
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2010 Proceedings European Conference on Information Systems
(ECIS)

2010

Eyeballs, Bugs, and Releases in Open Source
Software
George Kuk
Nottingham University, g.kuk@nottingham.ac.uk

Follow this and additional works at: http://aisel.aisnet.org/ecis2010

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kuk, George, "Eyeballs, Bugs, and Releases in Open Source Software" (2010). ECIS 2010 Proceedings. 152.
http://aisel.aisnet.org/ecis2010/152

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350984?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2010%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010?utm_source=aisel.aisnet.org%2Fecis2010%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2010%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2010%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010?utm_source=aisel.aisnet.org%2Fecis2010%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010/152?utm_source=aisel.aisnet.org%2Fecis2010%2F152&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

EYEBALLS, BUGS, AND RELEASES IN OPEN SOURCE

SOFTWARE

Journal: 18th European Conference on Information Systems

Manuscript ID: ECIS2010-0336

Submission Type: Research Paper

Keyword:
OSS/FLOSS, User involvement/participation, Networks, Network

organizations

18th European Conference on Information Systems

EYEBALLS, BUGS, AND RELEASES IN OPEN SOURCE

SOFTWARE

Kuk, G, Nottingham University Business School, Jubilee Campus, Wollaton Road,

Nottingham, NG8 1BB, UK, g.kuk@nottingham.ac.uk

Abstract

This study examines two widely cited principles of Linus’ law, namely “given enough eyeballs, all

bugs are shallow”, and “release early and release often”. The aim is to understand their relationships

and their limits to debugging open source software (OSS) bugs. Anecdotally, most of the successful

OSS groups seldom develop in isolation; and their bugs and the underlying debugging processes are

likely to be intertwined among multiple groups. We argue that the interrelatedness among software

groups is an outcome of the long range contacts established through the boundary spanning activities

of their contributors. Long-range contacts can exert an inverted U-shaped impact on releases, that is,

initially, as conduits of valuable information, they benefit releases. But too many contacts slow down

releases. We also hypothesized the influence of long-range contacts on releases is moderated by the

relative location of OSS groups. We tested these intricate relationships using the contributions made

by 7078 developers in solving over a million of highest priority bugs from 2343 software groups. Our

empirical models are largely supported.

Keywords: Long-range contacts, resource heterogeneity, k-core, clustering coefficients

Page 1 of 11 18th European Conference on Information Systems

1 INTRODUCTION

Often OSS and its proprietary counterparts are contrasted in parallel with imageries of the cathedral

and the bazaar. Specifically, the distinctiveness of OSS is uniquely depicted in the Linus' Law, “given

a large enough beta-tester and co-developer base, almost every problem will be characterized quickly

and the fix obvious to someone.” This is further to another principle that "release early and release

often". Yet their intuitive appeals remain largely anecdotal, and have been recently contested to have a

detrimental effect due to unfocused contribution. For example, in assessing the impact of developer

activities on the known security vulnerabilities in the Red Hat Enterprise Linux 4 kernel, Meneely and

Williams (2009) found that too many independent contributors can dilute the focus and lead to

submission of vulnerable software patches. The deleterious effect underscores the mantra of not

having "too many cooks in the kitchen". This follows Brook's law that too many contributors

inevitably increase coordination and communication costs. In this paper, we conduct further empirical

testing of these two principles using a much larger population of OSS groups.

Our premise is that the realized benefits of having contributors with similar roles in doing the same

thing are lesser than having multiple roles involved in debugging. The rationales include: having many

contributors performing the same role may lead to duplication of efforts and wastage, assuming that

voluntary contribution holds; and unlike most of the ill-structured tasks, debugging can often be done

individually although collective action can speed up the process (Scacchi 2004). Whereas having

multiple roles can bring forth the needed complementarities between users and developers as each role

presents a unique set of resources to the debugging process. This distinction underlines our first

contribution by explicating the essence of eyeball principle to resource heterogeneity, and its influence

on software release. We choose software release as it is closely related to how efficient bugs are fixed,

i.e. the quicker the bugs are fixed, the more often the releases. The second contribution addresses a

neglected aspect of OSS development in relation to the boundary spanning activities of the users and

developers across different OSS groups. The boundary spanners serve as conduits of valuable

information among otherwise isolated OSS through an increase in long range contacts. Users can also

play multiple roles in their affiliations, that is, a developer can be a user in one group and a core

developer in another. This increases resource heterogeneity as each role presents a unique set of

resources to debugging. Yet increased affiliations and contacts can lead to diluted attention and effort.

