
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2010 Proceedings European Conference on Information Systems
(ECIS)

2010

IT-Driven Execution Opportunities in Securities
Trading: Insights into the Innovation Adoption of
Institutional Investors
Bartholomäus Ende
Goethe-University Frankfurt, ende@wiwi.uni-frankfurt.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2010

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Ende, Bartholomäus, "IT-Driven Execution Opportunities in Securities Trading: Insights into the Innovation Adoption of Institutional
Investors" (2010). ECIS 2010 Proceedings. 118.
http://aisel.aisnet.org/ecis2010/118

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2010%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010?utm_source=aisel.aisnet.org%2Fecis2010%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2010%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2010%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010?utm_source=aisel.aisnet.org%2Fecis2010%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2010/118?utm_source=aisel.aisnet.org%2Fecis2010%2F118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E


 
 
 

 
 

 
 

IT-DRIVEN EXECUTION OPPORTUNITIES IN SECURITIES 

TRADING: INSIGHTS INTO THE INNOVATION ADOPTION OF 

INSTITUTIONAL INVESTORS 
 
 

Journal: 18th European Conference on Information Systems 

Manuscript ID: ECIS2010-0286.R1 

Submission Type: Research Paper 

Keyword: 
E-finance, Electronic value chains, Information technology adoption, 
Electronic markets 

  
 
 

 

18th European Conference on Information Systems



IT-DRIVEN EXECUTION OPPORTUNITIES IN SECURITIES 

TRADING: INSIGHTS INTO THE INNOVATION ADOPTION 

OF INSTITUTIONAL INVESTORS 

Ende, Bartholomäus, E-Finance Lab, Goethe-University Frankfurt, Grüneburgplatz 1, 60323 

Frankfurt, Germany, ende@wiwi.uni-frankfurt.de 

Abstract 

Technological innovations change the intermediation relationships within securities trading. Thus, the 

question arises which factors drive or hinder their adoption. This paper develops a model to evaluate 

institutional investors' intentions to adopt the meta-technology we call non-delegated order handling. 

It focuses on the usage of IT-driven trading systems which enable investors to control the choice of 

trading venue, order slicing, and timing themselves instead of delegating the execution of stock 

trading to an intermediary. Therefore the theory of task-technology-fit is integrated into the 

technology acceptance model. Further, it was successfully tested on data from the largest European 

institutional investors. The results outline that the perceived fit among the system‟s capabilities and 

individual trading requirements is the main driver for adoption. Secondly, performance expectations 

fuel the intention to use trading innovations. Thirdly, for the expected efforts only a weak effect could 

be shown. Finally, factors like contractual barriers and competitive pressure which investors cannot 

control do not substantially affect their adoption decision. 

Keywords: E-Finance, Electronic value chains, Information technology adoption, Electronic markets. 
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1 INTRODUCTION  

The evolution of IT enables productivity improvements across multiple disciplines. Thus, explaining 

IT adoption is an ongoing issue within IS research (Davis 1989, Venkatesh et al. 2003). The focus of 

this paper relates to the securities trading industry: Here institutional investors like asset management 

companies or hedge funds traditionally delegate order execution to brokers who act as market 

intermediaries. The identification of counterparties, the choice of suitable trading venues as well as the 

execution of their clients‟ large order volumes without adverse price movements (market impact) are 

the core competencies of brokers in order execution (Harris 2003). The increasing automatization of 

securities trading has opened up new IT-based execution opportunities like Direct Market Access, 

Algorithmic Trading and Smart Order Routing. Having become popular in the USA, they have come 

to Europe in recent years (EdHec 2005) and have been altering the traditional value chain: 

Direct Market Access allows market participants remote access to electronic order books without the 

need for physical presence on exchange floors. That way institutional investors can forward orders to 

securities markets directly, without being touched by brokers anymore. Direct Market Access is 

offered at considerably lower commissions than traditional brokerage services. Moreover this trading 

technology provides increased execution speed which allows even taking advantage of short-lived 

market opportunities. Algorithmic Trading and Smart Order Routing are built on the basis of Direct 

Market Access. Both emulate a broker‟s activity of placing large orders while minimizing market 

impact: Algorithmic Trading is based on mathematical models exploiting historical and real-time 

market data to determine how to slice and time orders. It alleviates a trader‟s work and allows cost 

savings in comparison to human brokers (Domowitz & Yegerman 2005). Smart Order Routers 

perform an automated search for trading opportunities across multiple markets and route suborders to 

the most appropriate market combination. This helps aggregating fragmented trade intentions 

(Foucault & Menkveld 2002). The importance of these higher level technologies is shown by Gsell & 

Gomber (2009) who highlight the high percentage of order flow originating from automated trading. 

New trading technologies facilitate a transformation of order execution from intermediated market 

access via brokers to self-directed order execution at an institutional investors‟ trading desk. Thus, the 

utilization of a package of technologies like Direct Market Access, Algorithmic Trading and Smart 

Order Routing is a meta-technology we call non-delegated order handling (NDOH). 

Beside the potential to save commissions the adoption of NDOH, i.e. the adoption of an appropriate 

mix of trading technologies, provides the capability to improve different aspects of order execution: 

Firstly, the ability to react to short-lived market trends is reinforced because responsibility for order 

execution is not assigned to an external service provider. This satisfies the increasing desire of 

investment companies to gain control over their trading (EdHec 2005). Secondly, orders can be turned 

into actual trades immediately. There is no need to route them to a broker‟s execution desk anymore. 

