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ABSTRACT 
Models offer visual support for analyzing complex domains such 
as business processes and information systems. In both cases, 
models are developed using graphical modelling languages. In our 
study we focus on usability evaluation of modelling languages for 
the model interpretation scenario. The study is based on a causal 
model of hypotheses, which was developed under consideration of 
psychological cognitive theories and usability theory. Survey data 
is collected and the causal relations hypotheses are assessed using 
a structure equation modelling approach. Our study shows 
important findings for practical and theoretical issues of how 
differing modelling languages are influencing usability attributes 
on causal stages in model interpretation.  
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1. INTRODUCTION 
In organizations models are important for documenting business 
processes and specifying information system requirements under 
development. Models are represented by using graphical 
modelling languages such as BPMN, EPC and UML providing a 
set of elements, relations and rules for combining them. In 
general, graphical modelling languages aim to support the 
expression of relevant aspects of real world domains such as 
business processes or application system structures [1]. For 
accurate human interpretation it is important that a model 
reproduces the knowledge contained in a clearly arranged and 
well-structured manner. When evaluating the usability of 
modelling languages it is necessary to distinguish between model 
interpretation and model development scenarios [2]. A model 
developer needs (1) to learn a modelling language, (2) to 
remember the language’s elements and syntax to ensure correct 
models, (3) to reach a fast and correct task accomplishment and 
(4) to be satisfied with the modelling language.  

A model interpreter needs to recognize the meaning of a model. 
Due to this fact a model interpreter requires an intuitive and well-
defined knowledge regarding shapes, model structure and syntax 
[3].         
This summary research report focuses on empirical usability 
evaluation of graphical modelling languages in model 
interpretation. We define underlying background theories 
connected with our research. Based on this we are theoretically 
deriving a causal model of hypotheses, which is validated with 
empirical data collected in a follow-up experimental data 
collection. Finally, we conclude and interpret the survey results 
and consequently derive theoretical and practical implications.  

2. BACKGROUND THEORIES 
In general, usability theory has its roots in cognitive psychology 
and is a relatively young branch of computer science. While some 
of the principles of usability theory are gradually making their 
way to the mainstream software applications the underlying 
research is less known [4]. However, our research model 
integrating usability determinants in the field of business 
modelling is based on two centre theories adopted by usability 
research. First we underlie cognitive theory, which generally 
defines the external impact of human learning and acting. The 
theoretical constructs of cognitive psychology have direct 
analogies in model interpretation scenarios. From the traditional 
cognitive point of view, the usability system in our study is 
composed of three basic information generating and processing 
units, (1) the human being such as model interpreter, (2) the 
model, which contains the information interpreted and (3) 
particular language the graphical model is based on [5].  
Secondly we underlie a development of cognitive theory called 
cognitive load theory [6]. This theory is focusing on the impact of 
memory load to human learning and knowledge acquisition. Figl 
et al. (2010) mapped cognitive theory to the context of modelling 
languages [7]. Cognitive theory differs between three types of 
cognitive load. The extraneous cognitive load is influenced by the 
way the information is represented. The intrinsic cognitive load is 
determined by information complexity. Finally germane cognitive 
load is strongly connected with learning processes and especially 
the load expended for learning [8]. As a result, the cognitive load 
referring to learning and understanding should be expanded. 
Extraneous cognitive load should be held low by minimizing 
irrelevant information. Transferring this to our approach, we 
conclude that language specific properties categorized in three 
loads are influencing the usability in model interpretation.     
The variety of definitions and measurement models of usability 
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complicates the extraction of capable attributes for assessing the 
usability of modelling languages. A usability study would be of 
limited value if it would not be based on a standard definition and 
operationalization of usability [9]. The International Organization 
for Standardization (ISO) defines usability as the capacity of the 
software product to be understood, learned and attractive to the 
user, when it is used under specified conditions [10]. Additionally, 
the ISO defined another standard which describes usability as the 
extent to which a product can be used by specified users to 
achieve specified goals with effectiveness, efficiency and 
satisfaction in a specified context of use [11]. The Institute of 
Electrical and Electronics Engineers (IEEE) established a 
standard, which describes usability as the ease a user can learn 
how to operate, prepare inputs for, understand and interpret the 
outputs of a system or component [12]. Dumas and Redish (1999) 
define that usability means quickness and simplicity regarding a 
user’s task accomplishment. This definition is based on four 
assumptions [13]: 1. Usability means focusing on users, 2. 
Usability includes productivity, 3. Usability means ease of use, 4. 
Usability means efficient task accomplishment. Shackel (1991) 
associates five attributes for defining usability: speed, time to 
learn, retention, errors and the user specific attitude [14]. Preece et 
al. (1994) combined effectiveness and efficiency to throughput 
[15]. Constantine and Lockwood (1999) and Nielsen (2006) 
collected the attributes defining usability and developed an overall 
definition of usability attributes consisting of learnability, 
memorability, effectiveness, efficiency and user satisfaction [16], 
[17]. The variety of definitions concerning usability attributes led 
to the use of different terms and labels for the same usability 
characteristics, or different terms for similar characteristics, 
without full consistency across these standards; in general, the 
situation in the literature is similar. For example, learnability is 
defined in ISO 9241-11 as a simple attribute, “time of learning”, 
whereas ISO 9126 defines it as including several attributes such as 
“comprehensible input and output, instructions readiness, 
messages readiness […]” [18], [19], [11]. As a basis for our 
following up research we are underlying usability definition for 
modelling languages in model interpretation scenario including 
attributes as follows: The usability of modelling languages is 
specified by learnability, memorability, effectiveness, efficiency, 
user satisfaction and perceptibility. The learnability of modelling 
languages describes the capability of a modelling language to 
enable the user to learn interpreting models based on particular 
language. The modelling language and its semantics, syntax and 
elements should be easy to remember, so that a user is able to 
return to the language after some period of non-use without 
having to learn the language and especially the interpretation of 
models developed with specific language again. Effective model 
interpretation should be supported by particular language for 
reaching a successful task accomplishment. Modelling languages 
should be efficient to use, so that a high level of working 
productivity is possible. Users have to be satisfied when using the 
language. The language should offer a convenient perceptibility 
regarding structure, overview, elements and shapes so that an 
interpreter is able to search, extract and process available model 
information in an easy way [2, 20].   