This underlines our third contribution in identifying and ascertaining the limits of the eyeball and the

release principles.

1.1 Theory and hypotheses

In contrast to proprietary software, the bazaar model of OSS development underscores participation of

contributors is voluntary
1
. That is, a developer can choose which OSS group to contribute. Bug fixing

presents an opportunity that every contributor including users and developers can contribute. Users

can report bugs, and submit patches; and users that do not write software will have to rely upon others.

The eyeball principle underlines the complementary relationship between users and developers. Yet it

is not clear what constitutes "enough eyeballs", and "whose eyeballs" are more valuable to debugging.

Also consider there are many software groups, individual contributors can freely join as many groups

as they like although contributors tends to gravitate towards a few OSS groups (Maddley et al. 2004).

That aside, the affiliation of each contributor presents an unique set of resources. This follows the

strength of weak ties (Granovetter 1973), such that affiliations can be conceptualized as long-range

contacts which serve as strong conduits of valuable information.

1 Here in our study, we have no means of ascertaining the motivation of contributors, and differentiating developers into pure

hobbyists and corporate sponsored ones.

Page 2 of 1118th European Conference on Information Systems

Figure 1 shows two software groups A and B. They are related via the boundary spanning activity of

developer DA2. Software group A has its own user base (including UA1 and UA2) and developers (DA1

and DA2). The developer DA2 not only contributes to the debugging of BugA1 but also to BugB1 in the

capacity of a user rather than a developer.
2
 The affiliation via boundary spanning activity of DA2 can

affect software group A in two unique ways: first, software group A may no longer develop and

maintain in isolation but in tandem with group B; and second, affiliation has made unique knowledge

specific to software groups A and B more fluid and accessible to members of group A.

Figure 1. An illustrated example of the relationship between affiliation and software relatedness

Bug A1 Bug A2

UA1 UA2 DA1 DA2

Group

A

User base Developers

Bug B1 Bug B2

UB1 UB2 DB1 DB2

Group

B

User base Developers

The first effect of affiliation increases software relatedness. Software groups are related when they

share common contributors. The concept of relatedness is not new in the literature and is said to

increase knowledge flow and exploitation through reuse (Tanriverdi 2005). Software groups that are

related through affiliation are likely to be aware of the latest development of each other, and possibly

schedule and work in tandem. For example, a contributor may contribute to the code libraries of a

scripting language, and have the chance of interacting with other contributors. Because of this

contribution and interaction opportunity, the contributor may acquire new technological insights into

how to use his or her contributed code and combine with other codes in developing newer and better

software applications. This increase in software complementarities accelerates software releases.

The affiliations and interactions among contributors across different software groups also increase the

awareness of who are in the neighbourhoods and who the experts are when it comes to certain bugs.

This increase in awareness reinforces the notion of a small world network commonly observed in

social systems (Kossinets and Watts 2006). A small-world network is said to comprise a number of

cohesive groups or connected components via bridges or ‘short-cuts’ (Watts et al. 1998). In relation to

Figure 1, the debugging contribution by developer DA2 to fix BugB1 provides an interaction opportunity

with UB2 and DB1. The interaction link creates a short-cut between software groups A and B. The

interaction link via DA2 forms the long-range contacts of DA1 and UA2. In view of the affiliation

dynamics, we characterize software relatedness as the long-range contacts, measured as the degree of

clustering of users and developers of a software group within their immediate neighbourhoods.

These long range contacts can benefit collaborative activities in bug fixing as they will increase

awareness of requirements, knowledge transfer, and software complementarities across different OSS

groups. Yet too many contacts not only increase the coordination cost which slows down bug fixing

but also impose constraints on design choice (Nickerson 2004). This inevitably slows down cycles of

software development. That is, the small world benefits associated with the long-range contacts

2 Contributors acquired the status of a developer if they have the access right to write and modify the code library of the

software group otherwise they assume the status of a user.

Page 3 of 11 18th European Conference on Information Systems

attributed to the boundary spanning activities of contributor will only remain positive up to a certain

limit. We formulate the following hypothesis to ascertain the influence of long range contacts on

software releases.