For urgent orders based on transient, private information such immediacy is of upmost importance as 

it helps investors to benefit from their knowledge before it is reflected in market prices (Schwartz & 

Francioni 2004). Thirdly, institutional investors have to take care of anonymity to avoid other market 

participants exploiting their trade intentions (Harris 2003). Automated executions help investors to 

conceal their true trade intentions as algorithms utilize sophisticated slicing techniques. Finally, 

technology-driven execution opportunities avoid conflicts of interest from broker relationships to 

multiple investors (Schwartz & Francioni 2004). 

Despite these potentials, just more than half the persons responsible for how to organize the trading 

process (process owner) have already adopted such trading technologies in Europe (EdHec 2005). One 

explanation is that adopting NDOH is not value-creating per se. Instead, it corresponds to an 

insourcing of the trading task by the means of setting up new trading technologies. Secondly, many 

institutional investors are engaged in soft commissions (Schwartz & Steil 2002). These are 

arrangements where brokers provide infrastructure or services free of charge in return for granted 

order flow. For process owners this constitutes contractual inhibitors as such arrangements oblige 
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them to employ brokers for large parts of their orders. Also the adoption decision requires to assessing 

whether the capabilities of NDOH are suitable for the characteristics of the trading task at hand. As a 

considerable proportion of process owners still rely on brokers exclusively our research question is: 

Which factors influence a process owner‟s intention to adopt or refuse new technology-

driven self-directed execution opportunities? 

The remainder is organized as follows: Section 2 provides a brief overview of related research. Section 

3 proposes an integration of the theory of task-technology-fit into the technology acceptance model 

and introduces the hypotheses to be tested. Section 4 describes the employed methodology and data. 

The empirical results based on perceptions of process owners from the largest European institutional 

investors are outlined, verified and discussed in section 5. Finally, section 6 concludes. 

2 RELATED RESEARCH 

From the rich body of IT utilization studies two prominent models have emerged: The technology 

acceptance model (TAM) and the theory of task-technology fit (TTF). 

TAM is a specialization of the theory of reasoned action (TRA) “to predict information technology 

acceptance and usage on the job” (Venkatesch et al. 2003, p.428). TRA states a behavior mainly 

determined by intentions to perform it. These intentions arise out of positive or negative attitudes 

towards the behavior and subjective norms. Norms account for the perception of whether important 

others believe that the behavior should be performed. In TAM perceived usefulness and ease of use 

are specified as the two constructs that determine attitude towards a technology. Attitude defines the 

intention which effects actual IT usage. Further, TAM omits subjective norms as they were not 

significant (Mathieson 1991). Both, TRA and TAM assume that behavior is volitional. To break this 

limitation Ajzen (1991) proposed the theory of planned behavior (TPB) as an extension of TRA. TPB 

includes a perceived behavioral control construct to account for the extent to which users possess 

control over their behavior. Mathieson (1991) compared TAM and TPB and saw both models work 

well with slight empirical advantages for TAM. From its initial purpose to analyze the use of IT, TAM 

has been proven to be applicable for a variety of (acceptance) decisions (Venkatesh & Bala 2008): 

They include knowledge management systems (Money 2004) and outsourcing (Benamati & Rajkumar 

2003). The rationale for outsourcing decisions was the successful application of TRA for technology 

related decision-making like the acceptance of strategic information systems by senior management 

(Mykytyn & Harrison 1993). Concerning the role of attitude TAM literature is equivocal. Davis et al. 

(1989) saw it does not fully mediate the effect of perceived usefulness on intention. Thus, a 

parsimonious TAM omitting attitude is common in literature, too (Venkatesh et al. 2003). Finally, 

multiple studies incorporate different constructs as determinants of the TAM core to increase its 

relevance for practitioners (e.g. Venkatesh & Bala 2008). 

In contrast to TAM, which focuses users‟ beliefs and attitudes, TTF follows a more rational approach. 

Dishaw & Strong (1999) underline the shortfall of TAM as it does not consider task characteristics or 

whether a technology fits the user‟s tasks requirements. It is addressed by TTF which asserts users 

adopt IT that fits their needs, i.e. suits their task requirements. Above all users‟ demands determine the 

benefits of an innovation (Goodhue & Thompson 1995). To benefit from the overlapping perspectives 

of TTF and TAM, Dishaw & Strong (1999) have elaborated how these theories can be integrated: 

They claim the good fit of technology capabilities and task requirements is to reduce effort 

expectations while increasing performance and actual usage simultaneously. They could successfully 

employ their model to explain the adoption of maintenance support tools in an organizational context. 

Nevertheless they highlight the demand for further empirical validation. An overview of the 

applicability of TTF is provided by Cane & McCarthy (2009). 

Within the domain of securities trading an integrated TAM/TTF model has not been utilized yet. Only 

the adoption of trading technologies by retail investors and brokerage firms has been analyzed: Lai & 

Li (2005) apply TAM to investigate the retail adoption of internet banking. TAM is also employed by 
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Lucas & Spitler (2000) to explain the adoption of broker workstations. Although, their results do not 

support a pure TAM they highlight the importance of job requirements for the adoption decision. 

Finally, Khalifa & Davison (2006) outline the importance of coercive, mimetic and normative 

pressures for the adoption of electronic trading systems by brokerage firms. 

The contribution of this paper to literature is twofold: Firstly, for all we know this is the first research 

to investigate factors that facilitate or hinder process owners at institutional investors to adopt NDOH. 

