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Abstract 

When applying RFID in production, it needs to be integrated into the used IT systems. However, till 
today system designers cannot rely on a standard solution for integrating RFID technology in 
manufacturing software systems. Each manufacturer has to deal with the same challenges: No 
consolidated findings on how to integrate RFID into the IT infrastructure exist. The consequence is 
that each IT department has to develop a solution from scratch. In order to give well-founded design 
guidelines for embedding RFID into the company’s IT infrastructure, we conducted seven in-depth 
case studies of the state-of-the-art in manufacturing IT infrastructures. Our findings allowed us to 
specify architectural patterns for common RFID applications in manufacturing. With our work we 
support system designers in choosing the appropriate architecture for different RFID applications and 
design goals. We present our solutions in form of architectural patterns that enable manufacturing IT 
systems to benefit from RFID. 

 

Keywords: RFID, Manufacturing, Architectural Patterns. 
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1 INTRODUCTION 

RFID technology paves the way for numerous optimizations in production processes, e.g., Chappel et 
al. 2003. Some applications are a mere replacement of bar-code technology but others can only be 
realized exploiting the special properties of RFID. In our earlier work we have identified main use 
cases for RFID in manufacturing (Ivantysynova et al. 2008b). We found that a major benefit of RFID 
is that it allows restructuring manufacturers’ IT architectures. This is because RFID enables to store 
production data and identifiers right at the product. This shift in data storage opens up new 
opportunities in deploying logic for control and data processing. The technology thereby provides 
opportunities for optimizing the IT architecture. However, applying RFID in production comes along 
with the challenge of integrating this technology into the used IT systems. Here, each manufacturer 
has to face the challenge of making the right architectural decisions for the integration. Each IT 
department has to develop a solution from scratch, without the foundation of a design framework. 
System architects lack dedicated design guidelines for using RFID in manufacturing applications. This 
generally increases the complexity of RFID introductions and hampers RFID investments in the 
manufacturing domain (Strüker et al., 2008, p.8). 

Generally architectural patterns help system designers to pick an appropriate solution for their 
demands. The literature provides a range of patterns for standard problems (e.g., Shaw and Garlan 
1996). However, these patterns are designed for generic applications and consequently coarse grained. 
In our work we present architectural patterns that are dedicated for integrating RFID in the 
manufacturing domain. We particularly focus on IT infrastructures in manufacturing. Based on 
previously conducted case studies (Ivantysynova et al. 2008a) we present architectural patterns that we 
developed particularly for integrating RFID into the manufacturing domain. These patterns provide 
solutions for reoccurring problems and help designing architectures for case specific requirements.  

The remainder of the paper is structured as follows. First we present related work. Section 3 discusses 
findings from seven case studies on manufacturing IT systems with regards to common activities and 
hardware options. In Section 4 we present our architectural patterns for integrating RFID in 
manufacturing. We conclude in Section 5. 

2 RELATED WORK 

Patterns in software design provide solutions for reoccurring problems and help designing 
architectures for case specific requirements. Several patterns for general problems exist in literature 
(Gamma et al. 1994). Architectural patterns address the general structure of software systems and the 
task of its components. Prominent examples include the layered pattern for abstraction (e.g., in the 
OSI model) and the model-view-controller that is used to separate data from logic and presentation. 
However, such existing patterns are explicitly designed in a generic way and independent of 
application domains. More concrete and purpose build design patterns are required to provide 
dedicated support for integrating RFID in manufacturing. 

So far, integration of RFID in business applications has mainly been studied for scenarios in logistics 
(e.g., Sabbaghi et al. 2008 and Lee at al., 2004).  EPCglobal has defined standards for capturing RFID 
events and providing them to business applications (EPCglobal, 2007). However, these standards 
basically define interfaces for tracking and tracing applications. Details about the data processing and 
physical deployment of logic are not addressed. Furthermore, the integration into manufacturing 
infrastructures and manufacturing tasks are not part of EPCglobal standards. This is in contrast to our 
work that particularly addresses these architectural issues in the manufacturing domain.  

From a technical perspective, RFID integration was mainly targeted in the context of middleware 
solutions. Existing work on RFID middleware addresses general tasks for RFID data processing, e.g., 
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Bornhövd et al. (2004). These works provide some details about data processing technologies and the 
physical deployment. However, the technical integration in manufacturing infrastructures and the use 
of RFID in production tasks are not addressed.  

