
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2007 Proceedings European Conference on Information Systems
(ECIS)

2007

Constructing Comparable Conceptual Models
with Domain Specific Languages
Daniel Pfeiffer
European Research Center for Information Systems, pfeiffer@ercis.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2007

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Pfeiffer, Daniel, "Constructing Comparable Conceptual Models with Domain Specific Languages" (2007). ECIS 2007 Proceedings.
154.
http://aisel.aisnet.org/ecis2007/154

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2007%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007?utm_source=aisel.aisnet.org%2Fecis2007%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2007%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2007%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007?utm_source=aisel.aisnet.org%2Fecis2007%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007/154?utm_source=aisel.aisnet.org%2Fecis2007%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

CONSTRUCTING COMPARABLE CONCEPTUAL MODELS
WITH DOMAIN SPECIFIC LANGUAGES

Pfeiffer, Daniel, European Research Center for Information Systems, Leonardo-Campus 3,
48149 Münster, Germany, pfeiffer@ercis.de

Abstract

The scientific discussion on the comparison of conceptual models has mainly focused on existing mod-
elling artefacts so far. Only minimal assumptions are made on the underlying modelling languages.
However, we argue that if models are constructed with a particular type of language the model com-
parison process can be significantly simplified. For this purpose we introduce the class of operational
domain specific languages. We formally show that with this language class: (1) type, synonym, homo-
nym, and abstraction conflicts are eliminated as well as (2) the semantic model comparison can be
traced back to the syntactic one. Based on the conceptual modelling language PICTURE we demon-
strate that advanced semantical operations are facilitated by this language class.

Keywords: Model Comparison, Domain Specific Languages, Conceptual Modelling, PICTURE

1 INTRODUCTION

The broad use of conceptual modelling in software engineering and organisational design calls for
models that are comparable. In large modelling projects the acquisition of relevant domain knowledge
is performed in a distributed manner. Findings from empirical studies show that whenever various
team members are involved the resulting models differ in terms of vocabulary, grade of abstraction
and level of detail (Hadar & Soffer, 2006). Through these semantic conflicts automated analyses and
transformations of the models are retarded. This hampers or even makes it impossible to efficiently
consolidate different models into one integrated overall description. Consequently, a holistic view of
the organisation is inhibited and the development of a company wide data model or the identification
of process overarching reorganisation potential is constrained (Becker et al., 2006).

To address the problem of deviating descriptions two varying approaches have evolved. The first per-
spective on model comparison is to consider conflicting models as given and to apply syntactical
transformations as well as semantical tests in order to identify similarities. This approach requires only
minimal assumptions about the models at hand. Especially research in the area of conceptual data
models as well as their integration adopts this position (e. g. Hakimpour & Geppert, 2001, Kashyap &
Sheth, 1996, Mitra et al., 1999). Pfeiffer & Gehlert (2005) have presented a general framework for the
comparison of conceptual models whose application, however, implies significant efforts. The second
approach on the other hand focuses on the construction of conceptual models in order to facilitate
comparatively easily matchable artefacts. It has emerged from the insight that comparing models with
an arbitrary structure hampers the identification of semantically meaningful results. It is based on the
assumption that establishing constraints while a model is constructed can distinctly simplify its later
comparison. As a consequence, conventions have been used to restrict the freedom of the modellers to
guarantee a certain level of compliance (Rosemann, 2003). In this paper we will take up this second
perspective as it can help to reduce the comparison efforts in the first place.

Domain specific conceptual modelling languages are a promising way to simplify the comparison of
conceptual models. Contrary to general-purpose languages like the Unified Modelling Language
(UML) (Object Management Group, 2004) or the Entity Relationship Model (ERM) (Chen, 1976)
domain specific languages are created to solve problems within a defined area of concern (Guizzardi
et al., 2002, Rossi et al., 2004). In order to describe a particular domain they apply the specific vo-

876

cabulary of this part of the world. Thus, not just the resulting models but already the modelling lan-
guage has a semantic connection with the application domain. Hence, from the domain perspective
semantically meaningful operations on the conceptual models, such as a model comparison, can al-
ready be defined at the language level. As the constructs of a domain specific language are derived
from the domain vocabulary, domain experts acting as modellers are aware of their semantics. Thus,
the selection of improper modelling constructs is reduced and the comparability of the models is in-
creased.