Such factors are relevant for practitioners, both at institutional investors and brokerage firms, as new 

trading technologies are currently altering the traditional securities value chain. Secondly, by 

integrating TAM and TTF the paper at hand aims at exploring the role of those two models in the 

domain of securities trading. This enables researchers to better understand the similarities and 

differences in technology adoption across different settings. 

3 RESEARCH MODEL 

Our analysis accounts for internal and external factors: Internal factors are defined as those inherently 

originating from the trading task. They include process owners‟ assessments how the capabilities of 

NDOH fit to their trading requirements and their perceptions of NDOH‟s expected performance and 

efforts involved with its utilization. External factors are defined as environmental aspects which 

cannot be controlled by process owners. In our context they constitute process owners‟ perceptions of 

competitive pressure and contractual barriers. The structure of the employed research model which is 

based on the conceptualization of Ende & Gsell (2008) is shown in figure 1. 

To investigate internal factors, the core of the model is based on an integration of TAM and TTF. 

TAM has been chosen as its constructs allow assessing the effort and performance expectations of 

adopting NDOH. Venkatesh et al. (2003) generalize different models to reveal common roots of 

similar constructs. We adopted their terminology as it is more suitable for our research. Thus the latent 

variables „perceived usefulness‟ and „perceived ease of use‟ are termed „performance expectancy‟ and 

„effort expectancy‟ respectively. Their definitions are generalized, too.  

The rationale to integrate TTF is threefold: Firstly, trading is a work-related task for which TTF is said 

to perform well (Goodhue & Thompson 1995, Cane & McCarthy 2009). Secondly, over 70% of the 

studies within IS contingency research employ models which assume that performance will be 

fostered if the fit among contingency variables increases (Weill & Olson 1989). Hence, a process 

owner‟s decision to adopt NDOH has to account for its suitability to the individual trading 

requirements. Finally, empirical evidence from technology adoption by brokers suggests that a pure 

TAM might fail and that job requirements should be considered (Lucas & Spitler 2000). Thus, a TTF 

construct as proposed by Dishaw & Strong (1999) and employed by Klopping & McKinney (2004) for 

the domain of e-commerce is integrated into our model. 

External factors are captured by a generalization of the TAM core towards TRA and TPB: While 

TAM is an adaptation of TRA which omits „subjective norm‟ (Davis et al. 1989) this construct is re-

introduced in our model as subjective norms are expected to be significant in an organizational setting 

where users may feel social pressure to use IT (Taylor & Todd 1995). To assess the effect of such 

norms on process owners, the scope of its definition has been broadened to the perception of 

„competitive pressure‟. It shall represent the exerted pressures to perform a given behavior by 

important groups. In the case of NDOH these are the competitors of institutional investors. Further, 

from TPB we integrate the „perceived behavioral control‟ construct. Here this construct is important as 

process owners might possess no volitional control over adoption. Especially the practice of soft 

commissions might oblige them to employ brokers for their trading (Schwartz & Steil 2002). 

Accordingly the construct „perceived behavioral control‟ has been renamed „contractual inhibitors‟ as 

they might constrain the process owner‟s ability to decide unbiased about the adoption of NDOH. 

The endogenous construct usage (adoption of NDOH) is measured by its frequency and intensity. 

Frequency reflects the regularity of system usage. Intensity refers to the share of workload. For 
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NDOH, this corresponds to the usage of an own trading desk and by carrying out traditional broker 

tasks like the search for trade intensions (counterparty or liquidity search). Below, the constructs that 

account for internal and external factors will be discussed individually. 

3.1 Internal Factors 

Consistent with existing literature on TAM, TRA and TPB intentions “...are assumed to capture the 

motivational factors that influence a behavior; they are indications of how hard people are willing to 

try, of how much of an effort they are planning to exert, in order to perform the behavior” (Ajzen 

1991, p.181). In the context of NDOH they reflect the determination of the intention as well as the 

intended intensity and frequency of NDOH usage. According to Ajzen we hypothesize  

H1: the intention to use NDOH influences its actual usage positively. 

To form these intentions, the core of our model balances performance with effort expectations similar 

to the cognitive cost/benefit framework. Performance expectancy is defined as the degree to which a 

process owner expects trading performance to be enhanced by using NDOH. Further, it reflects the 

extrinsic motivation to actively perform NDOH as “it is perceived to be instrumental in achieving 

valued outcomes that are distinct from the [trading] activity itself” (Venkatesh et al. 2003, p.448). 

This can be an improvement of the investment process (preserving portfolio alpha) that has triggered 

trading. Further, adopting trading technologies might be perceived as a competitive advantage 

compared to order delegation to brokers. Thus, we hypothesize 

H2: performance expectancy concerning NDOH influence the intention to use NDOH positively. 

Contrary to the former, effort expectancy is designed to capture the degree of difficulty associated with 

the adoption of NDOH. Here, two levels are addressed: Implementation complexity accounting for the 

difficulties to set up NDOH and the complexity which reflects the ongoing effort associated with the 

usage of NDOH. According to previous research (e.g. Davis et al. 1989) we hypothesize that 

H3: effort expectancy for NDOH is negatively related to its performance expectancy and  

H4: effort expectancy for NDOH negatively influences the intention to use NDOH. 

