
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2010 Proceedings European Conference on Information Systems
(ECIS)

2010

Architectural Patterns for RFID Applications in
Manufacturing
Holger Ziekow
Humboldt-Universität zu Berlin, ziekow@wiwi.hu-berlin.de

Lenka Ivantysynova
Humboldt Universität zu Berlin, lenka@wiwi.hu-berlin.de

Oliver Guenther
Humboldt University, guenther@wiwi.hu-berlin.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2010

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Ziekow, Holger; Ivantysynova, Lenka; and Guenther, Oliver, "Architectural Patterns for RFID Applications in Manufacturing" (2010).
ECIS 2010 Proceedings. 72.
http://aisel.aisnet.org/ecis2010/72

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2010%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010?utm_source=aisel.aisnet.org%2Fecis2010%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2010%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2010%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010?utm_source=aisel.aisnet.org%2Fecis2010%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010/72?utm_source=aisel.aisnet.org%2Fecis2010%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

ARCHITECTURAL PATTENRS FOR RFID APPLICATIONS IN

MANUFACTURING

Journal: 18th European Conference on Information Systems

Manuscript ID: ECIS2010-0325

Submission Type: Research Paper

Keyword:
IS/IT architecture, Information systems developers, Software
architecture, IS design

18th European Conference on Information Systems

ARCHITECTURAL PATTERNS FOR RFID APPLICATIONS IN
MANUFACTURING

Ziekow, Holger, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany, ziekow@wiwi.hu-berlin.de

Ivantysynova, Lenka, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany, lenka@wiwi.hu-berlin.de

Günther, Oliver, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin,
Germany, guenther@wiwi.hu-berlin.de

Abstract

When applying RFID in production, it needs to be integrated into the used IT systems. However, till
today system designers cannot rely on a standard solution for integrating RFID technology in
manufacturing software systems. Each manufacturer has to deal with the same challenges: No
consolidated findings on how to integrate RFID into the IT infrastructure exist. The consequence is
that each IT department has to develop a solution from scratch. In order to give well-founded design
guidelines for embedding RFID into the company’s IT infrastructure, we conducted seven in-depth
case studies of the state-of-the-art in manufacturing IT infrastructures. Our findings allowed us to
specify architectural patterns for common RFID applications in manufacturing. With our work we
support system designers in choosing the appropriate architecture for different RFID applications and
design goals. We present our solutions in form of architectural patterns that enable manufacturing IT
systems to benefit from RFID.

Keywords: RFID, Manufacturing, Architectural Patterns.

Page 1 of 12 18th European Conference on Information Systems

1 INTRODUCTION

RFID technology paves the way for numerous optimizations in production processes, e.g., Chappel et
al. 2003. Some applications are a mere replacement of bar-code technology but others can only be
realized exploiting the special properties of RFID. In our earlier work we have identified main use
cases for RFID in manufacturing (Ivantysynova et al. 2008b). We found that a major benefit of RFID
is that it allows restructuring manufacturers’ IT architectures. This is because RFID enables to store
production data and identifiers right at the product. This shift in data storage opens up new
opportunities in deploying logic for control and data processing. The technology thereby provides
opportunities for optimizing the IT architecture. However, applying RFID in production comes along
with the challenge of integrating this technology into the used IT systems. Here, each manufacturer
has to face the challenge of making the right architectural decisions for the integration. Each IT
department has to develop a solution from scratch, without the foundation of a design framework.
System architects lack dedicated design guidelines for using RFID in manufacturing applications. This
generally increases the complexity of RFID introductions and hampers RFID investments in the
manufacturing domain (Strüker et al., 2008, p.8).

Generally architectural patterns help system designers to pick an appropriate solution for their
demands. The literature provides a range of patterns for standard problems (e.g., Shaw and Garlan
1996). However, these patterns are designed for generic applications and consequently coarse grained.
In our work we present architectural patterns that are dedicated for integrating RFID in the
manufacturing domain. We particularly focus on IT infrastructures in manufacturing. Based on
previously conducted case studies (Ivantysynova et al. 2008a) we present architectural patterns that we
developed particularly for integrating RFID into the manufacturing domain. These patterns provide
solutions for reoccurring problems and help designing architectures for case specific requirements.