Hypothesis 1: Long range contacts exhibit curvilinear relations with software releases, first

rising and then declining (an inverted U-shape), reflecting the fact that long contacts exert a

negative effect on group releases at its extremes.

Although contributing to debugging is entirely voluntary, whether individual contribution will be

accepted by others is a different matter. Lave and Wenger (1991) refer the initial contribution to

legitimate peripheral participation through which newcomers become socially accepted and included

in a community of practice. In order for the newly joined OSS developers to increase the chance that

their contributions will be accepted and reciprocated, they have to embark on a social learning process

by climbing some sort of apprenticeship ladder (Kim 2000), and by following some form of joining

script specific to an OSS project (see e.g., von Krogh et al. 2003) or both. Ye and Kishida (2003)

suggest there are at last eight different roles based upon their contributions in software development.

In relation to debugging, the eyeball principle suggests beta-testers (or users) and co-developers. We

contend that the boundary-spanning developers contribute another set of resources as they provide the

conduits of valuable information and knowledge. Although there are status differences among them,

they all contribute in their own unique ways. Table 1 summarizes how each role (as depicted in Figure

1) contributes to resource heterogeneity that matters to debugging.

Table 1. Membership resource heterogeneity

UA2: User DA1: Core

Developer

DA2: Core and

peripheral

A user/beta-tester

Role: testing, bug

reporting,

sometimes

contributing patches

of code and forming

part of the user-base

A developer with

CVS account

Role: knowledge

brokering, writing

the majority of

software codes and

bug fixing

A developer who is

core to group A but

serves as a user to

group B.

Role: boundary

spanning and

knowledge brokering

We contend that all three roles are equally important. The users not only contribute in the capacity of

beta testers but also their bug reporting often incentivizes developers because developers often

revealed that they feel satisfied from helping the users (Wu et al. 2007). Although contributors that

criss-cross different software groups are more likely to provide the conduits of valuable information

and knowledge, other contributors that criss-cross less but dedicate more time to fixing bugs are

equally invaluable to debugging. Hence, software groups comprising members of performing diverse

roles (user; core; and core and peripheral) are likely to benefit from the unique sets of resources that

each specific role brings. The above consideration has led to the following hypothesis:

Hypothesis 2: Resource heterogeneity will increase software releases

Yet the small world benefits (attributed to long-range contacts) and the resource heterogeneity (as a

result of diverse membership roles) are likely to be affected by the relative location among software

groups. In contrast to isolated software groups, software groups that are well connected are likely to

attract the attention of the majority of the OSS developers (Maddey et al. 2004). This follows the

notion of preferential attachment, or the so-called Matthew effect. In relation to debugging, solving a

bug of a well connected software group has more appeal as it will induce more satisfaction and have a

wider impact on a larger user-base than solving a bug of a less well connected group of a smaller user-

base. However, working with too many developers will lead to unfocused contribution (Meneely and

Page 4 of 1118th European Conference on Information Systems

Williams 2008) and increase the coordination and communication costs (Brooks 1995), and the depth

of discussion and knowledge sharing will remain shallow (Benbunan-Fich et al. 2002). Software

groups that are located within a denser core are likely to dilute the benefits of long range contacts and

resource heterogeneity. This has led to the following two hypotheses:

Hypothesis 3a. Location will moderate the impact of long range contacts on group releases

Hypothesis 3b. Location will moderate the impact of resource heterogeneity on group releases

2 RESEARCH METHODS

We used SourceForge.net (SourceForge) as our data source as it is generally considered to be the

largest repository of OSS groups. Also with the free tools provided by SourceForge, such as

concurrent versioning systems (CVS), mailing lists and bug tracking systems (tracker), we were able

to extract behavioural information of over a million contributors from the relevant archives. This

approach has proven to be rigorous in studying user preference, collaboration amongst developers, and

maintenance activities (e.g. Antoniades et al. 2007). Data logs from the tracker systems were used to

analyse how users and developers contributed to debugging. The tracker allows developers and users

to report and manage bugs, patch submissions, support requests and feature requests. Each project may

have multiple trackers. That is, each project may have many logged bug requests. The tracker provides

information such as the summary of a request, open date, close date, update date, bug status (e.g. open,

close), resolution status (e.g. fixed, duplicate, none, rejected, etc.), submitter ID, and assignee ID.

