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Abstract 

Simulation models are important instruments for analysing business systems. They are classified into 

time-discrete and time-continuous simulation models, for example Discrete Event Systems (DEVS) or 

System Dynamics (SD) models. These special models are particularly suitable to analyse subsystems 

of a business system with either time-discrete or time-continuous behaviour. However, in general they 

are not appropriate to analyse a business system which shows time-discrete and time-continuous 

behaviour simultaneously. Analysing business systems with time-discrete and time-continuous 

behaviour with isolated submodels and consolidating the findings of these analyses afterwards may 

lead to redundancy and consistency problems. In this paper an approach for developing hybrid 

simulation models, which exhibit time-discrete and time-continuous behaviour, is presented. The 

hybrid simulation models contain DEVS and SD simulation submodels that are coupled. The approach 

introduces a structural model of business systems that consists of several control layers with time-

discrete or time-continuous behaviour, as well as a modelling approach for integrating DEVS and SD 

submodels by coupling mechanisms. Finally, an investigation of a market case illustrates the use of 

the presented approach. 

Keywords: business systems, modelling and analysis of business systems, Discrete Event Systems 

(DEVS), System Dynamics (SD), hybrid simulation, coupling mechanisms. 
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1 INTRODUCTION AND PROBLEM SETTING 

Investigations of complex dynamical business systems and their environments are conducted by 

designing models, which represent the whole or only parts of these business systems (for instance 

models of business processes) firstly, and by analysing these models afterwards. The power of 

simulation models is the ability to mimic the dynamics of systems that feature a complex structure and 

behaviour. Simulation models are classified into time-continuous and time-discrete models depending 

on their time scale. 

With regard to the degree of abstraction of investigations and according to the general economic 

theory (Mankiw 2008) we distinguish between micro and macro analyses of business systems in the 

following. A micro analysis is an investigation of the behaviour of components of business systems 

over a (relatively) short period of time by using time-discrete and in some cases time-continuous 

simulation models (i.e. in the production area). We denote micro analysis models as micro simulation 

models. The nature of a macro analysis is the investigation of aggregated variables of business system 

components or of an aggregation of business system components over a long period of time by using 

time-continuous simulation models (i.e. temporal behaviour of model variables, such as sales, demand 

for a product in a specific market or stocks). In the following, we refer to models used for macro 

analyses of business systems as macro simulation models.  

With micro and macro analyses conducted, different investigation objectives are addressed. Micro 

analyses are mainly used for investigating cycle times of individual objects or resource capacities 

needed for carrying out individual activities. In contrast, objectives of macro analyses of business 

systems are directed towards the determination of long-term time-continuous behaviour of model 

variables as well as to the analysis of the stability of business systems.  

Until today, integrated micro and macro analyses of business systems with integrated micro and 

macro models have not been used extensively (Lee & Cho & Kim 2002, Rabelo & Helal & Jones & 

Hyeung-Sik 2005, Suchan 2009), among other reasons, due to the lack of suitable approaches (cf. 

Section 2). According to current modelling practice, micro and macro models of business systems are 

constructed and analysed separately. Findings of micro analyses, if applicable, are used in macro 

analyses and vice versa, macro analyses affect the construction and execution of micro analyses. 

However, the related models are not integrated. Simulation experiments are carried out separately 

from each other. This approach shows some problems that can occur (p1 to p5) from the perspective of 

the model theory (Ferstl 1992, Halloun 2006): 

 Model consistency (p1): If micro and macro simulation models overlap with regards to the modelled 

real world (the business system), the consistency of both models needs to be assured. The sales 

behaviour in a macro analysis has to be consistent with the sales process in a corresponding micro 

analysis, for example. 

 Redundancy of model components (p2): Another consequence of overlapping micro and macro 

simulation models are the redundant model variables, which lead to increased modelling efforts and 

inconsistencies.  

 Connection of model components (p3): By using isolated micro and macro models, relationships 

between model variables of these models are not considered sufficiently. Findings of macro models 

are not applied directly and automatically to micro models and vice versa. 