3. THEORY DEVELOPMENT 
The usability concept in our research is specified by learnability, 
memorability, effectiveness, efficiency, user satisfaction and 
perceptibility. We state that these attributes and especially their 

causal interaction influence usability of model interpetation based 
on different modelling languages.   

3.1 Structural Model 
Usability literature and transferred theories only set the different 
attributes on one causal level. For example, Nielsen (2006) and 
Abran et al. (2003) state that usability is affected by attributes 
with same weightings [17, 18]. We argue that the usability of 
modelling languages is defined by chosen attributes on different 
stages. Furthermore we state a causal connection between 
usability attributes, which is examined in our empirical research. 
Adopting the background theories we propose our research model 
in figure 1. The research model includes two basic parts, the 
metamodel properties and the attributes defining usability. 
Metamodel properties are set in language’s metamodel. They are 
language specific attributes, which affect the usability attributes 
on different stages.  

 

 

 

 

 

 
 

 

 

 

 

HYPOTHESIS 1. The range of different element colours and 
geometrics set in the language’s metamodel (VP) are positively 
influencing user’s ability to learn the application of the modelling 
language (LA) 

With considering perceptive factors affecting modelling 
languages’ usability visual based metrics such as the number of 
different element shapes and the number of different element 
colours were defined [21]. Hall and Hanna (2004) analyzed the 
impact of colour on web usability attributes in an empirical 
survey. They concluded that the application of different colours 
results in a higher grade of website structuredness, which leads to 
more efficient information processing in the user’s brain [22]. 
Transferring that, we can assume that more element colours set in 
the language’s metamodel are leading to more information 
structuredness, which is influencing the learnability of modelling 
languages connected with model interpretation in a positive way. 
Furthermore we assume that the variance of different geometric 
shapes depicting different element types is positively influencing 
language learnability. The theoretic basis for this assumption is 
initially given by Comber et al. (1997). They concluded that 
screen complexity including the application of various geometric 

 

Figure 1 Research Model 
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shapes is a positive influencing variable of usability and 
especially learnability. However, they additionally underlay a 
positive trade-off between screen complexity and learnability 
[23].  

HYPOTHESIS 2. The range of different element colours and 
geometrics set in the language’s metamodel (VP) are positively 
influencing user’s ability to remember the elements and syntax of 
the modelling language (MA) 

Hall and Hanna (2004) analyzed a strong impact of visual 
properties on website structuredness [22]. Furthermore Nembhard 
and Napassavong (2002) found a positive correlation between 
structured information and information storage in human’s brain 
[24]. Deducing this to our model we state that visual variability of 
modelling languages is positively influencing the user’s ability to 
remember elements and syntax of modelling languages.  

HYPOTHESIS 3. The complexity of a modelling language (LC) 
affects negatively the proband’s ability to learn this language 
(LA) 

Referring to Rossi and Brinkkemper (1996) elements, relations 
and properties can be abstracted and defined as modelling 
language complexity. The language complexity influences the 
usability attributes [25]. For analyzing the language’s complexity 
Welke (1992) and additionally Rossi and Brinkkemper (1996) 
developed metrics based on the OPRR data model [26], [27]. 
Transferring this to our approach metrics such as the number of 
object types (i.e. class), number of relationship types (i.e. 
association) and the number of property types (i.e. class name) are 
relevant for analyzing the complexity of a modelling language. 
The more elements, relations and properties a modelling language 
consists of, the more difficult a user can learn the application due 
to high semantically and syntactical power. We suppose, for 
example, that a high range of BPMN-elements is negatively 
influencing the user’s ability of learning the interpretation of 
BPMN-models.  