Every month, a complete dump of the SourceForge database is shared with Notre Dame (minus

personal information and OSTG specific and site functionality specific information for security and

privacy reasons). In other words, a snapshot of all activities from the beginning until the date of the

dump is available. For the purpose of our study, the latest dump that we used was June 2009. Thus,

data used for analysis contains all bug activities from the start of data recording until June 2009.

Before we extracted the data from the Notre Dame database, we studied how it was organized and

structured in a format of an Entity Relationship (ER) diagram. Then we wrote Standard Query

Language (SQL), to retrieve the information from the database.

Four types of bugs are listed in SourceForge. They are support requests, bugs, feature requests, and

patch submission. Only bugs (defects) were used for our study because they clearly show corrective

and perfective change. The others are less obvious since some of them are minor questions and

duplicate of reported bugs. Each group may contain hundreds to thousand numbers of bugs. To limit

the number of bugs examined, we selected bugs with the highest priority determined by the elders of

the OSS groups. This resulted in 1,073,256 bugs from 2343 OSS groups with 7078 contributors.

2.1 Measures

Releases. We used software releases as our dependent variable considering our focus on examining the

relationship between the eyeball and the release principles. We counted the total number of versions of

each software group, mean = 17. 31, sd = 27.54.

Long range contacts. We calculated long range contacts of a software group by averaging the

individual clustering coefficients, which are the proportion of ties that exist among the collaborators of

a developer against the potential number of ties that could exists within and across OSS groups.

Resource heterogeneity. We used the Gini index of diversity to measure the distribution across three

distinctive membership roles comprising 'user', 'core developers', and ‘core and peripheral developers'.

The index is defined as, G = 1 - ∑pi
2
. At maximum homogeneity, the index is zero, whereas at

maximum heterogeneity, it has the value of (1 - 1/n).

Page 5 of 11 18th European Conference on Information Systems

Location. The relative locations of OSS groups were measured using the k-core algorithm in Pajek. A

k-core is defined as a maximal subnetwork in which each node has at least degree k within the

subnetwork (de Nooy et al. 2008). For example, if a k-core has a value of 4, it indicates that all nodes

(or vertices) has at least 4 other nodes within the subnetwork. Our results indicated three distinctive

groupings. The first k-core (kcore1) constituted 75% of the total software groups and contained all the

isolated OSS groups with k = 1. We labelled this grouping as ‘periphery location’. The second k-core

(kcore2) constituted 17.2% of the total observation with k values ranging from 3 to 6. We labelled this

grouping as ‘semi-periphery location’. The third, remaining k-core grouping (7.8%) had the largest k

value of 210. We labelled this as ‘core location’ (kcore3). The relative locations are included in the

Appendix.

Control variables. We used two control variables. First control is the software age. To standardise the

software age across projects, June 2009 was chosen as the anchor date. The software age is then

calculated by subtracting the anchor date with the registered date of the group. The final time is

recorded in years, mean = 5.15, sd = 2.34. Second control is the number of contributors. As

debugging was open to all developers, the number of developers would increase the bug fixing and in

turn increase releases. Hence, the total number of developers that contributed to bug fixing of each

software group was included as a control variable.

2.2 Data analysis

The affiliations between contributors and software groups can be modelled as a two-mode undirected

network (Wasserman and Faust 1994). A node d representing a contributor is associated with another

node g representing a software group when d is part of g’s team of contributors. To calculate

individual clustering coefficient of d, we transformed the two-mode network into a single-mode

network with all nodes representing contributors. Two nodes, d1 and d2 are connected if they both

contributed to a bug of a same software group. All the transformation and calculation were carried out

in Pajek. Since our dependent variable, software release, was a count variable and took on non-

negative integer values, we used the negative binomial regression approach to avoid heteroskedastic,

nonnormal residuals (see Hausman et al. 1984). To test the curvilinear effect of hypothesis 1, we first

mean centered long range contacts, before squaring. This is to reduce the potential problem of

multicollinearity (Aiken and West 1991). In the regression models, we entered both linear and squared

terms, the beta coefficient of linear term has to be positive, and notably the squared term has to be

negative and significant.