A standard for IT systems in manufacturing is the ISA-S95 standard family (Brandl, 2000). These 
standards use a four layer model for describing software systems and their interaction in 
manufacturing. Simplified, layer four comprises software for Enterprise Resource Planning (ERP), 
layer 3 Manufacturing Execution Systems (MES), and layer 2 and 1 contain functionality of 
Distributed Control Systems (DCS) and software for Supervisory Control And Data Acquisition 
(SCADA).  ISA-95 describes needed functionalities for these layers and how these functionalities 
should interoperate with each other. For example, ISA-S95 provides guidance under which 
circumstances which functionalities should run in which layer. However the standard only defines 
functionalities and which information need to be exchanged between these functionalities for the 
upmost level 4, level 3, and to level 3.  Because RFID functionalities lie in level 1, their integration is 
not addressed in the standard. 

3 CASE STUDIES 

In this section we describe the requirements for the infrastructure and hardware options for the 
realization that we found in our case studies on IT infrastructures. Overall we conducted seven case 
studies that focused on IT infrastructures at manufacturers. Together with our previously conduced 
case studies on RFID in manufacturing (Ivantysynova 2008a), these studies provide the basis for our 
architectural patterns. Due to confidentiality agreements, we do not provide the company names. We 
investigated the IT infrastructures at a manufacturer of (1) engine coolers, (2) engines, (3) fire proof 
materials, (4) pharmaceuticals, (5) power plants, (6) milk products, and (7) tires. We thereby cover 
examples from the process industry as well as from discrete manufacturing. We provide details about 
each of these case studies in (Ivantysynova et al. 2009). Overall, the case studies show that IT 
architectures at manufacturers show significant variations. The hardware environment, the physical 
deployment of business logic, the data flow, and the location of information storages are among the 
varying architectural aspects. However, it is possible to find reoccurring structures that serve as basis 
for our architectural patterns. 

 
Figure 1.  Common hardware tiers in manufacturing 

The case studies show that the hardware infrastructures are generally organized in a hierarchical 
structure with several tiers. We found up to four different tiers as depicted in Figure 1. The lowest tier 
is the device tier on the shop floor. It comprises programmable logic controllers (PLC) of the 
machines on the shop floor. Above this, we often found an edge tier that comprises computing devices 
on the plant floor. For example, these can be PCs or terminals of control servers for production 
stations. In the following we refer to these computing devices as edge PCs. The tier above is the local 
back-end tier. It resembles central servers in a plant. For example, a server for hosting central MES 
components such as a historian or modules for task scheduling. The upmost tier is the remote back-end 
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tier. This tier refers to the often remotely hosted ERP systems. Note that not all tiers necessarily exist 
at each manufacturer. The number of tiers in a manufacturing infrastructure is particularly influenced 
by requirements for fast system responses, reliability, and scalability. Manufacturers with high 
demands for these requirements have usually all four hardware tiers in place. In contrast, at least one 
tier is missing otherwise. Which tiers exists and which functionality they host is one of the main 
architectural decisions in manufacturing and is also reflected in our architectural patterns. 

In our case studies, we found that data acquisition from the shop floor serves two primary purposes: 
One is to observe the process and the other is to automate the execution of process steps. Both fit into 
the basic pattern of automation defined by Sheridan (2002). We adapt this pattern to the manufacturing 
domain and use it to define basic activities, see Figure 2. This model provides the underlying structure 
for our pattern definitions. We subsequently refer to this model as the automation pattern for 
manufacturing. Our architectural patterns set up on this model to define the realization of activities 
and data flows with respect to different design goals. 
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Figure 2.  Elementary activities for automation in manufacturing. 

4 PATTERN DEFINITIONS 

In this section we present the architectural patterns for integrating RFID in the manufacturing domain. 
Our patterns target (1) the distribution and access of context data along the production process, (2) the 
distribution of filter logic in the system architecture, and (3) the distribution and structuring of control 
logic in the IT infrastructure. 

4.1 Architectural Patters for Distributing Context Data 

Patterns for distributing context data provide solutions for managing the flow of context data along the 
production process. With the term context data we refer to workflow data for controlling the process, 
state information about the product in the process, and configurations for each production step. The 
following patterns address the management of stored formation in the automation pattern for 
manufacturing, see Figure 2. They provide solutions to the distribution of workflow data, state 
information, and configurations along production steps. Additionally involved activities are the 
triggering and execution of production steps.  