The TTF construct is intended to capture that an increase of fit between the functionalities of NDOH 

and the requirements of a process owner‟s trading task is said to improve performance (Goodhue 

1995). Unfortunately, little guidance for the application of fit is provided. The difficulty to 

operationalize fit comes with the fact that items which aim at capturing a broader field of tasks and 

technologies lose their ability to capture the specific notions of fit (Dishaw & Strong 1998). This 

deteriorates their explanatory power. Thus, Dishaw & Strong state that “new measures of fit must be 

developed for each application to a different task or technology” (p. 108). Our TTF construct accounts 

for the degree of fit in respect of trading control. To further appropriately characterize the trading task 

– execution of orders at favourable conditions – we consider the classification of order difficulty along 

the three dimensions order size, urgency and information leakage risk (Ende et al. 2007): Large order 

sizes cause market impact. Urgent orders lead to a similar effect as they try to benefit from short-lived 

information that enforces to trade immediately. Information leakage risk refers to high anonymity 

demands. Such orders require to trade large volumes while keeping the overall trade intention secret in 

order to avoid other market participants taking advantage of it (via e.g. front running). For these 

requirements of the trading task the compatibility of NDOH is measured. Above, its flexibility 

concerning variations of these requirements is included. Accordingly to Dishaw & Strong (1999), we 

hypothesize that 

H5: task-technology fit of NDOH positively influences its performance expectancy,  

H6: task-technology fit of NDOH decreases the effort expectancy for NDOH, and 

H7: task-technology fit of NDOH has a positive relationship to the actual usage of NDOH. 
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3.2 External Factors 

The competitive pressure construct is supposed to account for the fact that the external environment of 

process owners at institutional investors impacts their decision-making (Goll & Rasheed 1997). As 

long as an innovation such as NDOH provides competitive advantage literature predicts pressure 

caused by a competitive environment to positively influence the intention to use it (Jevaraj et al. 

2006). Thus, we hypothesize 

H8: competitive pressure positively influences the intention to use NDOH. 

Ajzen states that most behavior depends “at least to some degree on such non-motivational factors as 

availability of requisite opportunities and resources” (1991, p. 182). In the context of NDOH such 

constraints might be rooted in contractual inhibitors, which prevent process owners from unbiased 

decisions-making. Empirical evidence for the existence of these constraints and their relevance is 

provided by e.g. Schwartz & Steil (2002). They identify that 14% of portfolio managers predefine 

brokers for the majority of their orders. Further, 64% of portfolio managers reward a broker‟s research 

or infrastructure provided free of charge by routing their orders to the respective broker. Although 

such soft commission agreements are used more often in the USA than in Europe (32% to 18% of the 

traders), this practice constrains process owners in their volitional behavior. Basically it obliges them 

to use predefined brokers for large parts of their orders exclusively. Therefore, we hypothesize 

H9: contractual inhibitors exhibit a negative impact on the intention to use NDOH. 

4 DATA SET AND METHODOLOGY 

Benefits of NDOH are subject to strong economies of scale. Thus the sample comprises process 

owners from the largest European institutional investors. Both process owners who have already 

adopted NDOH and those who are still considering adoption are included. As NDOH is establishing 

itself in Europe now (EdHec 2005), an analysis of European institutional investors is performed. 

Contact information originates from „Thomson ONE Banker Web‟. To ensure substantial trading 

activity, only process owners from fund companies have been selected, excluding those from strategic 

investors and governments. A further restriction to the top 500 in terms of assets under management 

(AuM) has been performed. The final sample covers 95.4% of the overall AuM in Europe. Each 

process owner has been contacted by phone personally to request the level of interest. A questionnaire 

was sent to all those who agreed to participate and could be completed either online or paper-based 

and returned via mail or fax. Finally 48 out of 50 responses could be used. As intended this data 

predominantly represents large institutions for the simple reason that it covers 33% of the total AuM in 

the original sample. Beyond that the fraction of process owners employing NDOH (60.4%) is 

consistent with previous descriptive studies (EdHec 2005). 

To test the nine hypotheses from above each latent variable in the model (c.f. Figure 1) is represented 

by a set of indicators constituting the employed questionnaire (cf. Table 1). These indicators were 

measured on a fully anchored 7-point Likert scale, ranging from “completely agree” to “completely 

disagree”. To assure that the intended meaning of each construct is reflected (content validity) 

measures have been adapted from prior empirical studies whenever appropriate or developed during 

expert interviews. To assure the comprehensiveness and completeness of the questionnaire it was 

discussed with several industry experts and pre-tested independently later: The pre-tests involved four 

process owners, respectively two in Germany and two in the UK. Those who employ NDOH for their 

order handling were interviewed as well as others who still rely on brokers exclusively. The indicators 

have been modified based on the feedback. 

Literature outlines the importance of the right choice for a reflective or formative measurement 

perspective. A common misspecification results from the “almost automatic acceptance of reflective 

indicators” (Diamantopoulus & Winkelhofer 2001, p.274). To overcome this pitfall, all constructs 
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have been reviewed whether a formative measurement is more appropriate. In the context of this study 

this is just the case for TTF. For all other constructs a reflective design has been chosen. 