 Decomposition of investigation objectives (p4): Complex investigation objectives, which can not 

solely be pursued with micro or macro analyses, have to be decomposed into less complex 

objectives and investigated separately. Dependencies among objectives lead to increased 

investigation efforts. 

 Modelling and model investigation effort (p5): Isolated modelling and isolated investigations of 

micro and macro models lead to redundant modelling and investigation activities. 
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In order to overcome these problems, we propose an approach of a hybrid simulation system that 

consists of time-discrete and time-continuous simulation subsystems. The approach is suitable for 

constructing integrated macro and micro simulation models of business systems and for conducting 

integrated macro and micro analyses of business systems. We use the System Dynamics (SD) 

Methodology (Forrester 1969, Sterman 2000) for the modelling of time-continuous subsystems and 

the Discrete Event Systems (DEVS) simulation modelling approach (Schriber & Brunner 2007) for the 

modelling of time-discrete subsystems. The simulation approaches SD as well as DEVS are well 

known and well-investigated in research (see i.e. the Proceedings of the Winter Simulation 

Conferences or the SD Review). To tackle the problems p1 to p5, we decompose our research objective 

into the following research questions: 

a) Modelling of business systems: Which subsystems of a business system should be represented by 

a time-continuous simulation submodel, and which by a time-discrete submodel? What 

relationships exist between these subsystems? 

b) Design of a modelling approach independent coupling mechanism: How should the interactions 

between the continuous and the discrete subsystems (the relationships between business 

subsystems) with respect to the different time scales be realized? 

c) Design of a modelling approach specific coupling mechanism: Which elements of the different 

submodels (SD and DEVS) should be coupled with each other and how should this be 

accomplished? 

d) Examination of advantages and limitations of our approach: Does the application of our hybrid 

simulation approach to the analysis of business systems overcome the problems p1 to p5? What are 

the limitations of our approach? 

This design science oriented paper provides answers to the research questions a) to d) from a radical 

constructivist perspective (v. Glasersfeld 2002). Additionally, the paper is verified according to the 

guidelines of design science by Hevner et al. 2004. To achieve our research objectives, a literature 

review (section 2) is carried out first. Afterwards, the technology-based artifact, our approach of a 

hybrid simulation system is constructed (section 3). Furthermore the applicability of the approach is 

exemplified by a market case study (section 4). Finally, we summarise strengths and weaknesses of 

our approach and give an outlook to further research (section 5).  

 

2 LITERATURE REVIEW 

The term hybrid system is used with different meanings. Therefore, we need to explain our under-

standing of a hybrid system. In this section we describe different types of systems, including different 

types of hybrid systems firstly. These descriptions are based on a formal mathematical notation. 

Afterwards, we use this classification to explain our understanding of hybrid systems and to examine 

research results in the field of hybrid systems with regard to our research questions. From the perspec-

tive of methodology, the literature review is carried out according to the guidelines by Cooper (1998). 

In a mathematical sense, a system is a set of interacting components (v. Bertalanffy 1973). 

Components are either sub-systems or elements of a system. Subsystems possess the same 

characteristics as systems. They feature interacting components. In contrast to subsystems, elements 

cannot be decomposed further. Following Ferstl (1979) and Mesarovic and Takahara (1975) we 

distinguish between general systems, input output systems, state space systems, finite state automatons 

or general dynamical systems. Furthermore, we make a distinction between time-continuous and time-

discrete dynamical systems (cf. Figure 1). While time-continuous simulation systems are a special 

kind of time-continuous dynamical systems, time-discrete simulation systems and agent based 

simulation systems are subtypes of time-discrete dynamical systems. 

As we already mentioned, there is no consensus of the term hybrid system in systems science research. 

On the one hand, systems that consist of subsystems of different system types are called hybrid 

systems (Almeder & Preusser 2007, Godding & Sarjoughian 2003, Lee & Kim 2000, Venkateswaran 
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& Son 2005). An example is the coupling of a time discrete dynamical system with a control system. 

The control system is often called model predictive control (MPC) model (Sarjoughian et al. 2005). 

The MPC model is most frequently an input output system, i.e. a linear program. This research area is 

called computer aided control system design (CACSD) and is not in our focus of research. 