The remainder of the paper is structured as follows. First we present related work. Section 3 discusses
findings from seven case studies on manufacturing IT systems with regards to common activities and
hardware options. In Section 4 we present our architectural patterns for integrating RFID in
manufacturing. We conclude in Section 5.

2 RELATED WORK

Patterns in software design provide solutions for reoccurring problems and help designing
architectures for case specific requirements. Several patterns for general problems exist in literature
(Gamma et al. 1994). Architectural patterns address the general structure of software systems and the
task of its components. Prominent examples include the layered pattern for abstraction (e.g., in the
OSI model) and the model-view-controller that is used to separate data from logic and presentation.
However, such existing patterns are explicitly designed in a generic way and independent of
application domains. More concrete and purpose build design patterns are required to provide
dedicated support for integrating RFID in manufacturing.

So far, integration of RFID in business applications has mainly been studied for scenarios in logistics
(e.g., Sabbaghi et al. 2008 and Lee at al., 2004). EPCglobal has defined standards for capturing RFID
events and providing them to business applications (EPCglobal, 2007). However, these standards
basically define interfaces for tracking and tracing applications. Details about the data processing and
physical deployment of logic are not addressed. Furthermore, the integration into manufacturing
infrastructures and manufacturing tasks are not part of EPCglobal standards. This is in contrast to our
work that particularly addresses these architectural issues in the manufacturing domain.

From a technical perspective, RFID integration was mainly targeted in the context of middleware
solutions. Existing work on RFID middleware addresses general tasks for RFID data processing, e.g.,

Page 2 of 1218th European Conference on Information Systems

Bornhövd et al. (2004). These works provide some details about data processing technologies and the
physical deployment. However, the technical integration in manufacturing infrastructures and the use
of RFID in production tasks are not addressed.

A standard for IT systems in manufacturing is the ISA-S95 standard family (Brandl, 2000). These
standards use a four layer model for describing software systems and their interaction in
manufacturing. Simplified, layer four comprises software for Enterprise Resource Planning (ERP),
layer 3 Manufacturing Execution Systems (MES), and layer 2 and 1 contain functionality of
Distributed Control Systems (DCS) and software for Supervisory Control And Data Acquisition
(SCADA). ISA-95 describes needed functionalities for these layers and how these functionalities
should interoperate with each other. For example, ISA-S95 provides guidance under which
circumstances which functionalities should run in which layer. However the standard only defines
functionalities and which information need to be exchanged between these functionalities for the
upmost level 4, level 3, and to level 3. Because RFID functionalities lie in level 1, their integration is
not addressed in the standard.

3 CASE STUDIES

In this section we describe the requirements for the infrastructure and hardware options for the
realization that we found in our case studies on IT infrastructures. Overall we conducted seven case
studies that focused on IT infrastructures at manufacturers. Together with our previously conduced
case studies on RFID in manufacturing (Ivantysynova 2008a), these studies provide the basis for our
architectural patterns. Due to confidentiality agreements, we do not provide the company names. We
investigated the IT infrastructures at a manufacturer of (1) engine coolers, (2) engines, (3) fire proof
materials, (4) pharmaceuticals, (5) power plants, (6) milk products, and (7) tires. We thereby cover
examples from the process industry as well as from discrete manufacturing. We provide details about
each of these case studies in (Ivantysynova et al. 2009). Overall, the case studies show that IT
architectures at manufacturers show significant variations. The hardware environment, the physical
deployment of business logic, the data flow, and the location of information storages are among the
varying architectural aspects. However, it is possible to find reoccurring structures that serve as basis
for our architectural patterns.

Figure 1. Common hardware tiers in manufacturing

The case studies show that the hardware infrastructures are generally organized in a hierarchical
structure with several tiers. We found up to four different tiers as depicted in Figure 1. The lowest tier
is the device tier on the shop floor. It comprises programmable logic controllers (PLC) of the
machines on the shop floor. Above this, we often found an edge tier that comprises computing devices
on the plant floor. For example, these can be PCs or terminals of control servers for production
stations. In the following we refer to these computing devices as edge PCs. The tier above is the local
back-end tier. It resembles central servers in a plant. For example, a server for hosting central MES
components such as a historian or modules for task scheduling. The upmost tier is the remote back-end

Page 3 of 12 18th European Conference on Information Systems

tier. This tier refers to the often remotely hosted ERP systems. Note that not all tiers necessarily exist
at each manufacturer. The number of tiers in a manufacturing infrastructure is particularly influenced
by requirements for fast system responses, reliability, and scalability. Manufacturers with high
demands for these requirements have usually all four hardware tiers in place. In contrast, at least one
tier is missing otherwise. Which tiers exists and which functionality they host is one of the main
architectural decisions in manufacturing and is also reflected in our architectural patterns.