Table 2. Descriptive Statistics and Correlations

Mean Std. Dev. 1 2 3 4 5

1 Release 1.00

2 Age (Year) 17.31 27.54 0.13 *** 1.00

3 Number of Contributors 5.15 2.34 0.04 0.06 ** 1.00

4 Long Range Contacts 3.00 25.82 0.04
+

-0.05 * 0.08 *** 1.00

5 Heterogeneity 0.05 0.13 0.21 *** 0.09 *** 0.09 *** 0.08 *** 1.00

6 Long Range Contacts Squared 0.16 0.23 -0.11 *** -0.04 * -0.04 0.04 -0.19 ***

n = 2343;
+
 p < .08* p < .05, ** p < .01, *** p < .001.

Variable

Page 6 of 1118th European Conference on Information Systems

3 RESULTS

3.1 Descriptive Statistics

Table 2 reports descriptive statistics and inter-correlations for all the variables of interest. Releases had

a standard deviation greater than its mean, which indicated overdispersion. We found releases to be

positively and significantly correlated with the total number of contributors and heterogeneity, but the

correlation between releases and long-range contacts was marginally significant. The long-range

contacts squared term was negatively and significantly correlated with releases.

3.2 Regression Models

We report the results of the negative binominal regression analysis in Table 3. Model 1 is the

unconstrained controls-only model. Model 2 includes long range contacts as linear and quadratic terms

to test hypothesis 1, and heterogeneity for hypothesis 2. Model 3 introduces the interaction effects to

test hypotheses 3a and 3b.

Table 3. Negative Binominal Models with Fixed Effects for Software Releases
a

Constant 2.33 *** (0.05) 2.45 *** (0.07) 2.41 *** (0.08)

Independent

Long range contacts 0.25
+

(0.17) 1.16 *** (0.36)

Heterogeneity 1.13 *** (0.10) 1.04 *** (0.12)

Long range contacts squared -3.35 *** (0.56) -3.47 *** (0.74)

Moderating

Kcore2 (Semiperiphery vs. Periphery)
b

0.15 (0.08)

Kcore3 (Core vs. Periphery)
b

0.5 ** (0.20)

Kcore2 X Long-range Contacts -1.84 *** (0.47)

Kcore3 X Long-range Contacts -1.39 ** (0.56)

Kcore2 X Heterogeneity 0.48 * (0.24)

Kcore3 X Heterogeneity -0.91 * (0.37)

Control

Age (year) 0.08 *** (0.01) 0.07 *** (0.01) 0.07 *** (0.01)

Number of contributors 0.02 (0.00) 0 (0.00) 0 (0.00)

df 2 5 11

Log-likelihood -9014.15 -8923.36 -8905.96

Log-likelihood ratio 181.58 216.38

Wald c2 131.26 *** 150.05 *** 195.56 ***

a
n = 2343; standard errors are shown in parenthesis

b
 dummy coded

+
p < .08

* p < .05

** p < .01

** p < .001

Variable Model 1 Model 2 Model 3

Hypothesis 1 posits an inverted U-shaped relationship between releases and long range contacts. The

results in Model 2 indicate that the linear term is positive and marginally significant (p< .08), and the

squared term of long range contacts is negative and significant (p < .001), thus supporting hypothesis

1. Figure 2 (plotted using model 2, ranging from -3sd to +3sd) demonstrates the overall effects of long

range contacts on releases. The figure clearly shows the inverted U-shaped between releases and long

Page 7 of 11 18th European Conference on Information Systems

range contacts, and slope analysis (Greene 1997) confirms that positive slope apparent at the lower

end and releases turns negative at higher end of long range contacts.

Figure 2. Curvilinear Effect of Long Range Contacts on Software Releases

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-3 -2 -1 0 1 2 3

R
e

le
a

s
e

s

Long Range Contacts

3.3 Moderating effects

To test for the moderating effects, we created linear interaction terms composed of long range contacts

and heterogeneity with each of two moderating locations (core vs. periphery; and semi-periphery vs.

periphery). We entered the interaction terms as a block in Model 3 to account for their simultaneous

effect on software releases. Evidence of moderation is found and the model fits well (Golden and

Viega 2005). To better interpret the interaction terms, we graphed the interaction effects (only the

interaction effect between long range contacts and locations was shown in Figure 3) following

procedure outlined in Cohen et al. (2003). Figure 3 show that in contrast with software groups located

at the core and semi-periphery, an increase in heterogeneity will positively increase software releases

of groups located at the periphery.