HYPOTHESIS 4. Language complexity (LC) affects negatively 
the user‘s ability to remember elements, relations and syntax 
within a period of non use/training (MA) 

According to Kintsch 1998 cognitive processes underlie 
comprehension of a specific domain [28]. Nembhard and 
Napassavong (2002) found out that the complexity of a special 
domain influences memorability negatively [24]. According to our 
approach we assume that metamodel complexity is negatively 
related to memorability of modelling languages. A high 
semantically and syntactical complexity of language’s metamodel 
is complicating model interpretation due to hindered ability of 
remembering elements, relations and their specific way of 
interpreting them. 

HYPOTHESIS 5. The gradient of a language‘s learning curve 
(LA) is positively related to the ability of completing a task with 
minimal errors and maximal completeness (ES) 

The ability of learning a modelling language in an easy or difficult 
way influences language’s effectiveness in model interpretation 
when the language is applied. On the one hand we imply that low 
learnability values of a modelling language result in rising error 
rates and decreasing task completion rates. On the other hand we 
assume that an easy to learn modelling language support task 
completion rates and lowers error rates. In cognitive psychology 

low gradients of learning curves causes ineffective application of 
a construct in a specific domain [29]. Therefore our underlying 
assumption is that modelling languages, which are difficult to 
learn, are offering a limited user individual application. This fact 
influences task completion rates and task error rates, which are 
manifest variables for measuring the latent construct 
effectiveness. 

HYPOTHESIS 6. The user’s ability to remember the range of 
elements, relations and syntactic regulations (MA) is positively 
related to the user’s ability of performing tasks with minimal 
errors and maximal completeness (ES) 

Memorability describes the “remembering rate” of a modelling 
language. Overall it describes the fact that a modelling language 
should be easy to remember regarding its elements, syntax and 
semantics [30], [31]. Memorability is a very important attribute 
for measuring the usability of modelling languages considering 
that users may not be using a modelling language all the time 
[17]. Hence, we hypothesize that an easy to remember modelling 
language results in less errors and higher completion rates 
regarding model interpretation tasks.  

HYPOTHESIS 7. The gradient of a language‘s learning curve 
(LA) is positively related to the efficiency (EY) that is offered by 
modelling languages during applying them. 

Learnability is probably the most important attribute of usability, 
preferably a modelling language is easy to learn. Learning to use a 
modelling language in interpretation scenario seems to be the first 
experience most users are confronted with when using a new 
modelling language [25], [30]. Easy to learn languages offer a 
higher user-individual learning growth and consequently higher 
curve gradients based on task completion time values than 
difficult to learn modelling languages [32]. We state that this 
effect is supporting efficiency in interpreting models. 

HYPOTHESIS 8. The user’s ability to remember the range of 
elements, relations and syntactic regulations (MA) is positively 
related to efficient task accomplishment (EY) offered by the 
modelling language 

Usability research shows that memorability is an initial basis for 
applying a system or a website [17]. Transferring this we state that 
some modelling languages are easier to remember than other. For 
example, it seems that BPMN elements are not easy to remember 
because of its high range of different element types. From this fact 
can be deduced that an efficient use and consequently a fast task 
completion is influenced by the memorability of the different 
metamodel properties a language consists of.  

HYPOTHESIS 9. The ability to perform a task with minimal 
errors and maximal completeness (ES) is positively related to 
user‘s individual satisfaction (US) with a modelling language 

Effectiveness characterises the fact, that it should be possible to 
reach a successful task accomplishment. In this regard, a user 
should be able to develop and comprehend models with low error 
rates and high task completion rates [33], [34]. Regarding the 
usability of modelling languages we imply that languages offering 
high effectiveness result in higher satisfaction values. In contrast 
we state that languages offering low effectiveness values are 
affecting user’s individual satisfaction negatively.  
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HYPOTHESIS 10. The Efficiency of task completion (EY) is 
positively related to user’s individual satisfaction (US) of 
modelling languages 

A modelling language is efficient to use when the users are able to 
develop or comprehend a model relatively quickly and correctly 
regarding the regulations of the modelling language. Once a user 
has learned a modelling language it should be possible to reach a 
high level productivity regarding task completion time [35], [34]. 
Hence we hypothesize, that languages which afford an efficient 
interpretation completion result in higher values concerning user 
satisfaction.  

HYPOTHESIS 11. The variance of visual language properties 
(VP) set in the metamodel of the modelling language is positively 
influencing language’s perceptibility (PA) 

Many researchers analyzed the influence of visual differentiation 
caused by varying geometric shapes and colours in usability and 
primarily neurophysical research. For example, Westphal and 
Würtz (2009) investigated that visual differentiation is supporting 
object recognition and consequently information search and 
information extraction [36]. However, in our research model 
language’s perceptibility is measured by values indicating 
cognitive processes e.g. information search and information 
extraction [37]. Furthermore, Underwood (2009) corroborates the 
hypothesis that visual characteristics of an image are influencing 
eye movements [38]. From this we can deduce, that visual 
language properties, i.e. colours, geometric shapes, are positively 
influencing language’s perceptibility due to stronger visual 
differentiation in model diagrams.    