The aim of this paper is to show which modelling language characteristics are required, in order to
create conceptual models that can be compared in an automated manner. We will explain how domain
specific languages can simplify the comparison process and will disclose the underlying causal rela-
tions. To reach that goal, we will formalize our arguments and prove the validity of the proposed lan-
guage characteristics.

The remainder of this paper will proceed as follows: In the next section we will provide the basic vo-
cabulary to discuss the comparison of modelling artefacts. Formal definitions of the terms conceptual
model as well as conceptual modelling grammar are given and modelling rules are specified. Subse-
quently, we will explain the differences between syntactic and semantic model comparison. A formal
definition of the different conflicts that can emerge during a model comparison is given. In the follow-
ing section these conflicts are solved by specific language properties. For this purpose, the class of
operational domain specific languages is introduced. The PICTURE-language is presented as an ex-
ample. The paper closes with a summary of the main results and an outlook to further research.

In the following set-theoretic predicates are applied for formal definitions (Balzer et al., 1987). The
notion of intentional and extensional semantics is based on the work of Patig (2004).

2 MODELS, LANGUAGES AND GRAMMARS

Informally, a conceptual model can be defined as a representation of an application domain expressed
in a semi-formal, mostly visual language with the purpose of facilitating information systems devel-
opment and organisational design (Evermann & Wand, 2001, Schütte & Rotthowe, 1998). A concep-
tual model is the result of an explication of an internal model. The internal model is a product of per-
ception and cognition processes of a modeller who examines an application domain. The content of
the internal model is influenced by the intentions of the modeller and the objectives of the modelling
project. The internal model IRIEIM ,= consists of a set of elements IE and relations IEIEIR ×⊆
between the elements. Therefore, IM can be considered as a system.

A description of the internal model IM is denoted as DIM. DIM is a linguistic artefact which provides the
intentional semantics of IM. The intentional semantics of the English term “morning star” is for exam-
ple a bright object in the night sky that can be seen only shortly before sunrise. The extensional se-
mantics of IM is denoted by M(DIM). M(DIM) is the set of all interpretations of the description DIM. In
the example the extensional semantics consists of the planet Venus. In the case of an adequate and
complete description of IM it follows that: }{)(IMDM IM = , because IM is precisely characterised by
DIM. Each IE∈ε and IR∈ρ can be described in form of εD or ρD accordingly. In the case of an
adequate and complete description of ε it holds true that: }{)(εε =DM , analogical in the case of ρ :

}{)(ρρ =DM . Every description requires a language. A conceptual model CM complies with a de-
scription DLCMG

IMD , of the internal model DIM with the modelling grammar CMG and the domain lan-
guage DL. A domain language DL contains all meaningful statements which can be formed with the
vocabulary of a certain application domain. LCDL constitutes the language community to DL. LCDL
comprises all individuals who consider the language DL as their common property and follow its con-
ventions. A conceptual modelling grammar CMG describes the rules governing the use of a conceptual
modelling language.

877

Existing formalisms for conceptual models and modelling grammars (e. g. Desel & Reisig, 1998,
Rosemann & van der Aalst, 2007) do not consider intentional or extensional aspects of real world se-
mantics. As these issues are relevant for a meaningful comparison of conceptual models a new forma-
lisation is proposed which separates a modelling grammar from a domain language (Pfeiffer & Nie-
haves, 2005).

2.1 Conceptual modelling grammars and conceptual models

CMG is a conceptual model grammar iff C, R, V, G and Z exist such that:
1. ZGVRCCMG ,,,,=
2. C is a non-empty set of constructs, including object types and relationship types
3. R is the set of permitted relations between the constructs with CCR ×⊆ , c represents the in-

coming construct of the pair Rcc ∈′),(, c′ is the outgoing construct
4. V is a set of well-formedness rules which restrict the conceptual models of the grammar
5. G is a set of graphical symbols
6. Z assigns constructs to graphical symbols with GCZ ×⊆

A CMG defines the concrete syntax of a visual conceptual modelling language. A CMG without G and
Z represents the abstract syntax of a conceptual modelling language. In the following the terms CMG
and conceptual modelling language are used synonymous.