On the other hand, the term hybrid system is used for describing systems, which feature subsystems 

with time-continuous behaviour and subsystems with time-discrete behaviour (Carloni et al. 2001, 

Cellier 1986, Rabelo et al. 2003, Schaft & Schumacher 2000, Venkateswaran & Jones 2004). Time-

continuous and time-discrete event simulation systems are the system types that are being used most 

commonly (Lee & Cho & Kim 2002, Rabelo et al. 2003, Rabelo et al. 2005, Rabelo et al. 2007). 

Hybrid System, consisting of an input-

output-system and a time-discrete 

dynamical system

Hybrid Dynamical System

General system S
G

Input output system S
IO

State space system S
S

Finite state machine S
FS

General dynamical system S
D

Time-discrete dynamical system S
D

d

S
FS 

IN × Zbefore × Zafter × OUT

S
G
 × Vi

S
IO

 IN × OUT S
S
 Z × Z

S
D
 T×IN×Z) × (T×OUT) × (T×Z)

S
D

d T×IN×Z) × (T×OUT) × (T×Z)

T 

Time-continuous dynamical system S
D

c

S
D

c T×IN×Z) × (T×OUT) × (T×Z)

T 

Legend

S: System relation Z: Set of system states IN: Set of system inputs

OUT: Set of system outputs T: Time set Set of natural numbers

 Set of real numbers
 

Figure 1. Types of systems. 

To avoid misconceptions, we denote a hybrid system, a system that consists of different types of 

systems (e.g. an input output system and a dynamical system; cf. Figure 1). Furthermore, we refer to 

dynamical systems consisting of time-continuous and time-discrete dynamical subsystems as hybrid 

dynamical systems. A hybrid simulation system is a hybrid dynamical system with at least one time-

continuous and one time-discrete simulation subsystem. 

In this paper we focus on hybrid simulation systems which consist of System Dynamics simulation 

subsystems and Discrete Event (Simulation Sub-)Systems. Some investigations have already been 

carried out in this field (Lee & Cho & Kim 2002, Rabelo et al. 2003, Rabelo et al. 2005, Rabelo et al. 

2007, Venkateswaran & Jones 2004). These publications present research results in the examination of 

the use of hybrid simulation models for modelling and analysing business systems. But these papers 

neither provide an answer to the research question a), which subsystems of a business system should 

be represented by a time-continuous or a time-discrete simulation submodel, nor do they show how to 

couple these submodels with respect to their different time behaviour and their different model 

elements (research questions b) and c)). In addition, they do not elaborate the advantages of integrated 

simulation analyses over separated analyses (research question d)). Some of the papers explore 

subsystems of business systems, such as supply chains or hierarchical production planning systems but 

do not consider the business system as a whole (Lee & Cho & Kim 2002, Venkateswaran & Jones 
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2004). All papers do not define the coupling mechanisms between subsystems with different time 

behaviour in detail. 

3 DESIGN OF A HYBRID SIMULATION APPROACH 

3.1 Modelling of Business Systems Respecting Time-Behaviour 

The first part of the approach presented here is a structural model of business systems, which we 

denote as model layer hierarchy (cf. Figure 2). It defines submodels of a business system model and 

their relationships. It provides an answer to our research question a). 

The business system model is decomposed using the phase principle of tasks (Ferstl 1992) into a 

model of a managing system and a model of a servicing system. The managing system model is further 

decomposed into three submodels, with each of them representing one model layer. The 

decomposition is accomplished with respect to different time behaviours that are suitable for 

modelling these particular parts of a business system.  

The first layer of the managing system model represents the strategic management of a business 

system. Its task is to take care of the long-term success of a business system, which means, that it has 

to maintain stability of the business system. For this purpose, relevant tasks are the formulation of 

strategies, their selection, implementation and monitoring (Mintzberg et al. 2003). As an example, one 

task of the strategic production planning is to determine the product/market combinations of a business 

system and the sales targets based on market research. Simulation models of this layer feature a time-

continuous behaviour. While analyses of this layer constitute macro analyses, analyses of the other 

layers constitute micro analyses. 