HYPOTHESIS 12. The complexity of modelling languages (LC) is 
negatively influencing visual perceptibility (PA)  

The complexity of modelling languages, which is set in the 
language’s metamodel, is strongly connected with syntactical and 
semantical complexity. For example, UML-class-diagrams 
contain a high range of syntactically different relations (e.g. 
association, aggregation etc.), which can be expanded by 
cardinalities. Furthermore, a class diagram generally includes two 
different class types: standard and abstract classes. Pan et al. 
(2004) analyze the viewing behaviour of web pages by using an 
eye-tracker [39]. They come to the conclusion that visual 
complexity negatively contributes to eye-movement behaviour 
due to difficulty of information search and information extraction. 
In our research model we state, that syntactic and semantic 
language properties are negatively influencing the perceptibility 
of a diagram developed by the application of specific modelling 
languages.      

HYPOTHESIS 13. The visual perceptibility (PA) of modelling 
languages is positively contributing to effective model 
interpretation (ES) 

With analyzing visual perceptibility we aim to measure processes 
of information search, information extraction and information 
processing in user’s brain during model interpretation. For 
example, a low visual perceptibility of a model results in difficult 
information search and information extraction. Consequently we 
deduce that this fact is especially influencing task completion rate 
and subsequently effectiveness of model interpretation. Finally we 
hypothesize that visual perceptibility is influencing user’s ability 
of ending an interpretation task with minimal errors and maximal 
completeness.  

HYPOTHESIS 14. The visual perceptibility of modelling 
languages (PA) is positively contributing to efficient model 
interpretation (EY) 

Goldberg and Kotval (1999) concluded that the number of overall 
fixations is negatively correlating with search efficiency. We state 
that this effect is influencing interpretation time and consequently 
interpretation efficiency [40]. Furthermore, high fixation durations 
implicate participant’s difficulty of extracting information from a 
model [41]. Accordingly, this effect leads to increasing 
interpretation times and consequently lower efficiency.  

HYPOTHESIS 15. The visual perceptibility (PA) of models 
developed by the application of modelling languages affects 
positively the user’s satisfaction (US) of specific modelling 
languages  

Many researchers concluded a strong impact of design (screen, 
website etc.) and especially layout and order of elements on target 
individual’s satisfaction [42], [43]. Lindgaard 2007 states a 
positive link between user satisfaction and visual screen design 
[44]. Subsequently, in our research model we assume that a high 
language’s visual perceptibility results in higher user satisfaction.  

Furthermore we include additional variables as controls 
recognizing their effects on key constructs in our research model. 
The users of modelling languages differ regarding modelling 
experience. This fact influences the task accomplishment and 
consequently the usability and has to be considered in our 
research model [17]. Hence, the user and his/her individual 
modelling experience must be treated as control variable. The 
level of difficulty and complexity of a particular model affects 
understandability and consequently the usability of the applied 
modelling language [45]. When conducting a survey on usability 
evaluation of modelling languages, the complexity of a particular 
model applied in an experiment i.e. task complexity must be 
controlled for minimizing its influence on the outcome.  