All three presented pattern comprise a central coordination component that initiates the production and 
manages it to a certain degree. They locate this component on a server in the back end. Additionally, 
these patterns make use of edge PCs at the production stations. These edge PCs host components for 
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triggering and executing production tasks. The patterns vary in how these components interact and 
exchange context data as well as in the organization of intermediate storage. 

4.1.1 RFID-Pipeline Pattern 

The RFID-pipeline pattern defines the deployment of logic for triggering production steps, executing 
production steps, and the corresponding data flow. Strengths of this pattern are that it supports 
reliability and scalability of the system. It further eases fast data access at the production stations and 
simplifies the control of data flow.  
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Figure 3.  The RFID-pipeline pattern. 

Figure 3 shows the data flow and physical deployment defined by the RFID-pipeline pattern. 
Activities in an RFID pipeline fall into three sequential parts. (1) Initializing the pipeline, (2) 
sequentially triggering and executing production steps, and (3) finalizing the pipeline. In the first step, 
initial state information, workflow data, and configurations are written on an RFID tag. In most cases 
the initialization would be triggered in the back-end system because it holds the required information. 
It follows the sequence of triggering and executing production steps. The processing-logic for each 
step is deployed on an edge PC on the plant floor. Each step reads state information from the previous 
step, workflow data, and configurations from the RFID tag. After processing, the updated state 
information is written back to the RFID tag. After the last processing step, log data about the 
conducted production is extracted from the tag. The pattern does not define details of this extraction, 
i.e. to where the log data is written. However, in most cases this logging process involves reports to 
the back end and storage in a historian. 

Advantages of the RFID-pipeline pattern are its support for fast data access, system reliability, and 
scalability. The pattern ensures fast data access because the information is physically located at the 
point where it is needed, i.e., on the RFID tag of the currently handled product. We found in our case 
studies that manufacturers struggle to ensure timely access to remote system components and 
databases. Here, the RFID-pipeline pattern provides an alternative to ensure fast access; meaning 
access with low delay. Data throughput for RFID technology is low compared to wired data transfer. 
Thus, the pattern is suitable if the required fast data access is for small amounts of data per transaction. 

System reliability is supported because the pattern provides autarky of system components for 
different production steps. That is, workflow data, state information, and configurations are available 
even in case of back-end failures. Once the initial control data is written on a tag (see step 0.1 in 
Figure 3), the production can continue without the back end. System scalability is supported by the 
distributed design of the pattern. Due to the decentralization of information storage and processing, the 
pattern scales well with the number of parallel executed production tasks.  
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The desire to apply this pattern was a major driver for the RFID application in half of our RFID 
specific case studies at manufacturers. We further found this pattern in one of our general case studies 
on manufacturing infrastructures (case (2). 

4.1.2 Pulled-Context Pattern 

The pulled-context pattern defines the deployment of logic for triggering production steps, executing 
production steps, and the corresponding data flow. Strengths of this pattern are that it supports the 
scalability of the system. It also eases fast data access at the production stations and simplifies the 
control of the data flow.  
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Figure 4.  The pulled-context pattern. 

Figure 4 shows the data flow and physical deployment that the pulled-context pattern defines. The data 
flow starts with reading the identifier from the RFID tag at a production station. The edge PC at the 
production station uses this identifier to pull the required context information for the production from 
a central coordination component in the back end. It is important to note that distance reads of tags 
RFID can help in conducting the pulling step before the data is actually required. The central 
coordination component sends context data for the production to the corresponding edge PC as 
response to the pull request. After conducting the production step, the edge PC transfers updated status 
information back to the central coordination component. This procedure is repeated afterward for each 
production step. 

An advantage of the pulled context pattern is its support for system scalability. It further provides a 
simple solution for distributing context data for the production to the correct production stations. 
Depending on the production process, the use of RFID in this pattern can also prevent that delays in 
the IT system slow down the production. The pattern does not require extended user memory on the 
RFID tags. Instead, tags must only store a unique identifier. This makes the pattern suitable for open 
loop scenarios where tags remain on the products low cost RIFD label are required. 