Business system

Model of business system

Model of managing system

Model of strategic management system

Model of operational management system

Model of Process control

Model of servicing system

Feedback

Goals and 

objectives

Time-continuous behaviour

Feedback

Time discrete

control

Feedback
Time continuous

control

Time-discrete behaviour

Time-discrete or time-continuous behaviour

Time-discrete or time-continuous behaviour

Macro analysis

Micro analysis

 

Figure 2. Business systems model layer hierarchy. 

Models of macro analyses interact with models representing the operational management by using 

continuous, although mostly periodic reports and permanent goal settings. From the perspective of 

systems theory, both layers form a feedback loop (Ferstl 1979). The task of the operational 

management is the planning, controlling and monitoring of the implementation of strategies. The time 

horizon of this layer is short. State changes occur more frequently than at the strategic management 
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layer. At the operational management layer, for example, the sales targets for goods and services are 

determined on a daily or weekly basis with respect to the constraints set by the strategic production 

planning. Consequently, the production is controlled and monitored. In contrast to models of the 

strategic management layer, simulation models at this layer feature a time-discrete behaviour. They 

interact with models of the process control layer in a time-discrete manner using control messages. 

The process control layer contains models of control systems for resources of the servicing layer (i. e. 

numeric control (NC-) systems). The servicing layer represents the production processes of a business 

system. Depending on the analysed business systems and the perspective, models representing this 

layer as well as process control models could feature either time-discrete, time-continuous or hybrid 

behaviour. Car manufacturers, for example, feature a servicing system that could be described by 

using a time-discrete simulation model. In contrast, chemical processes in a chemical plant are mainly 

described by a time-continuous simulation model. However, in this paper we concentrate on integrated 

macro and micro analyses with time-continuous macro and time-discrete micro models. 

3.2 Coupling of Time-Discrete and Time-Continuous Dynamical Systems 

To realise the interactions between time-discrete and time-continuous subsystems of hybrid simulation 

systems and to answer our research question b), we introduce a coupling mechanism for hybrid 

dynamical systems extending Nixdorf (2003) and Zeiger and Praehofer and Kim (2005). The coupling 

mechanism abstracts from concrete simulation modelling approaches, such as SD or DEVS. The 

applicability of the mechanism is not limited to hybrid simulation systems. It is an appropriate 

mechanism for the coupling of all kinds of hybrid dynamical systems. Therefore, we denote it as a 

modelling approach independent coupling mechanism. 

Hybrid dynamical system

Exogenous

output yex(t)

Exogenous 

input uex(t)

Endogenous 

output yen(t)

C2D-

Converter

Endogenous 

input (xen, ti)

D2C-

Converter

Endogenous 

output (yen, tn)

Exogenous 

input (xex, ti)

Exogenous 

output (yex, tn)

Transformations

Transformations

Endogenous 

input uen(t)

Time-continuous simulation subsystem

S
D

d T×IN×Z) × (T×OUT) × (T×Z); T 

Time-discrete simulation subsystem

S
D

c T×IN×Z) × (T×OUT) × (T×Z); T 

 
Figure 3. Abstract structure of a hybrid dynamical system. 

In order to couple time-continuous and time-discrete subsystems, we need to solve the following 

problems:  

 Proxy relationships: To which element of the subsystem B is an element of the subsystem A 

mapped to, or in other words, which are the proxies of the elements of the subsystem B in A? 

 Time axes: State transitions take place in time-continuous, respectively time-discrete, subsystems in 

different times. How can a synchronisation of both time axes be realised? 

To solve these problems, we introduce system components, which couple the corresponding elements 

of the subsystems (proxies of the subsystems) and allow a synchronisation of the time axes (answer to 

research question b)). Figure 3 shows the coupling of both subsystems from an outside view. 
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 C2D-Converter
1
: The task of this converter is to transform a value-continuous state variable yen(t) 

into a value-discrete variable used as endogenous input (xen, tm) of the time-discrete subsystem. The 

transformation will occur when the value of a state variable exceeds or undercuts a certain thre-

shold. This generates an event triggering a state transition in the time-discrete subsystem and a 

change of values of the affected proxies. 