Figure 3. Interaction Effect of Relative Location of Software Groups

0

0.2

0.4

0.6

0.8

1

1.2

-3 -2 -1 0 1 2 3

R
e

le
a

s
e

s

Long Range Contacts

Periphery

Semiperiphery

Core

Page 8 of 1118th European Conference on Information Systems

3.4 Robustness checks

To check for robustness, we used robust standard errors to estimate the significance levels of the main,

curvilinear and moderating effects. The interaction effects comprising of heterogeneity and the two

moderating locations were not significant. But the linear and quadratic effects of long-range contacts

remain significantly. We also used another set of data (based on a data dump of September 2008) to

replicate the above empirical models, they were all supported including the interaction effects of

heterogeneity. Overall, the results provide strong evidence for the curvilinear effects of long-range

contacts, the linear effect of heterogeneity on releases, and the moderating effects of location on the

relationship between long range contacts and releases.

4 DISCUSSION

The primary aim of this study is to understand the eyeball principle relating to how it works, and how

it affects software release. This study makes several contributions to the extant literature of OSS

participation. First, it builds upon the unfocused contribution argument by identifying further set of

conditions that may be detrimental to software outputs. Although the previous research has underlined

the demise of having too many independent contributors, we argue that even when contributors are

interdependently and collaboratively engaging in debugging, too many of them will still tip the

balance and slow down software releases. This is directly opposite to unfocused contribution. It seems

that increased software relatedness may make contributors even more focused and mindful of other

groups' requirements, and possibly the wider impacts and repercussions of their contributions to other

OSS groups. This is increasingly the case as bug fixings and new feature implementation have become

more forward than backward compatible (HDF 2009). Although we do not test this in the present

study, future research can examine whether a drop in group releases actually benefits the quality of the

software groups, and prolongs the longevity of the software groups.

Second, it moves beyond a single case of empirical analysis to a larger population of OSS groups. This

is important to better understand and capture the participation dynamics of contributors and the

intricate relationships among OSS groups. By studying the debugging of the highest priority bugs, it is

likely that we have captured a very high proportion of competent OSS developers. The findings are

not trivial, as the results (Model 1) indicate that software outputs are not determined by how many

contributors involved in debugging but what really matters is the long range contacts that each

contributor brings to debugging, and that too many will only slow down group releases.

Third, we have ascertained the significance of contributors that criss-cross OSS groups in addition to

the normal distinction between core and peripheral members. Contributors of dual roles (core and

peripheral) are likely to serve in the capacity of a technical gatekeeper (Allen 1977) and engage in a

balancing act between boundary spanning and knowledge brokering. We further argue that their

significant contribution is through establishing long range contacts for other members of the groups.

Unlike most of the closed networks commonly found in firms and social networks, the openness and

transparency in open source networks have made structural holes redundant as debugging and OSS

development is open to everyone to participate. Use the example given in Figure 1 to provide a more

succinct illustration. The interaction link established through DA2 provides a long-range contact for

DA1 and UA2. Although DA2 is occupying the structural hole between software groups A and B, there is

no stopping for both DA1 and UA2 contributing to the debugging of BugB1. Yet it is unlikely as it may

duplicate the effort, and it is also possible that both DA1 and UA2 have their own long range contacts to

maintain. Future research can examine this further, by monitoring how individual networks of long

range contacts unfold over time and whether they remain stable.

As with any study, there are limitations that must be evaluated. First, only the highest priority bugs are

examined. The findings may be different in low priority bugs as highest priority provided a stronger

signal to the contributors to involve. This needs further research. Second, in operationalizing long

Page 9 of 11 18th European Conference on Information Systems

range contacts and location, we draw on the established measures from the small world literature

(Watts et al. 1998) and social network analysis (Nooy et al. 2008). It is possible other equally valid

measures may exist. Future research can compare the present set of measures with other measures to

allow further testing of reliability and validity. Third, although we used another set of data dump to

replicate our findings, panel data can be collocated and provide better testing of the causal

relationships as hypothesized in the present study.

References

Aiken, L. S. and West, S. G. (1991). Multiple regression: Testing and interpreting interactions.

Thousand Oaks, CA: Sage.