As requested by our research model the Partial Least Squares (PLS) approach allows combining both 

reflective and formative measures (Chin 1998). Thus it has been chosen for the analysis. That way the 

software SmartPLS by Ringle et al. (2005) has been employed. PLS does not base on presumptions 

concerning data distribution (Chin 1998). Its requirements concerning measurement scales and sample 

size are minimal. For a regression heuristic of 10 Chin suggests a sample size 10 times the greater of 

“(a) the block with the largest number of formative indicators (i.e., the largest measurement equation) 

or (b) the dependent [latent variable] with the largest number of independent [latent variables] 

impacting it (i.e., largest structural equation)“ (1998, p. 311). For the employed model (cf. Figure 1 

and Table 1) this rule of thumb implies a minimum sample size of 40. Nevertheless there is an 

ongoing discussion regarding minimum sample size in IS literature. For the interpretation one has to 

mind the advices given by Goodhue et al. (2006): They conclude that there is no evidence that 

statistically significant results on small sample are false positives. However for insignificant results 

their simulations “clearly suggest that it would be incorrect to assume that the relationships tested do 

not exist” (p. 9). Above, one shall be aware PLS might underestimate path coefficients for the present 

sample size (Hsu et al. 2006). But this does not weaken significant effects identified in this research. 

5 RESULTS 

5.1 Measurement and Model Validation 

5.1.1  Validation of the reflective measurement model 

To validate the TAM core, modeled in reflective mode, advices by Chin (1998) have been followed: 

A good statistical fit between the indicators and their latent variables (indicator reliability) is assured: 

All indicator loadings to their respective constructs exceed the recommended threshold of 0.707 and 

are significant at the 0.001 level (c.f. Table 1 for indicator loadings and t-values). For significance 

tests the PLS bootstrap routine with 500 samples based on the questionnaire data was used. To assess 

how accurate the latent variables are reflected by their indicators, construct validity has to be analyzed. 

It is composed of convergent and discriminant validity: Convergent validity measures the internal 

consistency of indicators assigned to each latent variable. Discriminant validity ensures latent 

variables to be discriminant from each other. Convergent validity is established as the average 

variance extracted (AVE), the composite reliability (CR) and Cronbachs‟s alpha (α) exceed the 

recommended thresholds of 0.5 for AVE as well as 0.7 for CR and α (Nunally 1978). The respective 

values are depicted on the right of Table 2. Discriminant validity is assured, too: The inter latent 

variable correlations are lower than the square root of the AVE (see the diagonal on the left of Table 

2). Further, an analysis of cross-loadings – that are not presented due space limitations – reveals that 

the loadings of each indicator onto its respective latent variable exceed those to all other constructs. 

5.1.2  Validation of the formative measurement model 

The following five criteria have been employed to validate the measurement of the formative TTF 

construct (Chin 1998, Diamantopoulos & Winkelhofer 2001): 

Firstly, the scope of the latent variable TTF was determined (content specification). Depicted in 

section 3.1 the TTF construct is designed to capture the dimensions of fit concerning trading control, 

compatibility and flexibility. This definition has been discussed with industry experts intensively. 

Secondly, suitable indicators were selected which constitute the construct and cover its scope 

completely (indicator specification). After an intensive literature review, the indicator ttf1 was chosen 

for the notion of fit concerning control (cf. Table 1). The classification of order difficulty along the 

three dimensions order size, urgency and information leakage risk has been proposed primarily (cf. 
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Section 3.1) for the facets of compatibility and flexibility. Basically large order sizes are a necessary 

condition for trades to become difficult in terms of urgency or anonymity. Otherwise small (low 

touch) orders can be executed at exchanges immediately and anonymously. Thus, no indicator was 

included which measures fit concerning the requirements for large trade volumes. Empirically this 

conclusion is also backed up by strong to significant correlations which are exhibited by such an 

indicator to the other discussed measures. In addition, high urgency demands are theoretically linked 

with requirements of high trading control. Again, this consideration is supported empirically by 

significant correlations. But omitting urgency would narrow the employed notion of fit. Different to 

varying anonymity requirements one might greatly benefit from low urgency as it allows employing 

slicing techniques or special technology-based trading systems (e.g. Crossing Networks). Therefore, 

the perspective of flexibility is chosen for the indicator that captures the fit concerning urgency 

requirements (ttf2) whereas the employed fit measure for anonymity (ttf3) captures the notion of 

compatibility (cf. Table 1). The chosen indicators have been validated during expert interviews. 

Thirdly, as the formative measurement model relies on multiple linear regressions strong indicator 

collinearity shall be avoided. Otherwise, they might destabilize results. This issue was reflected 

although formative indicators are neither expected to covary nor to be independent from each other. 

Both, a correlation analysis and the inspection of the variance inflation factors (all far below the 

recommended threshold of 10) indicate no problematic collinearities among indicators. 

Fourthly, to assure that the employed indicators are relevant (indicator reliability) their signs, weights 

for the formation of the construct and respective t-values were inspected. All signs comply with the 

expected effect direction (cf. Table 1). Different thresholds for weights exist in literature: Chin (1998) 

recommends a strict one of 0.2 whereas according to Lohmöller (1989) values above 0.1 are sufficient. 

The indicator weights for ttf1 (control) and ttf3 (anonymity) lie above Chin‟s recommendation. Only 

ttf2 (variation of urgency) is below but at least it exceeds the threshold proposed by Lohmöller. These 

values are significant for ttf1, ttf3 and ttf2 at the 0.01, 0.05 and 0.1 levels respectively. 

Finally, to ensure no relevant aspects of the formative construct were omitted (external validity) a 

reflectively measured phantom construct was used. Diamantopoulos & Winklhofer (2001) claim this 

can be assumed when the formative latent variable correlates with the phantom construct strongly and 

significantly. The observed correlations are both strong and significant at the 0.01 level implying that 

the chosen indicators actually form the TTF construct. 