3.2 Measurement Model 
In this section we theoretically underlie chosen manifest variables 
working as indicators for latent constructs in our research model. 
Evaluating effectiveness requires analysis of task output with 
measuring quantity and quality of goal achievement [46]. 
Quantity is defined as the proportion of task goals represented in 
the output of a task. Quality is the degree to which the task goals 
represented in the output have been achieved [47]. Bevan (1995) 
defined effectiveness as a product of quantity and quality [48]. 
Transferring this to our model, indicating manifest variables for 
measuring effectiveness are the grade of completeness and the 
grade of correctness of a model interpretation task.  
The efficiency is the amount of human, economical and temporal 
resources. Measures of efficiency relate to the level of 
effectiveness achieved to the expenditure of resources [47]. 
Measure values of efficiency include time taken to complete tasks, 
i.e. duration time for performing a model interpretation task [49].  
Learnability describes the ease of learning the application (i.e. 
interpretation) of modelling languages. For this characteristic, the 
standard measure values are based on task completion rates and 
the task accuracy [50]. In general, learnability is a development 
and can be graphically described by learning curves [32]. Hence, 
learnability can be measured by the rate of difference when the 
user repeats evaluation sessions [48]. Nielsen 2006 insists that 
highly learnable systems could be categorized as “allowing users 
to reach a reasonable level of usage proficiency (…)”[17]. 
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Furthermore, Nielsen (2006) proposes measuring proficiency by 
quantity and quality and of task fulfillment [17]. Thus, we chose 
grade of completeness and grade of correctness as basic variables 
for measuring learnability. With conducting two measuring points 
mp and mp+1, it is possible to analyze the relative difference 
between mp and mp+1 for indicating Δ learnability, i.e. individual 
learning progress in percent [24], [51].  
The visual perceptibility is measured by using the method of 
eye-tracking with analyzing the user’s visual attention [52]. In our 
research we aim to include eye-tracking for measuring user’s 
cognitive processes i.e. information search and information 
extraction during model interpretation process. The pioneering 
work regarding the use of eye-tracking was first carried out by 
Fitts et al. (1950) [41]. They proposed that fixation length is a 
measure of difficulty of information extraction and interpretation. 
Fixations are eye movements that stabilize the gaze over an object 
of interest. During this, the brain starts to process the visual 
information received from the eyes [53]. The number of fixations 
overall is thought to be negatively correlated with search 
efficiency [40]. Consequently, a larger number of fixations 
indicates less efficient search in a model. Concerning an eye-
tracking experiment for evaluating the visual perceptibility of 
modelling languages a large number of fixations implies an 
intensive search to explore the model’s diagram structure. This 
fact complicates the interpretation of a model. Furthermore, we 
aim to analyze the difficulty of information extraction in a model. 
Byrne et al. 1999 [54] propose tracking fixation duration time as a 
measure for information extraction. From this follows that longer 
fixations times during an interpretation process are indicating a 
participant’s difficulty extracting information from a model. 
Compared to the other latent variables in our research model, the 
individual satisfaction of a user while interpreting a model is a 
user subjective criterion that can be measured best by using 
standardized questionnaires [49]. Currently no standardized 
method for measuring user satisfaction in the modelling domain 
exist. Therefore, we mapped questionnaires focusing on system 
and website usability [55], [56]. For evaluating user satisfaction 
we developed a questionnaire, which consists of thirty items 
structured in 1) General impression, 2) Recommendation rate and 
3) Language application. We measured the constructs with 5-point 
Likert-scales. The development of this questionnaire is generally 
contributing to the Questionnaire for User Interaction Satisfaction 
(QUIS) and additionally the Software Usability Measurement 
Inventory (SUMI) [57] [55].   
Memorability is best measured as proficiency after a period of 
non-use provided a user has already learned a language [58]. The 
non-use period can be minutes for simple element meanings, 
hours for simple syntactic regulations and days or weeks for 
measuring a complete modelling language [50]. Accordingly, the 
measure values for memorability are neglect curves and time-
delayed knowledge tests [59]. Concerning the usability of 
modelling languages, the user must remember the different 
elements and its intended meaning (semantics), the syntax and the 
application. In due consideration of Nielsen 2006, the measuring 
points interval should be several weeks regarding memorability 
[17]. Thus, for measuring memorability we decided to use a 
knowledge test consisting of items focusing on 1) elements and 
relations, 2) syntax and 3) application of particular language. 
For measuring exogenous variable language complexity we track 
number of elements, number of relations and number of properties 
(LC) under consideration of Rossi and Brinkkemper’s (1996) 
OPRR-model and particular expansions by Recker et al. (2009) 

and Indulska et al. (2009) [27, 60, 61]. Furthemore, for indicating 
visual properties we are analyzing different colours and different 
geometric shapes set in language’s metamodel.  
For measuring model experience we track participant’s individual 
experience in 1) general modelling experience and 2) language 
experience on a 5-point Likert-scale. Finally, we operationalized 
model complexity by three indicator-variables: number of 
elements and relations (size), connectivity degree and semantic 
spread. With running causal analysis we include controls as 
moderator effects. 

4. RESEARCH METHODOLOGY AND 
DATA COLLECTION 
This study uses a various data collection methods for measuring 
manifest variables of latent usability attributes. Furthermore, we 
introduced an experimental design consisting of two data 
collection sessions per modelling language. The experiment 
focused on model interpretation tasks. Within these experiments 
we collected error rates, grade of completeness and task finishing 
time values for measuring efficiency, effectiveness and 
learnability, which is the relative learning growth between two 
data collection sessions. Additionally, we introduced the method 
of eye-tracking for analyzing visual perceptibility of modelling 
languages. The instruments were either adapted from traditional 
usability research or we developed new measuring instruments on 
modelling languages. A pretest was conducted prior collecting 
data for the field test. The research instruments were tested for 
reliability, content validity and construct validity. Necessary 
changes were made to improve measuring instruments. All pilot 
test participants were excluded from the analysis sample. 

4.1 Measurement Scales 
Multiple indicators measured all but one construct. The exception 
was EY, which represents a discrete value and therefore can be 
appropriately measured with a single item focusing on task 
completion time. We conceptualized and measured Language 
Complexity, Memorability, Learnability and Effectiveness as 
aggregations of different manifestations; thus the direction of 
causality is from indicator to construct (i.e. formative). The other 
constructs were operationalized as reflective indicators.     

4.2 Data Collection 
The sample includes third year students of business informatics. 
The experimental data collection, the questionnaire and the 
knowledge test were conducted with these students. The overall 
sample size amounts 57 students, 47% female and 53% male. The 
data collection was based on two different modelling concepts and  
connected languages. On the one hand process based languages, 
Event driven Process Chains (EPC), UML Activity Diagrams and 
on the other hand structure based modelling languages, UML Use 
Case and UML Class Diagrams were included in our survey. For 
developing variables measuring the latent construct learnability 
we introduce a second measuring point. In the session the students 
are confronted with one experimental task: the interpretation of 
given models. The interpretation scenario is structured in two 
parts. The first part is focusing on general observation while the 
second part includes verbal interpretation of given model. 
However, the interpretation task generates time, error, 
completeness and additionally eye-tracking values for measuring 
ES, EY, LA and PA. At the beginning of second collection phase 
we distributed the knowledge tests for measuring the ability of 
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remembering specific metalevel properties (MA). Subsequently, 
the user satisfaction (US) questionnaire was administered to the 
participants.        

