e.g.,

• the initial reporting date,

• a description of the bug,

• its current status (e.g., ‘fixed’, ‘open’, . . . ), and

• the dates of subsequent actions, such as the resolution
of the bug.

Using these attributes, we can define a measure of produc-
tivity as given in Section 6.1. Of course, the software devel-
opment process and its productivity consists of much more
than bug tracking. However, as elaborated on in the fol-
lowing, productivity of software engineering is very difficult
to measure. We hence follow the argument of [17] that bug
tracking is the one sub-process of software engineering that
involves everybody of the community. Quality management,
which bug tracking belongs to, is also a very important as-
pect of the entire software engineering process from a fi-
nancial point of view that accounts for large parts of total
software budgets [42].

6. VARIABLE MEASUREMENT
6.1 Productivity
While in traditional research settings, productivity has often
been defined as ‘output per input’, in knowledge work, a
definition of productivity as a combination of effectiveness
and efficiency is becoming more common [46]. Effectiveness
means ‘doing the right things’ and is in our setting of less
relevance than efficiency (‘doing things the right way’) since
software engineering tasks are rather fixed and well defined.
Efficiency is the more interesting factor here as it can be
seen as the main outcome measure influencing productivity.

An important argument for the higher importance of output
than input in knowledge work productivity is data availabil-
ity and measurement. While in conveyor-belt-type of work,

input can be easily measured via operation hours, knowledge
work is much more complex and interweaved over tasks. It is
hence hardly feasible to precisely measure input for a given
task. A knowledge worker usually executes diverse tasks in
parallel and does not keep time on a fine grained level, such
as minutes or even seconds. This is one of the reasons for
the dominance of efficiency-based over output/input-based
productivity definitions in knowledge work contexts.

In line with this knowledge work perspective on productivity,
we follow Kidane and Gloor’s [33] productivity definition in
a software engineering and bug tracking context for a given
period of time as

productivity =
Number of bugs reported and fixed

Number of reported bugs
.

This definition deviates from [33, p. 20] in that we only count
bugs that have been reported and fixed in the same period
of time. This is due to a correction of an apparent data in-
consistency in the analyzed Open Source Software projects’
bug tracking databases. These list large amounts of bugs
as fixed on the exact same point of time with an accuracy
of a second. Obviously, the “date of last change” does not
represent the true bug resolution time in these cases but is
rather the result of an automatic data correction procedure.
However, the initial reporting date of the bugs did not ex-
hibit any inconsistencies. If we included all these bugs with
wrong timestamps, the observed productivity values would
be much too high for certain periods of time. Our way of
measuring productivity avoids this problem and is more ro-
bust against bug database entries with erroneous date en-
tries.

6.2 Network Centralization
The second measure of network topology is centralization.
We use betweenness centrality for measuring how centralized
the communication networks are. While there exist other
concepts of measuring centrality, the betweenness central-
ity is one of the most commonly used ones [9, 13, 59]. The
betweenness centrality for a single node v is defined as

BC(v) =

 ∑
s 6=v 6=t

σst(v)

σst


︸ ︷︷ ︸

centrality

·
(

2

(|VG| − 1)(|VG| − 2)

)
︸ ︷︷ ︸

normalizing factor

, (1)

where σst is the number of shortest paths from node s to t,
and σst(v) is the number of shortest paths between s and t
that pass through node v. The“normalizing” factor in Equa-
tion (1) rescales the betweenness centrality to the interval
[0, 1] [9].

The centralization for a network G with n nodes is defined
as

BC(G) =

∑n
i=1 (BC(n∗)− BC(vi))

n− 1
, (2)

where BC(n∗) is the maximum betweenness centrality value
of a node in the whole network. The denominator (n −
1) normalizes the entire network’s centralization to a value
between zero and one [59].

727



1 2 3 4 5 6 7 8 9 10 11

0
.0

0
.2

0
.4

0
.6

0
.8

P
ro

d
u

c
ti
v
it
y

1 2 3 4 5 6 7 8 9 10 11

0
.2

0
.4

0
.6

0
.8

B
tw

n
. 

C
e

n
tr

a
lit

y

1 2 3 4 5 6 7 8 9 10 11

0
.0

2
0

.0
6

0
.1

0
0

.1
4

D
e

n
s
it
y

1 2 3 4 5 6 7 8 9 10 11

1
0

0
3

0
0

5
0

0

T
e

a
m

 S
iz

e

Figure 1: Overview of Intra-Project Variances.