In our case studies, we found that data acquisition from the shop floor serves two primary purposes:
One is to observe the process and the other is to automate the execution of process steps. Both fit into
the basic pattern of automation defined by Sheridan (2002). We adapt this pattern to the manufacturing
domain and use it to define basic activities, see Figure 2. This model provides the underlying structure
for our pattern definitions. We subsequently refer to this model as the automation pattern for
manufacturing. Our architectural patterns set up on this model to define the realization of activities
and data flows with respect to different design goals.

Actuators

Capturing
Production

Data

Triggering
Production

Steps

Executing
Production

Steps

Feedback
from steps

Step
to execute

Commands

Machine
Data

Monitoring Logging

Sensor Measurements + Events

Analyzing

Fetching
Workflow

Data

Fetching
Configuration

Data

Workflow

Configurations

Aggregated
Data

Preprocessing
Data

Sensors

Stored Information Computerized Decision

Displays
ObservingExecuting

Maintaining
State

State
Information

Machine
Data

Preprocessed
Machine Data

M
ac
hi
ne

 D
at
a

Figure 2. Elementary activities for automation in manufacturing.

4 PATTERN DEFINITIONS

In this section we present the architectural patterns for integrating RFID in the manufacturing domain.
Our patterns target (1) the distribution and access of context data along the production process, (2) the
distribution of filter logic in the system architecture, and (3) the distribution and structuring of control
logic in the IT infrastructure.

4.1 Architectural Patters for Distributing Context Data

Patterns for distributing context data provide solutions for managing the flow of context data along the
production process. With the term context data we refer to workflow data for controlling the process,
state information about the product in the process, and configurations for each production step. The
following patterns address the management of stored formation in the automation pattern for
manufacturing, see Figure 2. They provide solutions to the distribution of workflow data, state
information, and configurations along production steps. Additionally involved activities are the
triggering and execution of production steps.

All three presented pattern comprise a central coordination component that initiates the production and
manages it to a certain degree. They locate this component on a server in the back end. Additionally,
these patterns make use of edge PCs at the production stations. These edge PCs host components for

Page 4 of 1218th European Conference on Information Systems

triggering and executing production tasks. The patterns vary in how these components interact and
exchange context data as well as in the organization of intermediate storage.

4.1.1 RFID-Pipeline Pattern

The RFID-pipeline pattern defines the deployment of logic for triggering production steps, executing
production steps, and the corresponding data flow. Strengths of this pattern are that it supports
reliability and scalability of the system. It further eases fast data access at the production stations and
simplifies the control of data flow.

Triggering
Production
Step 1

Executing
Production
Step 1

Triggering
Production
Step N

Executing
Production
Step N

Edge
PC 1

1.1: workflow + state information
+ configurations

1.2: state information
+ step to execute
+ configurations

RFID
Tag

Edge
PC N

1.3: state information N.1: workflow + state information
+ configurations

N.2: state information
+ step to execute
+ configurations

N.3: state information

. . .

Triggering
Production

Steps
Logging

Backend
Server

Storage

N+1.1: state information0.1: workflow + state information
+ configurations

Component
for…

Data flow

Deployment

Hardware

Figure 3. The RFID-pipeline pattern.

Figure 3 shows the data flow and physical deployment defined by the RFID-pipeline pattern.
Activities in an RFID pipeline fall into three sequential parts. (1) Initializing the pipeline, (2)
sequentially triggering and executing production steps, and (3) finalizing the pipeline. In the first step,
initial state information, workflow data, and configurations are written on an RFID tag. In most cases
the initialization would be triggered in the back-end system because it holds the required information.
It follows the sequence of triggering and executing production steps. The processing-logic for each
step is deployed on an edge PC on the plant floor. Each step reads state information from the previous
step, workflow data, and configurations from the RFID tag. After processing, the updated state
information is written back to the RFID tag. After the last processing step, log data about the
conducted production is extracted from the tag. The pattern does not define details of this extraction,
i.e. to where the log data is written. However, in most cases this logging process involves reports to
the back end and storage in a historian.