5. DATA ANALYSIS AND RESULTS 
To test the proposed research model, data analyses for both the 
measurement model and the structural model were performed 
using partial leased squares (PLS), bootstrapping and the 
blindfolding method [62]. For calculating we took SmartPLS 
version 2.0 M3. Chin et al. (2003) defined various strengths of the 
PLS-approach. Partial Least Squares (PLS) gives reliable results 
and should being preferred to competing LISREL approach if 1) 
phenomena explored are new without existing construct and 
measuring theories, 2) structural model includes a large number of 
indicating variables, 3) relative small sample size and 4) detection 
of causal paths and predictions is focused on [63]. PLS is a 
powerful method of analysis because of the minimal demands on 
measurement scales, sample size, and residual distributions [64]. 
Although PLS can be used for theory confirmation, it can also be 
used to suggest where relationships might or might not exist and 
to suggest propositions for later testing [65].    

5.1 Validity and Reliability 
We conducted an exploratory factor analysis in SPSS for each 
construct of our models including all defined items using a 
Promax rotation. In all cases the Bartlett-test of sphericity 
indicating independency of construct items among was accepted. 
Consequently we analyzed different factors and assigned variables 
to specific factors considering Kaiser’s criterion [66]. Indicating 
acceptable validity items with loadings smaller than 0.5 were 
excluded from our model. By doing so we assure that our models 
include construct items, which are loading sufficiently on specific 
factors. 

5.2 Testing the Measuring Model  
Internal consistency reliability was evaluated using Cronbach’s 
Alpha, corrected item total correlation and average variance 
extracted (AVE) [67]. Cronbach’s Alpha coefficients were all but 
one higher than the proposed minimum cutoff score of 0.70 [68]. 
The alpha value for experience is 0.68. Barker et al. (1994) 
conclude that values between 0.60 and 0.70 are marginal and can 
be accepted as well [69]. Values for composite reliability are all 
higher than desired threshold of 0.60 [70]. Furthermore all 
reflective constructs had an minimum AVE (Average Extracted 
Variance) of 0.5, indicating adequate internal consistency of our 
model [67]. For testing reliability of formative constructs we 
analyzed R2-value proposed by Chin (1998) with a minimum 
cutoff of 0.19 [65]. Furthermore, Diamantopoulos and Winklhofer 
(2001) concluded that sufficient significant regression weights 
between formative constructs and other constructs in the path 
model are indicating formal construct validity [71]. As shown in 
the following section all relevant path regression weights are at 
least significant at 0.05-level. According to Fornell and Larcker 
(1981), constructs have adequate discriminant validity if the 
square root of AVE is higher than variance shared between 
construct and other constructs in the model [67]. In all cases the 

correlations between each pair of constructs were lower than the 
square root of the AVE for specific construct. In conclusion, these 
results as well as the factor analysis confirm that all constructs in 
our model are empirically distinct. Table 1 shows detailed values 
for each construct of our research model. 

Table 1 Reliability and Validity of our Research Model 

 
Measuring Model quality 

metrics 
Structural Model quality 

metrics 

 Type Alpha Composite 
Reliability AVE R2 Q2 

Threshold  
≥  

0.6 
≥  

0.6 
≥  

0.5 
≥ 

0.19 
≥ 

0.0 
Visual 
Properties 
(VP) 

R 0.96 0.98 0.97 NA* 0.78 

Language 
Complexity 
(LC) 

F NA NA NA NA* 0.58 

Memorability 
(MA) F NA NA NA 0.47 0.24 

Learnability 
(LA) F NA NA NA 0.20 0.10 

Efficiency 
(EY) R 0.72 0.75 0.60 0.19 0.08 

Effectiveness 
(ES) F NA NA NA 0.42 0.16 

User 
Satisfaction 
(US) 

R 0.89 0.90 0.68 0.19 0.07 

Perceptibility 
(PA) R 0.78 0.88 0.88 0.20 0.09 

Task 
Complexity 
(TC) 

R 0.70 0.83 0.63 NA* 0.31 

Experience 
(EX) R 0.68 0.62 0.52 NA* 0.66 

Notes. R: reflective, F: formative; n=114 for all constructs; NA: not applicable: because 
formative measures need not covary, the internal consistency of formative items is not 
applicable [65]. NA*: not applicable: because R2 value is only relevant for assessing 
endogenous latent variables in the inner structural model [65].  