 D2C-Converter: The task of this converter is to transform a value-discrete state variable (yen, tn) 

with tn≥ti, into a value-continuous variable used as endogenous input (uen(t)) of the time-continuous 

subsystem. The propagation of a state transition to the time-continuous submodel follows their 

occurrence in the time-discrete subsystem (jump). Afterwards, the integration of differential 

equations is continued. 

3.3 Hybrid Simulation Using System Dynamics and Discrete Event Systems 

The modelling approach independent coupling mechanism does not consider modelling requirements 

that are derived from the domain represented with these models (business systems).  

 State changes, which occur at the operational management layer, are more frequent than state 

changes at the strategic management layer.  

 The modelling approach independent coupling mechanism does not consider the coupling of the 

modelling components of the SD and DEVS simulation modelling approaches.  

In order to answer our research question c), we solve these coupling problems in the following by 

designing a modelling approach specific coupling mechanism.  

Different granularity of time axes: An aggregated analysis of the long-run values of state variables is 

carried out at equidistant time steps in the time-continuous SD models (corresponding to a macro 

view). Time-discrete DEVS simulation models are used for analysing single state changes, which 

occur in short distances of time (corresponding to a micro view). In order to couple both submodels 

we have to consider the time lags between state transitions in both models. State transitions in the 

time-continuous submodel precede, if applicable, multiple changes of the same state variable in the 

time-discrete submodel (proxy). Between state variables of the time-discrete submodel and state 

variables of the time-continuous submodel may exist an aggregation relationship that requires an 

aggregation of values of these variables. 

Coupling of the model components of the submodels: In order to specify the coupling of model com-

ponents we switch to the inside view of the submodels (cf. Figure 4). Model components of the time-

continuous SD model are material or information flows, stocks or auxiliaries. Model components of 

the time-discrete DEVS simulation model are stationary objects, resources and entities
2
. Stocks in the 

time-continuous submodel serve as a proxy to stationary objects in the time-discrete submodel. State 

variables of the stationary objects are mapped to variables of one or more stocks and vice versa. The 

entering of an entity into a stationary object or the leaving of an entity out of a stationary object leads 

to a state transition in the time-discrete submodel. If there is at least one proxy in the time-continuous 

submodel associated with this stationary object, every state transition will be propagated to the time-

continuous submodel. In addition, every change in the amount of a stock will be propagated to the 

time-discrete submodel if the amount exceeds or undercuts a certain threshold and if a proxy in the 

time-discrete submodel exists. This may happen in a direct or indirect way: 

                                              
1 From an engineering perspective, the C2D-converter is often designated as a quantifier, the D2C-converter as an injector 

[22]. 
2 For a closer look at time-discrete and time-continuous simulation systems and the differences between these systems see for 

example Barton and Lee (2002), Forrester (1969), Lee and Zheng (2005), Pidd (2004), Schriber and Brunner (2007) or 

Sterman (2000). 

Page 7 of 12 18th European Conference on Information Systems



Time-discrete DEVS submodel

Time-continuous SD submodel

C2D-

Converter

D2C-

Converter

Stat. 

object1
[…]

Stockn Stock1

indirect indirectdirect direct

Flow Flow

[…]

Stat. 

object2

Stat. 

objectn

Hybrid simulation system

Exogenous 

input uex(t)

Exogenous 

output yex(t)

Exogenous 

input (xex, ti)

Exogenous 

output (yex, tn)

 

Figure 4. Abstract structure of a hybrid simulation model using SD and DEVS 

 Direct coupling: An entity entering or leaving a stationary object directly leads to a change of the 

stock amount. The value-discrete presented state variable is transformed by the D2C-converter to a 

value-continuous variable and the stock amount is adjusted. The stationary object can be 

functionally interpreted as a rate increasing or decreasing the stock amount. The stock amount 

influences state variables or distribution functions of one or more stationary objects, and vice versa. 

In this case, the value-continuous stock amount will be transformed by the C2D-converter to a 

value-discrete variable. An event to initiate the state transition will be generated. 