System scalability is supported due to the decentralization of data processing for each production step. 
However, a central coordination component is responsible for data distribution to each processing 
step. This design can result in delays during the data request. However, in some application settings, 
RFID can enable fetching the identifier for pulling data before the production starts. Particularly in 
manual processes the possibility of distance reads can allow for pulling proactively. This also comes 
with the benefit that data fetching is decoupled from the actual production process. We found potential 
for applying this pattern specifically in two case studies on RFID where the process allowed proactive 
fetching of state information. 
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4.1.3 Pushed-Context Pattern 

The pushed-context pattern proactively caches context data for the production at production stations. It 
uses identifiers on RFID tags for selecting data in these caches when the corresponding product passes 
the production step.  
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Figure 5.  The pushed-context pattern. 

Figure 5 shows the data flow and physical deployment defined by the pushed-context pattern. The data 
flow starts with pushing context information to edge PCs at the production stations. When the 
production starts, the edge PC retrieves the needed data from its local cache using the identifier of the 
RFID tag. Subsequently the central control component receives updates about the product status and 
updates the downstream production station accordingly. 

The main advantages of the pattern are the support for system reliability, scalability and fast reactions 
of the IT system. Fast reactions are supported due to the proactive caching. Thus, it is ensured that 
required context data are quickly available at the point where they are needed. The downside of 
proactive caching compared to pulling is the increased complexity of the data-distribution process. It 
is required that the central-coordination component can accurately predetermine where and when 
processing of a certain product will happen. Challenges can occur for example if multiple production 
stations perform the same tasks in parallel. A possible solution to this is a combination of the pushed-
context pattern with the pulled-context pattern. That is, the central-coordination component can push 
context data to a specific control station that manages a set of parallel running production stations. 
From there the data can be pulled as the corresponding product arrives at a particular station. 

Scalability is supported due to the decentralized control of production steps. However, the central-
control component poses a potential bottleneck. Nevertheless, delayed responses of this component are 
tolerable due to the proactive caching. Support for reliability is dependent on how big the proactive 
filled caches and material buffers are. In case of a back-end failure, the production can continue as 
long as caches and material buffers are filled. Using this pattern was an explicit design decision in one 
of the manufacturing infrastructures that we investigated. Here the manufacturer used proactive caches 
to ensure continuous production in case of back-end or network failures for up to four hours. 
Generally, we found this pattern to be applicable in all discrete productions that we analyzed. 

4.2 Architectural Patters for Distributing Filter Logic 

Raw RFID reads require several filtering and preprocessing steps before business applications can use 
them. That is, the IT system must transform the stream of tag observations in business relevant 
information. Following the terminology of Luckham (2001) we call this transformation of raw events 
into primitive events and subsequently into increasingly more complex events. For RFID events the 
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sequence of operations typically starts with projection followed by data-cleaning operations. Jeffery et 
al. (2006) define four cleaning steps in a general framework. Subsequent to data cleaning, additional 
projections and complex event processing (CEP) steps extract the relevant data for higher level 
applications, e.g., production control or monitoring.  

The design questions that arise in context of RFID-data filtering and preprocessing concern the 
distribution of logic in the IT infrastructure. In this subsection we present two architectural patterns 
that provide solutions to this design question. These patterns mark extremes in a spectrum of possible 
solutions. Application designers may adjust the pattern due to application specific constraints. 

We group filters and preprocessing operations into operations for selection, low pass filtering, error 
correction, aggregation, and CEP. With selection we refer to operations to select data sources and 
projecting out data. This is equivalent to the point operation in the data cleaning framework of Jeffery 
et al. (2006). With error correction, we refer to data-cleaning operations that go beyond filtering on a 
single input stream. For example, this can be filtering after correlation with additional sensor data as 
described in (Jeffery et al., 2006). With aggregation we refer to operations that summarize a set of 
input events. An example is forwarding the number of detected items rather than each individual 
detection. With CEP we refer to the detection of complex-event patterns and evaluation of complex 
predicates on RFID reads. Generally, this adds semantics to the input data and enables filtering on a 
higher semantic level. A simple example is inferring from a stream of RFID events, that a certain set 
of items was packed in a certain box. A filter on top of that may be to report only boxes that were 
packed in a wrong way. Further selection operations reduce the data set - that might have been 
enriched with additional sensor and context data for intermediate processing steps - to the attributes 
required for higher level applications. 