Allen, T. J. (1977). Managing the flow of technology ; technology transfer and the dissemination of

technological information within the R&D organization. Cambridge, Massachusetts.: MIT Press.

Antoniades, I., Samoladas, I., Sowe, S.K., Koch, S., Fraczek, K. & Hadzisalihovic, A. (2007)

"Free/Libre and Open Source Software Metrics", February 15, FLOSSMetrics Consortium 2006-

2007

Benbunan-Fich, R., Hiltz, S. R. and Turoff, M. (2002). A comparative content analysis of face-to-face

vs. asynchronous group decision making. Decision Support Systems, 34(4) 457–469.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,

Reading, MA.

Cohen, J., Cohen, P., West, S. and Aiken, L. (2003). Applied multiple regression/correlation analysis

for the behavioural sciences (3
rd

 ed.). Hillsdale, NJ: Erlbaum.

de Nooy, W., Mrvar, A. and Batagelj, V. (2008). Exploratory social network analysis with Pajek.

Cambridge, UK: Cambridge University Press

Golden, T. D., and Viega, J. F. (2005). The impact of extent of telecommuting on job satisfaction:

Resolving inconsistent findings. Journal of Management, 31(2), 1-15.

Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78 (6), 1360-1380.

Greene, W. H. (1997). Econometric analysis (3
rd

 ed.). Upper Saddle River, NJ: Prentice-Hall.

Hausman, J., Hall, B. and Griliches, Z. (1984). Econometric models for count data with an application

to the patents-R&D relationship. Econometrica, 52, 909-938,

Kim, A. J. 2000. Community building on the Web: Secret strategies for successful online

communities. Addison Wesley, London, UK.

Kossinets, G. and Watts, D. J. (2006). Empirical analysis of an evolving social network. Science, 311,

88-90.

Kuk, G. (2006). Strategic interaction and knowledge sharing in the KDE developer mailing list.

Management Science, 52(7), 1031 - 1042.

Lave, J., E. Wenger. 1991. Situated learning. Legitimate peripheral participation. Cambridge

University Press, Cambridge, UK.

Madey, G., V. Freeh, R. Tynan. 2004. Modeling the F/OSS community: A quantitative investigation.

S. Koch, ed. Free/Open Source Software Development. Idea Publishing, Hersey, PA, 203–220.

Meneely, A. and Williams, L. (2009). Secure open source collaboration: An empirical study of Linus'

law. Paper accepted at the 16th ACM Conference on Computer and Communications Security,

Chicago, November. http://www4.ncsu.edu/~apmeneel/ccs221-meneely.pdf

Nickerson, J. A., T. R. Zenger. 2004. A knowledge-based theory of the firm: The problem-solving

perspective. Organization Science, 15(6), 617–632.

Oregon, USA.

Scacchi, W. (2004). Free and open source development practices in the game community. IEEE

Software, 21, 56-66.

Tanriverdi, H. (2005). Information technology relatedness, knowledge management capability and

performance of multibusiness Firms. MIS Quarterly, 29 (2), 311-334.

Page 10 of 1118th European Conference on Information Systems

http://www4.ncsu.edu/~apmeneel/ccs221-meneely.pdf

The HDF group. Backward and forward compatability. September 1, 2009.

www.hdfgroup.org/HDF5/faq/bkfwd-compat.html.

von Krogh, G., S. Spaeth, K. R. Lakhani. (2003). Community, joining, and specialization in open

source software innovation: A case study. Research Policy, 32,1217–1241.

Watts, D. J. and Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature, 393,

440-442.

Wu, C. G., Gerlach, J. H. and Young, C. E. (2007). An empirical analysis of open source software

developers' motivations and continuance intentions. Information & Management, 44, 253-62.

Ye, Y. and Kishida, K. (2003). Toward an understanding of the motivation of open source software

developers. In Proceedings of the 2003 International Conference on Software Engineering,

Portland.

5 APPENDIX.

The three tier structure comprised core, semi-periphery and periphery locations. The network layout

was generated using the Kamada Kawi free energy layout algorithm in Pajek.

Page 11 of 11 18th European Conference on Information Systems

http://www.hdfgroup.org/HDF5/faq/bkfwd-compat.html

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2010

	Eyeballs, Bugs, and Releases in Open Source Software
	George Kuk
	Recommended Citation

	tmp.1302176395.pdf.spqFd