6.3 Network Density
The third measure of network topology is density. It is de-
fined as the number of edges present in the graph, divided
by the maximum number of edges that could possibly exist.
Therefore the network’s density ∆(G) is given by [59, p. 129]

∆(G) =
2 · |EG|

|VG| · (|VG| − 1)
. (3)

The density ∆(G) measures how connected different persons
(nodes) of a network are. The networks we analyzed show
rather small density values, usually below 0.1, which means
that 10% or less of the possible connections between the
nodes are actually established by mail exchange. However,
small values for the density are not uncommon, as sociology
regards values above 0.4 as high [41]. Studies have shown
that networks with higher densities display a higher degree
of mutual control and solidarity [41, p. 84]. Furthermore
dense networks are said to represent communities that a
more capable of finding and pursuing common goals than
less dense ones. Anyhow, one should be careful to conclude
that low density networks – like the ones we analyze here –
exhibit a slow distribution of information (c.f. [15]), because
findings for non-electronic social networks are only partly
applicable to virtual communities [58]. Actually, researchers
have shown that Open Source Software communities show
rather fast patterns of information exchange [10].

6.4 Team Size
Our hypotheses of Section 3 include a size construct which
we measure by the “team size” variable. In order to measure
how many people have been participating in the communi-
cation during a certain period of time, we simply interpret
the number of nodes in the communication network G as the
size of the team. As defined in Section 5, every participant
of the mailing list communication is represented by a single
node in the network. Formally, the team size is given by the
set of nodes’ cardinal number:

team size = |VG|.

7. DATA ANALYSIS
Building on the variable definitions of the previous section,
we now present the results of our data analysis. As stated in

Section 4, our research design explicitly balances the amount
of projects and timeframes available therein. The advantage
of this holistic view on the dynamics of Open Source Soft-
ware development come at the expense of applicable research
methodology. In line with [18], we cannot apply standard
time-series analysis in this setup but introduce an alternate
methodological approach to answering our research question
before presenting analysis results.

In this section, we present our approach for analyzing and
interpreting the data sources described above. We first out-
line the aggregation of variables and measures and then ex-
plicitly address the problem of different variances across the
OSS projects. This problem has been ignored by studies
conducted before [63,64].

7.1 Methodology
Our research methodology consists of three steps:

1. Analyze differences in variances across projects in or-
der to demonstrate the necessity to analyze timeframes
of different projects separately.

2. Per project, analyze the correlations of the variables
with time.

3. Compare the results of the previous step across projects
and legitimize the finding’s statistical validity with an
additional correlation and Pearson product momen-
tum test.

In step 1, we explicitly address a shortcoming of parts of
related work (e.g., [63, 64]) in that we analyze whether two
randomly chosen samples of a single project are more alike
than two randomly chosen samples of different projects. [63,
64] do not analyze these variances but choose a research
design that inflates the number of samples by analyzing all
timeframes of all projects in a single analysis. However, our
methodology checks for the assumption that these samples
are drawn from a unique distribution.

In step 2, we assume (and confirm in Section 7.2) that the
variances among samples within a project are less than those
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Figure 2: Project ‘gcc’.
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Figure 3: Project ‘kde’.

spread over all projects and that a joint analysis of all avail-
able timeframes of all projects is therefore not methodolog-
ically sound. Instead, we rather analyze each project sepa-
rately according to the following formal scheme:

For each project p ∈ P and each variable v, let Vp be the
set of corresponding measurements of v for the time slots
analyzed for p. Further let

av =
1

|P |
∑
p∈P

 1

|Vp|
∑
v∈Vp

v

 .

Then, for each project p, the first aggregated measure per
variable v is

dv,p = −av +
1

|Vp|
∑
x∈Vp

x.

It represents the difference of a project’s average variable
value from the cross-project average of the same variable.
Hence, this measure does not yet reflect the longitudinal
nature of our study but rather serves as a comparison to
related work on a cross-sectional basis.

The time-dependent aggregation builds on significant cor-
relations of a variable v with the time variable. For each
project p ∈ P and each variable v with measurements Vp

and the time slots Tp, let cv,p be the Pearson correlation co-
efficient of the correlation between Vp and Tp if the Pearson
product momentum test of this correlation is significant at
the 5% level and 0 otherwise.

In step 3 of our research methodology, we compare the val-
ues of dv,p and cv,p across all analyzed projects. This com-
parison can reveal interesting findings on a qualitative level
already. It can be observed which variables’ temporal devel-
opments coincide. In addition to answering our research hy-
potheses for each project separately, this final step enables
a holistic answer. In order to demonstrate the statistical
significance of these findings, the associations of postulated
effects are analyzed by correlating the dv,p and cv,p values
of all eleven projects. Despite the small number of samples

in this additional meta-analysis’ correlation, the hypothe-
ses’ significance can be confirmed by means of the Pearson
product momentum test.