4.2.1 Thin-Filter Edge Pattern 

The thin-filter edge pattern defines the deployment of logic for filtering and preprocessing of RFID 
data on different hardware tiers. The pattern is an architectural alternative to the later described thick-
filter edge pattern. The main strength of the pattern is its simplicity. It fits best to infrastructures with a 
thin edge tier and to applications where RFID is used for process monitoring and documentation rather 
than for real time control of individual production steps. 
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Figure 6.  The thick- filter edge pattern (left) and thin-filter edge pattern (right). 

The pattern directs raw RFID events through a pipeline of filtering and preprocessing operations, see 
Figure 6  right. The first operations in the pipeline run on edge PCs that control the RFID readers. 
(Note that some readers have powerful computation capabilities and can replace the edge PC in this 
pattern.) Subsequent filter operations run in the back end before data is passed on to higher level 
applications. 
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Filter operations on the edge tier are restricted to selecting available data streams and low-pass 
filtering for simple error correction. Typically device controllers for RFID readers support this 
operation (see Bornhövd et al., 2004). Filter operations in the back-end tier comprise more complex 
operations, error correction, aggregation, CEP, and projection. (Note that all these operations may run 
as rules in a dedicated rule engine in an RFID middleware (Bornhövd et al., 2004) or CEP engine 
(Coral8, 2006).  

The main advantage of the thin-filter edge pattern is that it keeps processing at edge devices simple. It 
matches with the typical distribution of filter operations in RFID middleware solutions. These 
solutions focus on monitoring applications e.g., for logistic tracking or warehouse management. For 
manufacturing this pattern is most suitable if RFID is used for monitoring and documentations rather 
than for real-time control of production steps. The low requirements for the edge layer make this 
pattern fit into environments with little IT on the plant floor. Here, an RFID implementation with a 
dedicated middleware can provide RFID data for process monitoring via a slim interface and without 
major interactions with other manufacturing operations. This property makes the pattern suitable in 
three of our RFID specific case studies. 

4.2.2 Thick-Filter Edge Pattern 

The thick-filter edge pattern defines the deployment of logic for filtering and preprocessing of RFID 
data on different hardware tiers. It is an architectural alternative to the previously described thin-filter 
edge pattern. Strengths of this pattern are its support for scalability, autarky and ability for fast 
responses of the IT system. 

The pattern directs raw RFID events through a pipeline of filters and preprocessing operations, see 
Figure 6 left. A large set of these operations is deployed on edge PCs. These are selection, low-pass 
filters, aggregation, projection, error correction, and operations for CEP. From here, enriched and 
filtered data can directly flow into modules for production control in the edge tier. The data is further 
passed on to the back end for additional processing steps. 

The RFID data that arrives in the back end is already cleaned and enriched. However, some additional 
processing that could not have been done in the edge tier may be required. For example, the back end 
may integrate data from several sources and apply operations for CEP and aggregation afterward. 
Subsequently, event data can be passed on to higher level applications. 

The main advantage of the thick-filter edge pattern is that it supports scalability. The pattern is 
particularly useful in applications were RFID creates massive data volumes or is involved in control 
functionality. Extensive decentralized filtering and preprocessing in the edge layer reduces the burden 
for the back-end system. This was exploited e.g., in case (4) and (6) of the investigated companies. 
The design also supports scalability of the overall system and helps to keep response times low. 
Furthermore, the pattern supports fast reactions in decentralized control and steering processes for the 
production. The edge layer filters and preprocesses raw RFID events to a large extend. From there the 
data can directly feed modules for production control in the edge layer. (For example, an RFID event 
may trigger a process step.) Note that the back end is out of the loop. This supports fast reactions in 
the edge layer and autarky for the production control as desired in three of our RFID specific case 
studies. 

4.3 Architectural Patterns for Distributing Control Logic 

In this subsection we provide architectural patterns for distributing production control logic in IT 
infrastructures of manufacturers. This concerns the control and execution of production steps; like 
controlling machines and managing the order of production tasks. The distribution of control logic is a 
fundamental design decision that manufacturers have to make whether or not they apply RFID. 
However, the design decision impacts how RFID can be applied and vise versa. For example, not all 
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patterns presented in this section are compatible with every distribution of control logic. (For a 
discussion see section 4.4) In our case studies we found two fundamental options for distributing 
control logic. We present two architectural patterns that reflect these options. 