Advantages of the RFID-pipeline pattern are its support for fast data access, system reliability, and
scalability. The pattern ensures fast data access because the information is physically located at the
point where it is needed, i.e., on the RFID tag of the currently handled product. We found in our case
studies that manufacturers struggle to ensure timely access to remote system components and
databases. Here, the RFID-pipeline pattern provides an alternative to ensure fast access; meaning
access with low delay. Data throughput for RFID technology is low compared to wired data transfer.
Thus, the pattern is suitable if the required fast data access is for small amounts of data per transaction.

System reliability is supported because the pattern provides autarky of system components for
different production steps. That is, workflow data, state information, and configurations are available
even in case of back-end failures. Once the initial control data is written on a tag (see step 0.1 in
Figure 3), the production can continue without the back end. System scalability is supported by the
distributed design of the pattern. Due to the decentralization of information storage and processing, the
pattern scales well with the number of parallel executed production tasks.

Page 5 of 12 18th European Conference on Information Systems

The desire to apply this pattern was a major driver for the RFID application in half of our RFID
specific case studies at manufacturers. We further found this pattern in one of our general case studies
on manufacturing infrastructures (case (2).

4.1.2 Pulled-Context Pattern

The pulled-context pattern defines the deployment of logic for triggering production steps, executing
production steps, and the corresponding data flow. Strengths of this pattern are that it supports the
scalability of the system. It also eases fast data access at the production stations and simplifies the
control of the data flow.

Component
for…

Data flow

Deployment

Hardware

Triggering
Production
Step 1

Edge
PC 1

1.1: Identifier

RFID
Tag

Edge
PC N

N.4: state information

Backend
Server

Storage

N.2: identifier

N.1: Identifier

1.2: Identifier

1.3: state
information

+ configuration

N.3: state
information

+ configuration

Executing
Production
Step 1

1.4: state
information

Central
Coordination

Triggering
Production
Step N

Executing
Production
Step N

Figure 4. The pulled-context pattern.

Figure 4 shows the data flow and physical deployment that the pulled-context pattern defines. The data
flow starts with reading the identifier from the RFID tag at a production station. The edge PC at the
production station uses this identifier to pull the required context information for the production from
a central coordination component in the back end. It is important to note that distance reads of tags
RFID can help in conducting the pulling step before the data is actually required. The central
coordination component sends context data for the production to the corresponding edge PC as
response to the pull request. After conducting the production step, the edge PC transfers updated status
information back to the central coordination component. This procedure is repeated afterward for each
production step.

An advantage of the pulled context pattern is its support for system scalability. It further provides a
simple solution for distributing context data for the production to the correct production stations.
Depending on the production process, the use of RFID in this pattern can also prevent that delays in
the IT system slow down the production. The pattern does not require extended user memory on the
RFID tags. Instead, tags must only store a unique identifier. This makes the pattern suitable for open
loop scenarios where tags remain on the products low cost RIFD label are required.

System scalability is supported due to the decentralization of data processing for each production step.
However, a central coordination component is responsible for data distribution to each processing
step. This design can result in delays during the data request. However, in some application settings,
RFID can enable fetching the identifier for pulling data before the production starts. Particularly in
manual processes the possibility of distance reads can allow for pulling proactively. This also comes
with the benefit that data fetching is decoupled from the actual production process. We found potential
for applying this pattern specifically in two case studies on RFID where the process allowed proactive
fetching of state information.

Page 6 of 1218th European Conference on Information Systems

4.1.3 Pushed-Context Pattern

The pushed-context pattern proactively caches context data for the production at production stations. It
uses identifiers on RFID tags for selecting data in these caches when the corresponding product passes
the production step.

Component
for…

Data flow

Deployment

Hardware

Triggering
Production
Step 1

Executing
Production
Step 1

Triggering
Production
Step N

Executing
Production
Step N

Edge
PC

1.2: Identifier

1.3: configurations

RFID
Tag

Edge
PC

N.3: configurations

. . .

Backend
Server

Storage

N.1: workflow
+ configurations
+ status information

N.2: Identifier

1.1: workflow
+ configurations

1.4: state
information

Central
Coordination N.4: state

information

Figure 5. The pushed-context pattern.