5.1.3 Analysis of the Structural model 

This section analyzes the explanatory and predictive power of the structural model (cf. Figure 1) 

which has been calculated by a path weighting scheme: 

R² are interpreted identically to those of regression analysis. Accordingly to Chin (1998) the explained 

variation in usage (R²=46.4%), intention (R²=58.8%) and performance expectancy (R²=61.2%) 

correspond to moderate levels whereas the R² (20.2%) for effort expectancy can be interpreted as a 

weak level of explanatory power. Three aspects are inspected for the analysis of the predictive power: 

The values of the standardized parameter estimates among the latent variables, their t-values and the 

effect size (f²). Path coefficients and their t-values are depicted in Figure 1. 

Nearly all path coefficients exceed the level of 0.2 recommended by Chin (1998). The only exceptions 

are those from effort to performance expectancy (H3) plus to intention (H4) as well as those from 

competitive pressure to intention (H8). H3 and H8 exceed at least Lohmöller‟s (1989) minimal level of 

0.1. Bootstrapping reveals that all path coefficients from TTF and performance expectancy are highly 

significant at the 0.01 level. Those from intention, competitive pressure and contractual inhibitors are 

significant at the 0.05 level whereas H3 is significant only at the 0.1 level. The inspection of effect 

sizes shows that the effect of TTF on performance expectancy (H5) and performance expectancy on 

intention (H2) are both strong. All other constructs exhibit weak effects except H4 which does not 

necessarily imply meaninglessness accordingly to Cohen (1988). Except H4, for which no assertion 

can be made yet, all hypotheses have been proven significantly true. 
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Competitive Pressure (reflective) loading t-value 

In our industry, competitive moves from one firm have noticeable effects on other competing 
firms and thus incite retaliation and counter moves. 

0.918 3.936 

In our industry, competition for net performance is highly intense. 0.789 3.601 
We feel an increasing pressure concerning net performance. 0.807 3.708 

Contractual Inhibitors (reflective) loading t-value 

The financial conditions of the contracts with our broker(s) are too attractive to perform NDOH. 0.868 4.989 
By performing NDOH, we could miss valuable additional services provided by our broker(s). 0.787 3.675 
By performing NDOH we would lose valuable infrastructure provided by our broker(s) whose 
replacement cost is so high, that it is not worth the effort. 

0.852 4.103 

By performing NDOH we would lose valuable research provided by our broker(s) whose 
replacement cost is so high, that it is not worth the effort. 

0.866 4.245 

Effort Expectancy (reflective) loading t-value 

Setting up NDOH is so complex, that it is not worth the effort. 0.908 11.122 
It takes too long to implement NDOH to make it worth the effort. 0.893 11.350 
We find it easy to perform NDOH.* 0.807 8.140 

Intention (reflective) loading t-value 

We intend to perform NDOH. 0.970 86.962 
We will definitely perform NDOH. 0.978 110.33 
We intend to perform NDOH as often as suitable. 0.970 77.574 
To the extent possible, we would perform NDOH frequently. 0.988 124.03 

Performance Expectancy (reflective) loading t-value 

Our job would be difficult to perform without NDOH. 0.825 13.824 
Performing NDOH preserves portfolio alpha. 0.884 18.312 
Performing non-delegated order handling increases quality of execution. 0.890 22.869 
Performing NDOH gives (will give) us a competitive advantage. 0.841 11.556 

Usage (reflective) loading t-value 

We regularly perform NDOH. 0.769 13.504 
We use our own trading desk. 0.848 10.413 
We perform counterparty or liquidity search ourselves. 0.830 10.032 

Task-Technology Fit (formative) weight t-value  

ttf1: NDOH satisfies our requirements for more trading control. 0.726 5.872 
ttf2: NDOH satisfies our requirements concerning varying demands for urgency. 0.159 1.349 
ttf3: NDOH satisfies our requirements concerning high anonymity demands. 0.300 2.332 
* Item has been inverted before it was applied to the measurement model.    

Table 1: Indicators and evaluation results for the measurement model 

 

 
Effort 

Expectancy 
Contractual 
Inhibitors 

Intention 
Performance 
Expectancy 

Competitive 
Pressure 

Usage  AVE CR α  

Effort Expectancy 0.871       0.758 0.904 0.840 

Contractual  
Inhibitors 

0.273 0.844      0.712 0.908 0.880 

Intention -0.369 -0.272 0.976     0.953 0.988 0.984 

Performance 
Expectancy 

-0.452 -0.118 0.722 0.860    0.740 0.919 0.883 

Competitive 
Pressure 

-0.030 -0.205 0.139 -0.019 0.840   0.706 0.877 0.822 

Usage -0.441 0.128 0.595 0.626 0.195 0.817  0.667 0.857 0.753 

Table 2: Left correlations among latent variables and AVE Square Root (shaded cells) are shown 

 whereas on the right AVE, composite reliability (CR) and Cronbach‟s alpha (α) are depicted 
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Competitive 
Pressure

Contractual 
Inhibitors

Usage

R² = 0.464

Performance 
Expectancy

R² = 0.612

Effort
Expectancy 

R² = 0.202

Intention

R² = 0.588

Task-Technology 
Fit

*** significant at   1% level
**  significant at   5% level

* significant at 10% level

H7: + 0.447***

t = 3.621

H1: + 0.295**

t = 2.193

H
3
: -

0
.1

3
0*

t
=

 1
.4

1
6

 

Figure 1. Structural research model with analysis results 

5.2 Discussion 

In accordance to TAM literature (Venkatesh et al. 2003) performance expectations are the strongest 

predictor for intention in the case of NDOH. Both considered external factors, contractual barriers and 

competitive pressure, exhibit the expected effects. But their influence on intention is weak. Thus, one 

can conclude a process owner‟s intention to adopt technology-driven trading systems is driven by 

internal factors, i.e. expectations concerning the performance of the trading technology in question. 