 Indirect coupling: An entity entering or leaving a stationary object leads to a change of the stock 

amount indirectly by changing one or more rates. As stated above, the value-discrete state variable 

will be transformed by the D2C-converter to a value-continuous variable. In contrast to the direct 

coupling, the stock amount will be changed by a rate indirectly. The time-discrete submodel can be 

functionally interpreted as an auxiliary parameterising the rate. The value of the rate influences 

state variables or distribution functions of one or more stationary objects and vice versa. Analogous 

to the direct influence, the value-continuous and time period oriented rate will be transformed by 

the C2D-converter to a value-discrete time space oriented variable and an event will be generated. 

4 APPLICATION OF HYBRID SIMULATION TO A MARKET 

CASE STUDY 

In this section we present an example for conducting an integrated macro and micro analysis using a 

hybrid simulation model of a business system which consists of a time-discrete DEVS simulation 

submodel (micro model) and a time-continuous SD simulation submodel (macro model) (cf. Figure 5). 

Although being fictitious, it has been constructed following developments in the global economy over 

the last years. According to our model layer hierarchy, the model represents the strategic and 

operational management system layers and the servicing system layer of a business system. It also 

covers the relationships between these three layers.
3
 The coupling of the time-continuous and the time-

discrete submodels is realised by using direct coupling (cf. section 3.3). 

                                              
3 Due to complexity reasons, the process control layer as well as the feedback relationships between the layers of the business 

system are omitted. 
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Strategic management layer
Operational 

management layer Servicing system layer

Consumer 

buying power
Net income Expenses

DebtsBorrowing Amortisation

Loan 

securities

Interests

Interest rate

Amortisation rate

Initiate 

operational 

production 

planning Delivery

Production 

planning team

Operational 

production 

planning

Production 

resources

Production

Weekly 

demand 

for product

Macro analysis

Micro analysis

Weekly demand 

for product 

(direct coupling)

Direct Coupling

StockFlow Auxiliary
Stationary Object 

(Transformations)
Resource

Legend

Time-continuous submodel (macro analysis) Time-discrete submodel (micro analysis)

Source Sink

Figure 5. Structure of the simulation model 

The investigation objective is to determine the servicing system (production resources) capacity 

utilisation. Therefore, the time-discrete micro model encompasses parts of an operational management 

and of a servicing system. The exogenous output of the micro model is just one product, which is 

manufactured by using the concept of mass production. The task of the operational management 

system is to determine the daily product output on the basis of the customer demand (endogenous 

input of the micro model and endogenous output of the macro model). After that, production orders 

are generated and passed to the servicing system. Entities in this model are production orders and 

products. The model contains stationary objects, which carry out the tasks operational production 

planning and production as well as stationary objects, which represent resources (actors). 

The macro model represents the strategic management layer. It contains stocks, flows and auxiliaries 

as well as the relationships between these items. The model output is the weekly demand for the 

product which is produced in the servicing system layer. This demand is calculated by using the 

consumer buying power. The buying power is increased by the net income of a consumer and the 

money that is borrowed (i.e. by using credit cards). It is decreased by the interests on credit and the 

amortisation of loans. Interests and amortisation are influenced by the debts of the consumer, the 

amortisation rate and the interest rate. The debts are collateralised by loan securities. The debts are 

directly proportional to the loan securities: the higher the loan securities, the more money the 

consumer is able to borrow. However, they also have to spend more money on interests and 

amortisation. We assume that every consumer spends a certain amount of his expenses on the product 

we produce in our servicing system. The demand results from the expenses, the number of customers, 

the price of the product and the assumed market share, which the investigated business system holds. 

The macro and the micro submodel are coupled directly. The weekly demand for product, calculated 

in the macro model, directly influences the task of operational production planning. Here, the weekly 

demand is used for calculating the daily production output. This value is used to generate the 

production orders as mentioned above. Simulation experiments conducted with this model show the 

relationships between the levels of loan securities, the consumer’s buying power and the consumer’s 
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expenses as well as the relationship between the consumer’s expenses and the capacity utilisation of 

the production resources. If the value of the loan securities decreases, the consumer buying power and 

the consumer’s expenses will decrease significantly (cf. Figure 6). Therefore, the product demand 

decreases as well as the production system’s capacity utilisation. When the values of loan securities 

increase, other values of other variables will increase as well. Figure 6 shows the development of the 

consumer’s expenses which feature the SD-pattern s-shaped growth with overshoot and collapse 

(Sterman 2000) as well as the utilization of the production resources over time (the scale of the y-axis 

has been normalised). 