Figure 5 shows the data flow and physical deployment defined by the pushed-context pattern. The data
flow starts with pushing context information to edge PCs at the production stations. When the
production starts, the edge PC retrieves the needed data from its local cache using the identifier of the
RFID tag. Subsequently the central control component receives updates about the product status and
updates the downstream production station accordingly.

The main advantages of the pattern are the support for system reliability, scalability and fast reactions
of the IT system. Fast reactions are supported due to the proactive caching. Thus, it is ensured that
required context data are quickly available at the point where they are needed. The downside of
proactive caching compared to pulling is the increased complexity of the data-distribution process. It
is required that the central-coordination component can accurately predetermine where and when
processing of a certain product will happen. Challenges can occur for example if multiple production
stations perform the same tasks in parallel. A possible solution to this is a combination of the pushed-
context pattern with the pulled-context pattern. That is, the central-coordination component can push
context data to a specific control station that manages a set of parallel running production stations.
From there the data can be pulled as the corresponding product arrives at a particular station.

Scalability is supported due to the decentralized control of production steps. However, the central-
control component poses a potential bottleneck. Nevertheless, delayed responses of this component are
tolerable due to the proactive caching. Support for reliability is dependent on how big the proactive
filled caches and material buffers are. In case of a back-end failure, the production can continue as
long as caches and material buffers are filled. Using this pattern was an explicit design decision in one
of the manufacturing infrastructures that we investigated. Here the manufacturer used proactive caches
to ensure continuous production in case of back-end or network failures for up to four hours.
Generally, we found this pattern to be applicable in all discrete productions that we analyzed.

4.2 Architectural Patters for Distributing Filter Logic

Raw RFID reads require several filtering and preprocessing steps before business applications can use
them. That is, the IT system must transform the stream of tag observations in business relevant
information. Following the terminology of Luckham (2001) we call this transformation of raw events
into primitive events and subsequently into increasingly more complex events. For RFID events the

Page 7 of 12 18th European Conference on Information Systems

sequence of operations typically starts with projection followed by data-cleaning operations. Jeffery et
al. (2006) define four cleaning steps in a general framework. Subsequent to data cleaning, additional
projections and complex event processing (CEP) steps extract the relevant data for higher level
applications, e.g., production control or monitoring.

The design questions that arise in context of RFID-data filtering and preprocessing concern the
distribution of logic in the IT infrastructure. In this subsection we present two architectural patterns
that provide solutions to this design question. These patterns mark extremes in a spectrum of possible
solutions. Application designers may adjust the pattern due to application specific constraints.

We group filters and preprocessing operations into operations for selection, low pass filtering, error
correction, aggregation, and CEP. With selection we refer to operations to select data sources and
projecting out data. This is equivalent to the point operation in the data cleaning framework of Jeffery
et al. (2006). With error correction, we refer to data-cleaning operations that go beyond filtering on a
single input stream. For example, this can be filtering after correlation with additional sensor data as
described in (Jeffery et al., 2006). With aggregation we refer to operations that summarize a set of
input events. An example is forwarding the number of detected items rather than each individual
detection. With CEP we refer to the detection of complex-event patterns and evaluation of complex
predicates on RFID reads. Generally, this adds semantics to the input data and enables filtering on a
higher semantic level. A simple example is inferring from a stream of RFID events, that a certain set
of items was packed in a certain box. A filter on top of that may be to report only boxes that were
packed in a wrong way. Further selection operations reduce the data set - that might have been
enriched with additional sensor and context data for intermediate processing steps - to the attributes
required for higher level applications.

4.2.1 Thin-Filter Edge Pattern

The thin-filter edge pattern defines the deployment of logic for filtering and preprocessing of RFID
data on different hardware tiers. The pattern is an architectural alternative to the later described thick-
filter edge pattern. The main strength of the pattern is its simplicity. It fits best to infrastructures with a
thin edge tier and to applications where RFID is used for process monitoring and documentation rather
than for real time control of individual production steps.

Local
Preprocessing

Data

Providing
Sensor Data

Machine

Edge PC

Selection

Aggregation

Projection

Low Pass
Filtering

Complex
Event Processing

Preprocessing
Data

Local
Backend
Server

Logging/
Reporting

Production
Control

Error
Correction

Local
Preprocessing

Data

Providing
Sensor Data

Machine

Local
Backend
Server

Logging/
Reporting

Edge PC Error
Correction

Aggregation

Selection

Aggregation

Selection

Low Pass
Filtering

Complex
Event Processing

Production
Control

Preprocessing
Data

Production
Control

Complex
Event Processing

Raw data

Locally
preprocessed

data

Further
processed

data

Raw data

Locally
preprocessed

data

Further
processed

data

Figure 6. The thick- filter edge pattern (left) and thin-filter edge pattern (right).