4.3.1 One Tier Control Pattern 

The one-tier control pattern defines the flow of information and deployment of logic for production 
control from the perspective of a whole production plant, see Figure 7.  
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Figure 7.  The One Tier Control pattern 

Coarse grained control of the production tasks is managed in the remote back-end system. In the local 
back end the pattern defines a tier that hosts all modules for controlling the production processes. That 
is, from here instructions are directly send to controllers for actuators on machines. Feedback from the 
plant floor is sent back in form of sensor or RFID data. This information is then evaluated in the local 
back end and used in production control. 

The main advantage of the pattern is its simplicity. It therefore fits well to productions where light-
weight infrastructures are required (e.g., case (5)). Its central design is also favorable if the production 
requires a centralized view on the processes (e.g., case (4) and (6) of our studies). In the context of 
RFID, the pattern fits best where RFID is mainly used for monitoring and documenting the production 
processes rather than for real-time control of operations (this was the case in three of our RFID 
specific case studies). 

4.3.2 Multi-Tier Control Pattern 

The multi-tier control pattern defines the flow of information and deployment of logic for production 
control in several hardware tiers of a production plant, see Figure 8. The main advantages of the 
pattern are its support for scalability, autarky, and fast reactions of the system. However, these benefits 
come at the cost of a complex system design. 

The pattern distributes control logic in two hardware tiers. These two control tiers are located between 
the software for coarse grained planning and monitoring (e.g., ERP) and the machines on the plant 
floor. The first (upper) control tier hosts software that coordinates the production on task level. The 
lower control tier executes the actual production and passes corresponding reports back to the first 
control tier that reports to the remote back end in turn. In its hierarchical structure the multi-tier 
control pattern is related to the presentation-abstraction-control pattern for hierarchically organized 
software agents. Similarly, more than one level of hierarchy may be implemented. In manufacturing, 
the number of levels depends on the organization of production facilities. 
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Figure 8. The multi-tier control pattern with two tiers. 

The main advantages of the multi-tier control pattern are its support for scalability, autarky, and fast 
reactions of the system. A prerequisite for its application is availability of computation hardware on 
the plant floor. This can make the pattern infeasible where light-weight IT infrastructures are required. 
In the context of RFID, the pattern fits best if RFID is directly involved in control functionality (e.g. in 
case (2)). This is due to the patterns support for processing RFID data on the edge and thereby 
ensuring fast reactions to RFID inputs (e.g. as in three of our RFID specific case studies).  

4.4 Combining Presented Patterns 

The presented patterns focus on different views of architectural designs. However, there is some 
overlap in the addressed aspects. Thus, some patterns can be combined while others are conflicting. 
Table 1 provides an overview of how patterns may be combined. (The table entries denote that 
patterns can be combined very well ("++"), can be combined ("+"), can hardly be combined ("-"), or 
are contradictory ("- -"). 

 

 RFID 
Pipeline 

Pulled 
Context 

Pushed 
Context 

Thin Filter 
Edge 

Thick 
Filter Edge 

One-Tier 
Control 

Multi-Tier 
Control 

RFID Pipeline  - - - - + ++ - ++ 
Pulled Context   - - + ++ - ++ 
Pushed Context    + ++ - ++ 
Thin Filter Edge     - ++ - 
Thick Filter Edge      + ++ 
One-Tier Control       - - 
Multi-Tier Control        

Table 1.  Combining the presented architectural patterns. 

5 CONCLUSION 

The integration of RFID in business applications was mainly studied in the field of logistic 
applications. Here EPCglobal developed standards for capturing and exchanging RFID events. 
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However, these standards basically define interfaces for tracking and tracing applications. Existing 
work on RFID middleware does not provide details on the integration into manufacturing 
infrastructures. That is, manufacturing specific use cases and particularities in manufacturing 
infrastructures have not been addressed so far. With our work, we fill this gap by providing guidance 
for technically integrating RFID in manufacturing. 

With the presented architectural patterns we provide concrete design option for integrating RFID in 
manufacturing IT systems. The presented patterns provide solutions to reoccurring questions in the 
system design for integrating RFID at manufactures. Note that the patterns also provide solutions for 
application independent from RFID (e.g., in bar code driven applications). Specifically, our the 
patterns answer the following three design questions for integrating RFID in manufacturing: (1) What 
kind of filter logic should run where in the system? (2) Where should which control functionality be 
located in the system? And (3) How should process relevant data traverse through the process? Our 
patterns provide candidate designs along with guidance when to opt for which solution. 
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