7.2 Analysis and Results
The first step of analysis according to our research method-
ology as described in the previous section is to compare the
variances of our variables across different projects. In line
with related work, we choose intra-project variance boxplots
for this analysis (e.g., [17]). Figure 1 shows four different
charts, one for each variable. All x -axes show the eleven
different projects and the y-axis shows the corresponding
variable measure in each case. The boxplots in Figure 1 re-
veal that all four variables take very different levels across
projects. There is little overlap between different boxplots
of a subchart, which indicates that the measurements per
timeslots of different projects must be seen to be drawn from
different distributions. This result legitimizes our research
design to analyze projects and timeslots separately. It must
also be seen as a critique of part of related work that ignores
the different variations (e.g., [63,64]).

Next, we take a more detailed look at the temporal develop-
ment of our variables in two example projects. In Figure 2,
three variables are plotted on the y-axes against time on
the x -axis. The three scatterplots in this figure all represent
the ‘gcc’ project. All three plots take a more or less lin-
ear form. Accordingly, the correlations of all three variables
with time are significant at the 5% level. The opposite case
is present in the project ‘kde’ which is depicted in Figure 3.
The seemingly random plots yield insignificant correlations
of the three variables and time. Hence, various of the effects
postulated in our research hypotheses can be confirmed to
exist in ‘gcc’ but cannot be observed in ‘kde’.

The comparison of these two projects shows that the dy-
namics of Open Source Software development are complex
and may vary a lot across different projects. Due to our
longitudinal, multi-project research design, we are able to
go beyond merely discussing the effects present in individ-
ual projects. We can rather derive holistic answers to our
research hypotheses that consider all analyzed projects at
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Project Temporal Correlation Delta from Avg. Level

Produc. Centr. Density Size Produc. Centr. Density Size

ant 0.692 – – – -0.173 0.070 0.047 -104
apache – – 0.480 -0.638 -0.181 -0.005 0.005 -50
gcc 0.865 0.670 0.555 -0.904 0.026 -0.128 -0.026 252
gimp 0.426 – -0.630 0.680 0.034 0.094 0.011 -70
gnumeric 0.667 – 0.555 -0.683 0.260 0.266 0.029 -116
gtk – -0.606 – – 0.260 0.042 -0.014 -37
kde – – – – -0.017 -0.126 -0.007 35
maemo 0.771 – 0.887 -0.669 -0.141 -0.085 -0.022 51
python -0.715 -0.402 -0.741 0.781 0.205 -0.076 0.007 9
samba 0.727 – 0.680 -0.708 -0.039 0.051 -0.016 -14
wine 0.747 – – – -0.235 -0.103 -0.014 43

Table 1: Aggregated Correlation Results and Descriptive Statistics per Project.

the same time. For this purpose, the third step of our pro-
posed research methodology consists of a meta-analysis of
the temporal correlation results.

Table 1 serves as a basis for this analysis. It can be seen as
an outcome of the project-centric analysis up to the second
step of our research methodology. The projects are listed in
the left column. For each project and each variable, two fur-
ther values are given. The 2nd to 5th columns represent the
Pearson correlation coefficients of the corresponding vari-
ables and time, i.e., dv,p as defined in Section 7.1. Where
this correlation is not significant at the 5% level, a dash is
displayed. For example, the three scatterplots in Figure 2
correspond with row ‘gcc’ and the columns ‘Produc.’, ‘Size’,
and ‘Centr.’ in left part of Table 1.

In addition to the analysis of Open Source Software dynam-
ics by means of temporal correlations, we also double-check
our results by analyzing the static level of a variable in com-
parison to all projects. Table 1’s four rightmost columns
serve as a basis for this analysis. These columns repre-
sent the difference of the corresponding project’s arithmetic
mean and the cross-project arithmetic mean of the same
variable, i.e., cv,p of Section 7.1. Analyzing these static lev-
els provides valuable additional insights. For example, the
size-delta of 252 for project ‘gcc’ reveals that despite this
project’s decreasing team size, ‘gcc’ is still much larger than
the average of all analyzed projects (each averaged over the
entire time covered by this study). Additionally, the right
part of Table 1 representing the static levels of variables can
be compared to the left part representing dynamics. For
example, in project ‘gnumeric’, productivity and size show
temporal correlations in opposite direction as postulated in
Hypothesis 2. This effect can also be observed statically,
since ‘gnumeric’ has an above average level of productivity
but its size is below average. However, this comparison does
not hold in many cases and does not yield statistical signifi-
cance in the meta-analysis conducted below. It must hence
be seen as an add-on to our analysis only.

Regarding Hypothesis 1, the second column (temporal cor-
relation of productivity) reveals that seven projects show
the expected association (embodied in the positive correla-
tion coefficient), that project python exhibits the opposite
direction, and that three projects do not have a significant

association between productivity and time. The first hy-
pothesis can hence be said to be confirmed and is statisti-
cally significant at the 5% level according to a t-test (the
alternative hypothesis that the true mean productivity co-
efficient is negative can be rejected, t = 2.543, p = 0.015).