The pattern directs raw RFID events through a pipeline of filtering and preprocessing operations, see
Figure 6 right. The first operations in the pipeline run on edge PCs that control the RFID readers.
(Note that some readers have powerful computation capabilities and can replace the edge PC in this
pattern.) Subsequent filter operations run in the back end before data is passed on to higher level
applications.

Page 8 of 1218th European Conference on Information Systems

Filter operations on the edge tier are restricted to selecting available data streams and low-pass
filtering for simple error correction. Typically device controllers for RFID readers support this
operation (see Bornhövd et al., 2004). Filter operations in the back-end tier comprise more complex
operations, error correction, aggregation, CEP, and projection. (Note that all these operations may run
as rules in a dedicated rule engine in an RFID middleware (Bornhövd et al., 2004) or CEP engine
(Coral8, 2006).

The main advantage of the thin-filter edge pattern is that it keeps processing at edge devices simple. It
matches with the typical distribution of filter operations in RFID middleware solutions. These
solutions focus on monitoring applications e.g., for logistic tracking or warehouse management. For
manufacturing this pattern is most suitable if RFID is used for monitoring and documentations rather
than for real-time control of production steps. The low requirements for the edge layer make this
pattern fit into environments with little IT on the plant floor. Here, an RFID implementation with a
dedicated middleware can provide RFID data for process monitoring via a slim interface and without
major interactions with other manufacturing operations. This property makes the pattern suitable in
three of our RFID specific case studies.

4.2.2 Thick-Filter Edge Pattern

The thick-filter edge pattern defines the deployment of logic for filtering and preprocessing of RFID
data on different hardware tiers. It is an architectural alternative to the previously described thin-filter
edge pattern. Strengths of this pattern are its support for scalability, autarky and ability for fast
responses of the IT system.

The pattern directs raw RFID events through a pipeline of filters and preprocessing operations, see
Figure 6 left. A large set of these operations is deployed on edge PCs. These are selection, low-pass
filters, aggregation, projection, error correction, and operations for CEP. From here, enriched and
filtered data can directly flow into modules for production control in the edge tier. The data is further
passed on to the back end for additional processing steps.

The RFID data that arrives in the back end is already cleaned and enriched. However, some additional
processing that could not have been done in the edge tier may be required. For example, the back end
may integrate data from several sources and apply operations for CEP and aggregation afterward.
Subsequently, event data can be passed on to higher level applications.

The main advantage of the thick-filter edge pattern is that it supports scalability. The pattern is
particularly useful in applications were RFID creates massive data volumes or is involved in control
functionality. Extensive decentralized filtering and preprocessing in the edge layer reduces the burden
for the back-end system. This was exploited e.g., in case (4) and (6) of the investigated companies.
The design also supports scalability of the overall system and helps to keep response times low.
Furthermore, the pattern supports fast reactions in decentralized control and steering processes for the
production. The edge layer filters and preprocesses raw RFID events to a large extend. From there the
data can directly feed modules for production control in the edge layer. (For example, an RFID event
may trigger a process step.) Note that the back end is out of the loop. This supports fast reactions in
the edge layer and autarky for the production control as desired in three of our RFID specific case
studies.

4.3 Architectural Patterns for Distributing Control Logic

In this subsection we provide architectural patterns for distributing production control logic in IT
infrastructures of manufacturers. This concerns the control and execution of production steps; like
controlling machines and managing the order of production tasks. The distribution of control logic is a
fundamental design decision that manufacturers have to make whether or not they apply RFID.
However, the design decision impacts how RFID can be applied and vise versa. For example, not all

Page 9 of 12 18th European Conference on Information Systems

patterns presented in this section are compatible with every distribution of control logic. (For a
discussion see section 4.4) In our case studies we found two fundamental options for distributing
control logic. We present two architectural patterns that reflect these options.

4.3.1 One Tier Control Pattern

The one-tier control pattern defines the flow of information and deployment of logic for production
control from the perspective of a whole production plant, see Figure 7.