 

5.3 Testing the structural model 
Figure 2 presents the results of structural model testing including 
regression weights and significance of the paths. According to 
Lohmöller (1989) path regression weights should be at least 0.10 
in order to be considered meaningful for discussion [72]. Our 
results confirmed the general assumption that language’s 
metamodel properties are influencing usability attributes on 
different stages. According to Chin (1998) and for ensuring 
complete model assessment we additionally show effect size f2, 
which is indicating whether a path’s latent exogenous variable has 
a significant influence (effect) on latent endogenous variable or 
not. Thresholds for f2 are 0.02 (weak), 0.15 (medium) and 0.35 
(strong) [65].  
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LC has a strong negative and highly significant influence on MA 
(beta=-0.715, f2=0,80, p<0,001). This empirical result supports 
our hypothesis H4. LC has also a strong significant negative 
impact on PA underlining H12 (beta=-0.418, f2=0.16, p<0.001). 
Furthermore, LC has a negative significant relation to LA 
contributing to H3 (beta=-0.068, f2=0.02, p<0.05). However, this 
path disposes not to Lohmöller’s (1989) proposed threshold for 
path weighting of 0.1. VP are positively influencing LA of 
applying modelling languages concerning to model interpretation 
(beta=0.208, f2=0.02, p<0,01). In addition to that VP is positively 
influencing PA (beta=0.303, f2=0.03, p<0.05). Considering this, 
all hypotheses in our research model connected with VP are 
accepted. Additionally, LA is strongly positively related to ES on 
a high significance level (beta=0.648, f2=0.72, p<0.001), which is 
contributing to H5. Furthermore, LA is positively affecting time 
based latent construct EY, also, MA is positively correlating with 
ES. These path regression weights are not significant (p>0.05). 
Deducing from that, we cannot reject null hypothesis with 
probability level of 0.05. Consequently, we assume that these 
paths are not empirically explaining our research model. H6 and 
H7 are not empirically supported. MA has a weak negative impact 
on EY (beta=-0.116, f2=0.01, p<0.05). This relation is not 
contributing to H8. As a consequence we state, that in modelling 
domain MA is negatively influencing the time used for model 
interpretation. PA is positively influencing EY (beta=0.435, 
f2=0.24, p<0.001) and US (beta=0.280, f2=0.075, p<0.05). Users 
ability of complete and correct model interpretation is positively 
influencing US (beta=0.362, f2=0.11) p<0.01). From this, we can 
deduce that H9 is accepted. Turning to model fit, the R-square 
values for MA, LA, EY, ES, US and PA were 0.473, 0.202, 0.194, 
0.420, 0.192 and 0.196 respectively, indicating that the model 
explains substantial variation in these variables. For example, the 
R-square value for MA implies that the causes specified in this 
model, VP and LC, jointly explain 47% of the total variance in 
MA.   
In summary, the results show that most hypotheses in our research 
model are fully supported. However, H8 is not supported by our 
results. Furthermore, H6, H7 and H13 could not be confirmed by 
significant results. As a consequence, particular hypotheses are 

not confirmed for further comparable samples. The resulting 
regression weights of H6, H7 and H13 are valid for our specific 
sample and should be proved in further surveys based on our 
research model.  

6. DISCUSSION 
This study provides several important findings supporting the 
understanding of usability attributes. We focus on the model 
interpretation scenario. The two major influencing areas are (1) 
complexity of a language and (2) causal impact of visual 
properties.   
Firstly, our results show that the complexity of language’s 
metamodel, i.e. variability in elements, relations and properties, is 
strongly influencing user’s ability to remember them. Usability 
research shows that memorability is an initial basis for applying a 
system or a website effectively [17]. However, with our results we 
cannot confirm those theses for model interpretation scenario. 
Additionally, memorability is weakly influencing effectiveness of 
model interpretation. Furthermore, we find that memorability is 
weakly influencing effectiveness and that memorability weakly 
impacts interpretation time negatively. Our research findings for 
the causal path between memorability and efficiency of model 
interpretation are inconclusive. Concerning this, further research 
into this area will be required and may lead to more conclusive 
findings. However, it seems that memorability plays a secondary 
role in model interpretation scenario.    
Metamodel complexity is strongly influencing language’s visual 
perceptibility. This result provides evidence that languages based 
on complex metamodels are not supporting user’s ability of easy 
information search and extraction when interpreting a model. 
Additionally the visual perceptibility of modelling languages is 
strongly connected with duration time of information search and 
extraction. Concerning this, we deduce that languages offering a 
good perceptibility afford fast information search and information 
extraction times leading to an efficient model interpretation 
process. Considering model complexity as control variable, a 
process model developed with BPMN including a high range of 
different elements offers lower visual perceptibility and 
accordingly results in higher time values for information search 
and extraction compared to an EPC-model. Moreover, the visual 
perceptibility of a modelling language is positively supporting 
user’s individual language satisfaction. From this result we infer, 
that visual perceptibility is one important base of user satisfaction. 
User acceptance is strongly connected with user satisfaction [17]. 
This relationship underlines the fact that visual perceptibility 
concerning particular languages is obviously a basic result of user 
satisfaction and consequently user acceptance. In other words, 
visual perceptibility may decide whether a modelling language is 
accepted or not by users concerning model interpretation.   
Obviously, the positive impact of interpretation time on user 
satisfaction is not as much as expected. This might be underlining 
former findings of Walker (1998). In their studies they found out 
that users have demonstrated preferences for systems with which 
they performed less efficiently [73]. It shows that the ability for 
finishing interpretation tasks completely and correctly and the 
ability for convenient information search and information 
extraction out of a model are more important to satisfy users than 
the commonly assumed performance factors of efficiency.  
Secondly, an important result of our survey is the causal impact of 
visual language properties, i.e. variability in shape geometrics and 
shape colours, in the field of model interpretation. The output of 
our study shows that visual language properties are positively 