Hypothesis 2 postulates a negative association of productiv-
ity and team size. An additional correlation of the temporal
variables for the corresponding two variables (productivity
and size) yields a coefficient of −0.605 and is significant at
the 5% level. Hence, projects whose size increases over time
tend to show decreasing productivity and vice versa. This
dynamic effect is also supported by the static average levels
(right hand side of Table 1) which also yield a negative corre-
lation coefficient, despite not being statistically significant.
Those projects with comparably high levels of productivity
are rather small in terms of team size and vice versa.

The third hypothesis is the first to regard network structure.
It postulates a positive association of communication net-
work centrality and productivity. The additional correlation
of both corresponding dynamic variables yields a coefficient
of 0.645 and is significant at the 5% level. Those projects
that show increasing productivity rates also become more
central over time and vice versa. Again, the effect is also
visible when correlating the static variables, though lacking
statistical significance.

The next hypothesis of network structure, Hypothesis 4a,
regards a potential negative association of team size and
communication network density. Its intuition is the larger
teams get, the more difficult it is to communicate with ev-
eryone. The additional correlation of the temporal ‘Size’
and ‘Density’ variables yields a coefficient of −0.970 and is
significant at the 1‰ level. The static variant confirms this
drastic association and is also significant at the 1% level.
Hence, both variables must be seen to be highly correlated
both dynamically and statically.

The last hypothesis, Hypothesis 4b, also regards network
density and postulates a negative association with network
centrality. However, against our expectations, the opposite
effect can be observed in our data. Despite not being sta-
tistically significant, the additional correlation reveals that
centrality and density dynamics are coherent. Increasing
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centrality seems to not necessarily lead to decreasing den-
sity and vice versa. A possible explanation is that projects
want to benefit from shortened information paths through
central nodes but also want to keep the less efficient commu-
nicative links as a backup and bottleneck prevention. When
analyzing the static variant of this hypothesis, the same ef-
fect is present (coefficient 0.649) and is even significant at
the 5% level.

8. CONCLUSIONS
In this study, we analyze the temporal development of fac-
tors that have previously been found to influence Open Source
Software development success. Thereby, we identify a weak-
ness of related longitudinal studies in this field. They either
analyze very few projects for many timeslots or conduct a
delta-study of two points in time for many projects. A third
group of related work fails to account for significant varia-
tions between projects by analyzing timeslots of all projects
jointly.

We address these shortcomings of related work by analyz-
ing multiple projects over a reasonable number of times-
lots. This research design comes at the expense of the un-
applicability of standard time-series analysis techniques [18].
We apply a two-stage Pearson correlation-based research
methodology which enables us to draw statistically signif-
icant findings.

In addition to the distinction from related work by our lon-
gitudinal, multi-project research design, we make an impor-
tant contribution to the literature on collaboration in Open
Source Software development with our findings. Our results
show that the theory of organizational learning is applicable
in the context of Open Source Software development. Most
of the analyzed projects exhibit increasing levels of produc-
tivity over time. Our work hence confirms that the findings
of learning theory in commercial software development (e.g.,
[11]) are also valid in the context of Open Source Software.
The implications for project coordinators are manifold. For
example, they should attempt to foster participants’ long-
term commitment to the project in order to fully exploit
knowledge accumulation and learning benefits.

Our findings regarding diseconomies of scale and the nega-
tive temporal association of productivity and team size im-
ply that projects should not become too big. Open Source
Software project administrators should react to growth in
size with strict modularization and splitting too big projects
in parts in order to keep productivity high. In line with re-
lated work on collaboration network structure, we find that
centrality is beneficial for productivity. It is thus desirable to
identify and develop key contributors. Strengthening their
position in the collaboration network yields rises in produc-
tivity.

A rather surprising finding of our work is the positive tem-
poral association of collaboration network density and cen-
trality. It implies that Open Source Software projects do
not rely on central nodes too much in order to avoid bottle-
necks. This collaboration network evolution suggests that
the advantages of centrality – such as shortened paths of
information flow – can be utilized, but that the risks as-
sociated with centralization – such as reliance on central

nodes and the creation of potential bottlenecks – are pre-
vented at the same time by maintaining backup collabora-
tive ties. Should the central nodes become unavailable, work
can quickly be routed via the less efficient, but nevertheless
maintained backup connections. We are not aware of other
works that have detected this efficient and failsafe commu-
nication strategy in the dynamics of Open Source Software
development.

Future work should focus on transferring our results to an
even larger number of Open Source Software projects. Ad-
ditionally, more constructs than the analyzed ones can be
transferred from the organizational learning and communi-
cation network literature. For example, researchers could
transfer the results from related works studying member-
ship dynamics to the context analyzed in this study.
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