Fine grained
production tasks

Component
for…

Data flow

Deployment

Hardware

Triggering
Production

Steps

Executing
Production

Steps

Controlling
Actuators

Production
Control Capturing

Production
Data

Data
Acquisition

Preprocessing
Data

Providing
Sensor Data

Machine

Local
Backend
Server

Remote
Backend
Server

Coarse grained planning
and monitoring

Control Tier

RFID
Reader

Machine
data

Aggregated
machine data

Coarse grained
production tasks

Sensor data

Figure 7. The One Tier Control pattern

Coarse grained control of the production tasks is managed in the remote back-end system. In the local
back end the pattern defines a tier that hosts all modules for controlling the production processes. That
is, from here instructions are directly send to controllers for actuators on machines. Feedback from the
plant floor is sent back in form of sensor or RFID data. This information is then evaluated in the local
back end and used in production control.

The main advantage of the pattern is its simplicity. It therefore fits well to productions where light-
weight infrastructures are required (e.g., case (5)). Its central design is also favorable if the production
requires a centralized view on the processes (e.g., case (4) and (6) of our studies). In the context of
RFID, the pattern fits best where RFID is mainly used for monitoring and documenting the production
processes rather than for real-time control of operations (this was the case in three of our RFID
specific case studies).

4.3.2 Multi-Tier Control Pattern

The multi-tier control pattern defines the flow of information and deployment of logic for production
control in several hardware tiers of a production plant, see Figure 8. The main advantages of the
pattern are its support for scalability, autarky, and fast reactions of the system. However, these benefits
come at the cost of a complex system design.

The pattern distributes control logic in two hardware tiers. These two control tiers are located between
the software for coarse grained planning and monitoring (e.g., ERP) and the machines on the plant
floor. The first (upper) control tier hosts software that coordinates the production on task level. The
lower control tier executes the actual production and passes corresponding reports back to the first
control tier that reports to the remote back end in turn. In its hierarchical structure the multi-tier
control pattern is related to the presentation-abstraction-control pattern for hierarchically organized
software agents. Similarly, more than one level of hierarchy may be implemented. In manufacturing,
the number of levels depends on the organization of production facilities.

Page 10 of 1218th European Conference on Information Systems

Triggering
Production

Steps

Executing
Production

Steps

Controlling
Actuators

Capturing
Production

Data

Preprocessing
Data

Providing
Sensor Data

Machine

Local
Backend
Server

Remote
Backend
Server

Coarse grained planning
and monitoring

Edge PC

Control Tier 1

Control Tier 2

Preprocessing
Data

RFID
Reader

Fine grained production tasks

Aggregated
machine data

Coarse grained
production tasks

Sensor data

Machine data

Aggregated
machine data

Machine
data

Refined
production tasks

Component
for…

Data flow

Deployment

Hardware

Figure 8. The multi-tier control pattern with two tiers.

The main advantages of the multi-tier control pattern are its support for scalability, autarky, and fast
reactions of the system. A prerequisite for its application is availability of computation hardware on
the plant floor. This can make the pattern infeasible where light-weight IT infrastructures are required.
In the context of RFID, the pattern fits best if RFID is directly involved in control functionality (e.g. in
case (2)). This is due to the patterns support for processing RFID data on the edge and thereby
ensuring fast reactions to RFID inputs (e.g. as in three of our RFID specific case studies).

4.4 Combining Presented Patterns

The presented patterns focus on different views of architectural designs. However, there is some
overlap in the addressed aspects. Thus, some patterns can be combined while others are conflicting.
Table 1 provides an overview of how patterns may be combined. (The table entries denote that
patterns can be combined very well ("++"), can be combined ("+"), can hardly be combined ("-"), or
are contradictory ("- -").

 RFID
Pipeline

Pulled
Context

Pushed
Context

Thin Filter
Edge

Thick
Filter Edge

One-Tier
Control

Multi-Tier
Control

RFID Pipeline - - - - + ++ - ++
Pulled Context - - + ++ - ++
Pushed Context + ++ - ++
Thin Filter Edge - ++ -
Thick Filter Edge + ++
One-Tier Control - -
Multi-Tier Control

Table 1. Combining the presented architectural patterns.

5 CONCLUSION

The integration of RFID in business applications was mainly studied in the field of logistic
applications. Here EPCglobal developed standards for capturing and exchanging RFID events.