Aforementioned a significant effect from effort expectancy on intention (H4) could not be proven 

although TAM literature claims that it shall exists (e.g. Mathieson et al. 2001). Following the 

argumentation in section 4 it would be misleading to conclude this in terms of a contradiction. Two 

reasons might be assumed: For the largest institutional investors, economies of scale for NDOH are 

high enough to assess efforts to be negligible. Due to the sample size the effect might not be strong 

enough for the power of the test to classify it as significant (Goodhue et al. 2006). Further, the impact 

of TTF goes along with literature (Dishaw & Strong 1999, Klopping & McKinney 2004). But the 

strong effect of TTF on the core constructs of TAM, performance and effort expectancy was not 

expected to come along with an equally strong effect on usage. Besides highlighting TTF as a good 

predictor for performance expectations (R²=61.2%) TAM does not fully mediate its effect on the 

adoption of new trading technologies, too. Finally, by following Goodhue et al.‟s (2006) conclusion on 

small samples which suggests restricting the interpretation on significant paths, this research 

highlights for NDOH that the mode of action for internal factors consists of a strongly significant 

chain of causations: The starting point is the formation of TTF. This fit determines performance 

expectancies which finally define intentions. This phenomenon can be attributed to the strong 

economies of scale for NDOH. A matter of future research is the effect of effort expectancy. At this 

point only a weak but significant impact of effort on performance expectations can be shown. 

Practitioners should base their decision-making on the fit between the capabilities of NDOH and the 

requirements of the trading task. Thereby, they shall focus on the ability of new trading technologies 

to satisfy their requirements for trading control, anonymity and varying urgency demands. 

6 CONCLUSION 

Recent technology developments enable institutional investors to perform self-directed trading instead 

of delegating trading responsibility to brokers, their traditional intermediaries. Thus, new execution 

opportunities like Direct Market Access, Algorithmic Trading or Smart Order Routing let those 

responsible for trading (process owner) reassess intermediation relationships. Although singular 

(dis)advantages of these innovations have already been outlined in literature, no empirical 

investigation concerning factors that foster their adoption or refusal is reported yet. To overcome this 
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gap a model has been introduced that integrates TTF into TAM. For external factors like competitive 

pressure and contractual inhibitors its TAM core has been generalized towards TRA and TPB.  

The model has been validated by using the assessment of process owners from the largest European 

institutional investors. It turns out that internal factors exhibit a chain of strong and significant 

causations. This chain starts from the TTF construct which is mainly determined by the ability of 

technologies to provide trading control, anonymity and to satisfy varying urgency demands. TTF 

affects performance expectations which form the intention to use new trading technologies. It exhibits 

a strong influence on effort expectations and actual usage, too. Due to the available sample the role of 

effort expectations remains open for future research. Among external factors both contractual barriers 

and competitive pressure have weak influence on intention with a light advantage for contractual 

barriers. 

The future research steps are twofold: Firstly, more insights on the role of effort expectancy should be 

gained. At this point only a significant but rather weak negative impact on performance expectancies 

could be shown. Secondly, additional variables like risk perceptions might be considered to better 

explain effort expectations themselves. 

 

Acknowledgment 

We thankfully acknowledge the support of the E-Finance Lab, Frankfurt for this work. 

References  

Ajzen, I. (1991). The theory of planned behavior, Organizational Behavior and Human Decision 

Processes, 50 (2), 179–211. 

Benamati, J. and Rajkumar T.M. (2003). An empirical Study of the Applicability of the Technology 

Acceptance Model to Application Development Outsourcing Decisions, 9
th
 AMCIS, 1594–1606. 

Cane, S. and McCarthy, R. (2009). Analyzing the Factors that affect Information System Use: A Task-

Technology Fit Meta-Analysis, JCI S 50 (1), 108–123. 

Cassel, C.; Hackl, P. and Westlund, A.H. (1999). Robustness of partial least-squares method for 

estimating latent variable quality structures, Journal of Applied Statistics 26, 435–446. 

Chin, W. (1998). The Partial Least Square Approach to Structural Equation Modeling, Modern 

Methods for Business Research, Lawrence Erlbaum Associates, Mahwah, NJ, USA, 295–336. 

Cohen, J. (1988). Statistical power and analysis for behavioral science, 2nd edition, Hillsdale. 

Davis, F.D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information 

technology, MIS Quarterly 13 (3), 319–340. 

Davis, F.D.; Bagozzi, R.P. and Warshaw, P.R. (1989). User Acceptance of Computer Technology: A 

Comparison of Two Theoretical Models. Management Science, 35 (8), 982–1003. 

Diamantopoulos, A. and Winklhofer, H.M. (2001). Index Construction with Formative Indicators: An 

Alternative to Scale Development, Journal of Marketing Research 38, 269–277. 

Dishaw, M.T. and Strong, D.M. (1998). Supporting software maintenance with software engineering 

tools: A Computed task-technology fit analysis. Journal of Systems and Software, 44 (2), 107–120. 

Dishaw, M.T. and Strong, D.M. (1999). Extending the technology acceptance model with task-

technology fit constructs, Information and Management 36 (1), 9–21. 