Macro analysis Micro analysis

time
time

time

Capacity utilisation

Capacity utilisation: Detailed view

Expenses

 

Figure 6. Findings of the integrated analysis 

A simulation using the hybrid model (e.g. an integrated micro and macro analysis) offers advantages 

compared to isolated simulations of the time-continuous and the time-discrete model. The consistency 

of the time behaviour of the customer demand is ensured in both models as the findings of the macro 

analysis are applied directly and automatically to the micro model (solution to p1). Components 

representing the time behaviour are implemented only once (solution to p5). Therefore, no redundancy 

of model components is needed (solution to p2). It is not necessary to decompose the investigation 

objective into a sub objective to determine the time behaviour of the consumer’s expenses (and, 

therefore, the weekly product demand) and a sub objective to determine the resource utilization of the 

production system afterwards (solution to p4). The macro and the micro analysis are made by using 

one hybrid simulation model. As a result, the effort of model construction and of conducting 

simulation experiments is lower, as tasks do not have to be carried out twice (solution to p5). 

5 CONCLUSIONS AND FURTHER RESEARCH 

In this paper we introduced a new approach to analyse complex business systems. This artefact, our 

research contribution consists of a structural model of business systems and a modelling approach for 

integrating DEVS and SD submodels by two coupling mechanisms. Furthermore, we presented an 

example of an integrated macro and micro analysis, conducted with a hybrid simulation model. At this 

point, the research questions a), b) and c) have already been answered.  

The problems of isolated analyses, which have been introduced in section 1, have been solved as 

follows. The solutions to these problems represent the advantages of integrated macro and micro 

analyses of business systems as well and therefore, answer research question d): 
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 Model consistency (p1): An overlapping of micro and macro models occurs at defined interfaces. 

The approach ensures the behavioural compatibility of the two submodels by specific coupling 

mechanisms. 

 Redundancy of model components (p2): The redundant representation of model components of both 

submodels is limited to the modelling of the proxy relationships. 

 Connection of model components (p3):  The connection of model components is realised by de-

fined interfaces. Although, micro and macro views feature different time axes. In the micro view, 

single events with time distances measured in seconds, minutes or hours are observed. In the macro 

view, time dimensions such as weeks, months or years are used. This distinction requires an 

aggregation and disaggregation of values of model variables (cf. section 1). 

 Decomposition of investigation objectives (p4): As a result of conducting integrated macro and mi-

cro analyses, a conventional decomposition of investigation objectives is not necessary. 

 Modelling and model investigation effort (p5): The costs of constructing and analysing an inte-

grated simulation model are less than the costs of constructing and analysing two models. 

Redundant task executions are omitted and the use of well-known simulation modelling approaches 

reduces the preproduction costs. 

Nevertheless, the approach has some limitations. Existing simulation tools do not feature different 

time axes for the time-continuous and time-discrete submodels. The simulation tool ANYLOGIC
4
, for 

example, offers only one time axis for both submodels. For other hybrid simulation tools, refer to 

Carloni et al. (2001). Points in time of events in the time-discrete submodel and points in time of the 

time-continuous submodel (integration time step) have to be mapped to this one time axis. 

Furthermore, the approach lacks sufficient support for the identification of proxies in submodels with 

different time behaviour. Further research is needed to provide the modeller with an adequate method. 

Despite these difficulties, the approach has the potentials of tackling economic problems by using an 

integrated micro and macro view. In the future we will investigate the completeness of the introduced 

coupling relationships between model components of the submodels and develop a method for 

identifying proxies in submodels of a hybrid simulation model. In addition, we will evaluate the 

applicability of the approach to practice in an extensive real world case study. 
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