Figure 2 Structural Model Results 
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influencing the visual perceptibility of modelling languages. This 
result underlines the finding that visual differentiation supports 
object information search and information extraction [36]. As a 
consequence, the application of different colours and geometrics 
in a model supports interpreting users in searching and extracting 
information. Furthermore, the variability in shape colour and 
geometrics is positively influencing learnability of model 
interpretation and memorability of language’s elements and 
relations. Consequently, languages offering higher variability in 
geometrics and colours are easier to learn concerning model 
interpretation.  
The learnability of interpreting a model based on a certain 
language is strongly impacting the ability of performing an 
interpretation task completely and correctly. For example, in 
industry and education it is important that users can interpret 
developed models with a high level of completeness and 
correctness [74]. With our study we found out that learnability, 
which is positively influenced by visual language properties acts 
as a basic independent variable strongly impacting on user’s 
ability of complete and correct model interpretation. Furthermore, 
learnability is positively influencing efficiency of model 
interpretation. We conclude that learnability is a basic construct in 
model interpretation scenario. A theoretical basis might be 
cognitive load theory and especially intrinsic cognitive load [8]. 
The intrinsic cognititve load is determined by information 
complexity. The interdependency of information to be learned is 
positively impacting cognititve load and consequently the more 
important learnability appears in a causal system. Concerning 
modelling languages and model interpretation, the cognitive load 
is high because of strong information interdependency occurring 
in models. Considering our results and cognitive load theory the 
importance of learnability in model interpretation is emphasized. 
In due consideration of our results it consequently becomes clear 
that learnability is positively impacted by visual language 
properties. From this follows that languages offering high visual 
variability are easier to learn than other. As a consequence 
languages containing high visual variability allow higher task 
completion and accuracy rates in model interpretation. In 
conclusion, if a language should support effectiveness of model 
interpretation, the metamodel should offer high visual variability 
in elements and relations.  

7. CONCLUSION 
In this paper we propose a study of usability assessment of 
modelling languages using a structural equation modelling 
approach. The study focuses on model interpretation scenario. Our 
causal path shows that in model interpretation memorability of 
language’s elements and relations plays a secondary role. It 
becomes clear that visual perceptibility and effectiveness are 
fundamental attributes for reaching high values in user 
satisfaction. Furthermore, the model supports our idea that 
language’s metamodel properties are influencing usability 
attributes on different causal stages. In the following, we derive 
concluding implications for both theoretical and practical needs.   

7.1 Implications for Theory 
First, our results confirm most of our hypotheses deduced from 
theory. In usability research, a theoretical embedment of usability 
attributes in a causal model is missing up to now. In our study we 
show interesting causal relations between usability attributes. 
Thus, there might be important results for usability research 
concerning the causal impact of different usability attributes. 

Further studies are required for testing our structural model in 
other usability domains (e.g. website usability etc.).  

7.2 Implications for Practice 
Our structural model delivers important results showing how 
modelling languages affect usability attributes on different causal 
stages in the model interpretation scenario. We structure practical 
implications in two parts focusing on 1) industry and 2) language 
specification/development organizations.  
In companies the importance of business process and application 
system modelling has steadily risen. Consequently, the 
interpretation of models becomes an issue of organizational 
concerns. How efficiently can an employee extract information 
out of a model? Does he/she understand the information, i.e. does 
he/she interpret the model accurately? These might be basic 
questions connected with decision-making for or against the use 
of particular modelling languages in organizations. With 
considering our first results, the structural model can support the 
process of decision-making focusing on language usability in 
model interpretation. Thus, companies aiming for fast, complete 
and correct model interpretation, e.g. business process consulting 
companies, should apply modelling languages with high 
variability in visual properties.  
Our second practical implication deduced from our results is 
focusing on modelling language specification and development 
organizations. For example, an important finding in our study is 
that visual variability of elements and relations is supporting 
accuracy, completeness and speed in model interpretation 
processes. In this regard, we conclude that UML activity diagrams 
(i.e. low visual variability) are not as usable as EPCs (i.e. high 
visual variability) in model interpretation. For optimizing UML 
activity diagram’s usability in the model interpretation scenario it 
might be worth increasing visual variability in the meta-model by 
adding colours and various geometric shapes. Furthermore, to 
improve user satisfaction values in the model interpretation 
scenario it is necessary to decrease language complexity (e.g. by 
reducing number of different elements and relations) and increase 
visual variability. We are aware that complexity reduction 
possibly may impact the expense of explanatory power offered by 
particular language. The results in this paper provide a starting 
point for further empirical based discussions on usability of 
graphical modelling languages.    

7.3 Limitations and Future Directions 
The study is limited to the model interpretation scenario. 
Henceforth, we are expanding our study to model development 
cases. A comparison of results for interpretation and development 
scenarios may lead to a greater understanding for usability and 
particular attributes in the domain of modelling languages. 
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