Domowitz, I. and Yegerman, H. (2005). The Cost of Algorithmic Trading. A First Look at 

Comparative Performance, in Brian R. Bruce (Ed). Algorithmic Trading: Precision, Control, 

Execution, Institutional Investor Inc., 30–40. 

EdHec-Risk Advisory (2005). European Buy-Side survey – A step into the 21st century. 

Ende, B.; Gomber, P. and Wranik, A. (2007). An Order-Channel Management Framework for 

Institutional Investors, Proc. of the 8. Internationale Tagung WI 2007, Vol. 2, 705–722. 

Ende, B. and Gsell, M. (2008). Investigating the Buy-Side‟s Adoption Decision for Technology-

Driven Execution Opportunities - An extension of TAM for an organizational adoption context, 

Proc. of the 16th ECIS, 1262-1273.  

Page 11 of 12 18th European Conference on Information Systems



Foucault, T. and Menkveld, A. (2008). Competition for Order Flow and Smart Order Routing 

Systems, Journal of Finance 63(1), 119–158. 

Goodhue, D.L.; Lewis, W. and Thompson, R.L. (2006). PLS, Small Sample Size, and Statistical 

Power in MIS Research. Proc. of 39th HICSS. 

Goodhue D.L. and Thompson R.L. (1995). Task-technology fit and individual performance, MIS 

Quarterly 19 (2), 213–236. 

Goodhue, D.L. (1995). Understanding User Evaluations of Information Systems, Management Science 

41 (12), 1827–1844. 

Goll, I. and Rasheed, A.M.A. (1997). Rational decision-making and firm performance: The 

moderating role of environment, Strategic Management Journal, 18(7), 583–592. 

Gsell, M. and Gomber, P. (2009). Algorithmic trading engines versus human traders – Do they behave 

different in securities markets?. Proc. of the 17th ECIS. 

Harris, L. (2003). Trading and Exchanges: Market Microstructure for Practitioners. Oxford University 

Press, New York. 

Hsu, S.; Chen, W. and Hsieh M. (2006). Robustness testing of PLS, LISREL, EQS and ANN-based 

SEM for measuring customer satisfaction, Total Quality Management 17(3), 355–371. 

Jeyaraj, A.; Rottman J.W. and Lacity M.C. (2006). A review of the predictors, linkages, and biases in 

IT innovation adoption research, Journal of Information Technology 21(1), 1–23. 

Lai, S. and Li, H. (2005). Technology acceptance model for internet banking: an invariance analysis, 

Information & Management 42, 373–386. 

Lohmöller, J.B. (1989). Latent variable path modelling with partial least square, Heidelberg. 

Lucas, H.C. and Spitler, V.K. (2000). Implementation in a world of workstations and networks, 

Information & Management 38, 119–128. 

Khalifa, M. and Davison, R.M. (2006). SME Adoption of IT: The Case of Electronic Trading Systems, 

IEEE Transactions on Engineering Management 53 (2), 275–284. 

Klopping, I. and McKinney, E. (2004). Extending the Technology Acceptance Model and the Task-

Technology Fit Model to Consumer E-Commerce, Information Technology, Learning, and 

Performance Journal 22 (1), 35–48. 

Mathieson, K. (1991). Predicting user intentions: comparing technology acceptance model with the 

theory of planned behavior, Information Systems Research 2(3), 173–191. 

Mathieson, K.; Peacock, E. and Chin, W.W. (2001). Extending the Technology Acceptance Model: 

The Influence of Perceived User Resources, ACM SIGMIS Database, 32 (3), 86–112. 

Money, W. (2004). Application of the Technology Acceptance Model to a Knowledge Management 

System, Proc. of the 37th HICSS. 

Mykytyn, P.P.Jr. and Harrion, D.A. (1993). The Application of the Theory of Reasoned Action to 

Senior Management and Strategic Information Systems, Information Resource Management 

Journal 6 (2), 15–26. 

Nunally, J.C. (1978). Psychometric Theory, McGraw Hill, New York. 

Ringle, C.M.; Wende, S.W. and Will, A. (2005). SmartPLS (Release 2.0 M3), http://www.smartpls.de, 

University of Hamburg, Germany. 

Schwartz, R.A. and Francioni, R. (2004). Equity Markets in Action: The Fundamentals of Liquidity, 

Market Structure & Trading, John Wiley & Sons, Hoboken, NJ, USA. 

Schwartz, R.A. and Steil, B. (2002). Controlling institutional trading costs: We have met the enemy, 

and they are us, Journal of Portfolio Management 28, 39–49. 

Taylor, S. and Todd, P.A. (1995). Understanding information technology usage: a test of competing 

models, Information Systems Research 6(2), 144–176. 

Venkatesh, V. and Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on 

Interventions, Decision Sciences 39 (2), 273-315. 

Venkatesh, V.; Morris, M.G.; Davis, G.B. and Davis, F.D. (2003). User Acceptance of Information 

Technology: Towards a unified view, MIS Quarterly 27 (3), 425–478. 

Weill, P. and Olson, M.H. (1989). An assessment of the contingency theory of management 

information systems, Journal of Management Information Systems 6 (1), 59–85. 

Page 12 of 1218th European Conference on Information Systems

http://www.smartpls.de/

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2010

	IT-Driven Execution Opportunities in Securities Trading: Insights into the Innovation Adoption of Institutional Investors
	Bartholomäus Ende
	Recommended Citation


	tmp.1301484282.pdf.D6orc