Page 11 of 12 18th European Conference on Information Systems

However, these standards basically define interfaces for tracking and tracing applications. Existing
work on RFID middleware does not provide details on the integration into manufacturing
infrastructures. That is, manufacturing specific use cases and particularities in manufacturing
infrastructures have not been addressed so far. With our work, we fill this gap by providing guidance
for technically integrating RFID in manufacturing.

With the presented architectural patterns we provide concrete design option for integrating RFID in
manufacturing IT systems. The presented patterns provide solutions to reoccurring questions in the
system design for integrating RFID at manufactures. Note that the patterns also provide solutions for
application independent from RFID (e.g., in bar code driven applications). Specifically, our the
patterns answer the following three design questions for integrating RFID in manufacturing: (1) What
kind of filter logic should run where in the system? (2) Where should which control functionality be
located in the system? And (3) How should process relevant data traverse through the process? Our
patterns provide candidate designs along with guidance when to opt for which solution.

References
Bornhövd, C., Lin T., Haller S., and Schaper J. (2004). Integrating automatic data acquisition with

business processes – experiences with SAP’s Auto-ID infrastructure. In Proceedings of the VLDB
– Very Large Data Bases, pp.1182–1188.

Brandl (ed.) (2000). ANSI/ISA-95.00.01 enterprise-control system integration part 1: Models and
terminology. Technical report, ISA Research Triangle Park, North Carolina, USA.

Chappell, G., L. Ginsburg, P. Schmidt, J. Smith, and J. Tobolski (2003).Auto-ID on the line: The
value of Auto-ID technology in manufacturing. Technical report, Auto-ID Center.

Coral8 (2006). Complex event processing: Ten design patterns. Technical report, Coral8 Inc.
EPCglobal. (September 2007). The EPCglobal Architecture Framework - Version 1.2,
2007. http://www.epcglobalinc.org/standards/architecture/.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J.M. (1994). Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional.
Ivantysynova, L., Ziekow, H., Günther, O., Kletti, W., and Kubach U. (2008a). Six Case Studies. In

O. Günther, W. Kletti, and U. Kubach (Eds.), RFID in Manufacturing (1st ed.), Springer Berlin
Heidelberg, 2008, pp. 61-112.

Ivantysynova, L., Ziekow, H., Günther, O., Kletti, W., and Kubach U. (2008b). Lessons Learned. In
O. Günther, W. Kletti, and U. Kubach (Eds.), RFID in Manufacturing (1st ed.), Springer Berlin
Heidelberg, 2008, pp. 61-112.

Ivantysynova L., Klafft M., Ziekow H., Günther O., and Sekin K. (2009). RFID in Manufacturing: the
Investment Decision. In Proceedings of the Pacific Asia Conference on Information Systems, India.

Jeffery, S., G. Alonso, M. Franklin, W. Hong, and J. Widom (2006). Declarative support for sensor
data cleaning. In Proceedings of the Pervasive Conference, pp. 83–100.

Lee Y. M., Chend F., Leung Y.T. (2004). Exploring the Impact of RFID on Supply Chain Dynamics.
In Proceedings of the 2004 Winter Simulation Conference (WSC ’04), IEEE Computer Society,
Washington DC (USA), 1145-1152.

Luckham, D. (2001). The Power of Events: an Introduction to Complex Event Processing in
Distributed Enterprise Systems (1st ed.). Addison-Wesley Longman Publishing Co., Inc.

Sabbaghi, A. and Vaidyanathan, G. (August 2008). Effectiveness and efficiency of RFID technology
in supply chain management: strategic values and challenges. Journal of Theoretical and Applied
Electronic Commerce Research,3(2), 71-81.

Shaw M., and Garlan D. (1996). Software Architecture: Perspectives on an Emerging Discipline.
Addison-Wesley

Sheridan T.B. (2002). Humans and Automation: System Design and Research Issues. John Wiley &
Sons, Inc. New York, NY, USA.

Strüker, J., Gille D., and Faupel T. (2008). RFID report 2008. Technical report, Alber-Ludwig
University, Friedrichstr. 50, Freiburg im Breisgau, Germany.

Page 12 of 1218th European Conference on Information Systems

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2010

	Architectural Patterns for RFID Applications in Manufacturing
	Holger Ziekow
	Lenka Ivantysynova
	Oliver Guenther
	Recommended Citation

	tmp.1301946982.pdf._ZVPr