The initially mentioned term, domain specific language, can now be formalised. A modelling language
is considered domain specific if all constructs have a semantically equal counterpart in the domain
language. Formally expressed as:)()(:, sc DMDMDLsCc =∈∃∈∀ . This means a domain specific
language does not contain constructs whose semantics is not known in the domain.

CM is a conceptual model iff E, F, S, A and P exist such that:
1. PASFECM ,,,,=
2. E is a non- empty set of model elements, members of E are instantiations of members of C with

NCE ×⊆ and N as the set of natural numbers
3. F is the set of relations between model elements with EEF ×⊆ , e represents the incoming

model element of the pair Fee ∈′),(, e′ is the outgoing model element, all undirected edges
have the same direction

4. S is a set of actual linguistic statements that describe the internal model IM with DLS ⊆ , the
statements consists of technical terms from the application domain

5. A assigns technical terms to model elements with SEA ×⊆
6. P defines the position of the graphical elements on the drawing area with 2NEP ×⊆

Suppose a simplified grammar ERMCMG consisting of entity types (ET), relationship types (RT) and
links (L) with },,{ LRTETC ERM = . The conceptual model BCM given in Figure 1 based on ERMCMG
can be specified with BBBBBB PASFECM ,,,,= :

1.)}2,(),1,(),1,(),2,(),1,{(LLRTETETE B =

2.))}2,(),2,(()),2,(),1,(()),1,(),1,(()),1,(),1,{((ETLLRTRTLLETF B =

3. },,{ BookwritesWriterS B =

4.)}),1,((),),2,((),),1,{((writesRTBookETWriterETAB =

5.))}1,4(),2,(()),1,2(),1,(()),1,3(),1,(()),1,5(),2,(()),1,1(),1,{((LLRTETETPB =

878

Figure 1. The conceptual model CMB.

2.2 Modelling rules

For a proper representation of the internal model IM with)(}{ IMCMMIM = the conceptual model
CMIM must be adequate and complete. This requires that the modelling language and the domain lan-
guage are comprehensive enough to describe IM. Therefore, necessary conditions for

)(}{ IMCMMIM = can be formulated:

(R1) All elements of IM must be describable with constructs of the modelling language:
)(:, cDMCcIE ∈∈∃∈∀ εε

(R2) All relations within the internal model IM must be describable in terms of permitted relations
between constructs of the modelling language:

)()(:),(,),(cc DMDMRccIR ′∈′∧∈∈′∃∈′∀ εεεε

(R3) For all elements of IM there is an equipollent statement within the domain language:
)(}{:, sDMDLsIE =∈∃∈∀ εε

If the conditions R1 to R3 are fulfilled then the modelling language and the domain language are
called applicable. That means CMG and DL can be used to explicate the internal model IM.

For a more convenient presentation some abbreviations are useful. The type of a model element Ee∈
is its corresponding construct Cc ∈ . The function CE →:τ , ckce ==)),(()(ττ provides the type of
a model element. The auxiliary relation EIE ×⊆Ψ establishes an one to one mapping between ele-
ments of the internal model IM and elements of the conceptual model CM. Ψ∈),(eε holds iff:
() ()eeeEeeIE =′→Ψ∈′∈′∀∧=′→Ψ∈′∈′∀),(:),(: εεεεε .

In order to preserve the meaning and structure of IM during the explication the following conditions
are required:

(R4) A model element Ee∈ refers to exactly one element of the internal model IE∈ε and its corre-
sponding construct is able to describe ε :

)(),(:)(eDMeIEEe τεεε ∈∧Ψ∈∈∃↔∈

(R5) Each relation between model elements Ff ∈ is assigned to exactly one relation between ele-
ments of the internal model IR∈ρ and the modelling grammar permits the relation:

ReeeeIRFee ∈′∧Ψ∈′′∧Ψ∈∈′∃↔∈′))(),((),(),(:),(),(ττεεεε

(R6) A domain statement is part of the conceptual model CM iff it can be assigned to a model ele-
ment:

AseEeSs ∈∈∃↔∈),(:

(R7) A domain statement is assigned to a model element iff the domain statement exactly describes
the corresponding element of the internal model, the construct associated with the model ele-
ment has a more general meaning (larger extension) than the domain statement, and no other
domain statement is already connected with the model element:

[]ssAseSsDMDMDMeIEAse ses =′→∈′∈′∀∧⊃∧=∧Ψ∈∈∃↔∈),(:)()()(}{),(:),()(τεεε

From a set theoretic perspective the modelling language constructs do not have any impact on the ex-
tensional semantics of the conceptual model.)()(eDM τε ∈ (R4) and)(}{ sDM=ε (R7) show that s is
more general than)(ec τ= .)()()(se DMDM ⊃τ (R7) ensures that the relationship is a strict one. That
means that the modelling language construct c is redundant from an extensional point of view. The
value of c within the model is an intentional one. The construct c emphasises a certain aspect of s and

879

thus helps to structure the domain. For example a modelling construct “entity type” instantiated with
the domain statement “colour” tells that colour is considered as an object on its own and not as an at-
tribute. However, this information has no influence on the extension of the domain statement colour.
The extension is still blue, green, red, and so on. Without the condition)()()(se DMDM ⊃τ the con-
struct would lose its role as a structuring element and the domain statement would take over this job.
However, this would destroy the original function of a construct.

3 COMPARISON OF CONCEPTUAL MODELS

So far conceptual models have been mainly considered as spin-off products of the software develop-
ment process or of reengineering projects. However, as they contain valuable domain knowledge that
is often not explicated elsewhere, they are more and more regarded as an important artefact on their
own and not just seen as an intermediate result to come to a database schema or a workflow imple-
mentation. The consequence is that the models are not created for a single purpose anymore but have a
lifecycle in which they are modified and extended to keep up with the changes in the environment.
The definition of operations on conceptual models like transformation, integration or comparison
helps to address this issue (Bernstein et al., 2000).

The operations can be divided into syntactical and semantical ones. From a syntactical perspective
conceptual models share many similarities with graphs. A graph GG ENG ,= comprises a set of
nodes NG and edges EG (Diestel, 2000). The nodes NG show an analogous structure as the model ele-
ments E and the edges EG can be considered to be allied with the relations F. From a semantic point of
view conceptual models are different from graphs as they obtain their meaning partially from the
modelling language constructs C and the domain statements S. In addition to graphs conceptual mod-
els have a concrete form of representation G and its elements have a position on a drawing sheet P.
However, representational aspects of conceptual models are disregarded in the following.

3.1 Syntactical and Semantical Equivalence

Many syntactical operations on conceptual models can be led back to operations on graphs. For exam-
ple there are publications on search, comparison and transformation (Bardohl et al., 1999, Jilani et al.,
2001). Existing notions of equivalence (e. g. Milner, 1980, Pomello et al., 1992, Rahm & Bernstein,
2001, van der Aalst et al., 2006, van Glabbeek & Weijland, 1996) lack in the consideration of real
world semantics which, however, is needed in order to modify the algorithms for graphs to fit the spe-
cific properties of conceptual models. Hence, a new notion of equivalence is given in the following.

Before two entire models can be compared it is necessary to define what it means when two model
elements are syntactically equivalent. Considering the models PASFECM ,,,,= and

PASFEMC ′′′′′=′ ,,,, two model elements are syntactically equivalent if they share the same type
and have a syntactically identical domain statement associated. The syntactical equivalence is repre-
sented by the relation: EE ′×⊆Ω . Ω∈′),(ee iff:

(S1))()(ee ′=ττ

(S2) AseAseSs ′∈′→∈∈∀),(),(:

(S3) AseAseSs ∈′→′∈′′′∈′∀),(),(:

Two conceptual models are only equivalent if every model element of the first model maps to exactly
one element of the second model and vice versa. This is expressed by the relation EE ′×⊆Ω′ with

Ω⊆Ω′ . Ω′∈′),(ee iff:

(S4) eeeeEe =′′→Ω∈′′′∈′′∀),(:

(S5) eeeeEe ′=′′′→Ω∈′′′′∈′′′∀),(:

880

Two conceptual models PASFECM ,,,,= and PASFEMC ′′′′′=′ ,,,, are syntactically equivalent
(MCCM syn ′=) if all elements of the two models have exactly one corresponding element and all ele-
ments take part in a relation map. MCCM syn ′= iff

(S6) Ω′∈′′∈′∃∈∀),(:, eeEeEe

(S7) Ω′∈′∈∃′∈′∀),(:, eeEeEe

(S8) Ω′∈′′′′′∧Ω′∈′′∈′′′′∃∈′′∀),(),(:),(,),(eeeeFeeFee

(S9) Ω′∈′′′′′∧Ω′∈′∈′′∃′∈′′′′∀),(),(:),(,),(eeeeFeeFee

A semantic comparison requires, in addition to the syntactic one, that the meanings of the constructs as
well as the domain statements are considered. So far there is no algorithm that allows for a semantic
comparison of conceptual models (Pfeiffer & Gehlert, 2005), as there is not automated way to identify
the extension of an arbitrary description. Consequently, semantical model comparison is a manual ac-
tivity that has to be performed by the members of the corresponding language communities LCDL and
LCCMG. These competent and willing persons must come to a consensus that two concepts or two do-
main statements are the same. In this case, based on the consensus theory of truth, the two statements
or concepts can be considered semantically equivalent (Kamlah & Lorenzen, 1984).

Two conceptual models PASFECM ,,,,= and PASFEMC ′′′′′=′ ,,,, are semantically equivalent
(MCCM sem ′=) if they are syntactically equivalent, the types of the corresponding model elements
have identical semantics and the associated domain statements share the same meaning. MCCM sem ′=
iff:

(S10) 'CMCM syn=

(S11))()(:),()()(ee DMDMee ′=Ω∈′∀ ττ

(S12))()(),(),(:,,),(ss DMDMAseAseSsSsee ′=→′∈′′∧∈∈′∀∈∀Ω∈′∀

3.2 Model comparison conflicts

There are a couple of conflicts that affect the analysis results when two models are syntactically or
semantically compared (taxonomies of these conflicts can be found for example in Davis et al., 2003,
Hakimpour & Geppert, 2001, Kashyap & Sheth, 1996, Lawrence & Barker, 2001). These conflicts are
exemplarily demonstrated in Figure 2 in the ERM notation.

Figure 2. Examples of important model comparison conflicts (Pfeiffer & Gehlert, 2005).

Type conflicts arise whenever the same fact of the application domain is represented by using different
constructs of the modelling language. They result if there are choices in the modelling language about

881

what construct is to be used in a certain situation. There is a type conflict between a model
PASFECM CMG

IM ,,,, and a model PASFEMC CMG
IM ′′′′′′ ,,,, iff:

(C1))()(),(),(:,, eeAseAseSsSsEeEe ′≠∧′∈′∧∈∧′∈∈∃′∈′∃∈∃ ττ

Synonym conflicts occur when two different domain statements have the same meaning. There is a
synonym conflict between a model PASFECM IM ,,,, and a model PASFEMC IM ′′′′′′ ,,,, iff:

(C2))()(:, ss DMDMssSsSs ′=∧′≠′∈′∃∈∃

Homonym conflicts emerge due to domain statements which have more than one meaning. This is the
case if for one domain statement there is a different, adequate and complete description with a varying
extension. There is a homonym conflict between a model PASFECM IM ,,,, and a model

PASFEMC MI ′′′′′′ ′ ,,,, iff:

(C3))()(: ss DMDMSsSs ′≠∧′∈∈∃

Abstraction conflicts result from the representation of the application domain at deviating levels of
abstraction. Different modellers use more general or more precise domain statements for the same fact.
There is an abstraction conflict between a model PASFECM IM ,,,, and a model

PASFEMC MI ′′′′′′ ′ ,,,, iff:

(C4) ())()()()(:, ssss DMDMDMDMssSsSs ′′ ⊂∨⊃∧′≠′∈′∃∈∃

Type conflicts, synonym conflicts and abstraction conflicts lead to an underestimation of the semantic
similarity of two models. Homonym conflicts can cause an overestimation of the similarity.

4 SOLVING THE CONFLICTS

The general approach of this paper is to solve the model comparison conflicts through the adoption of
rules for conceptual modelling grammars which simplify the model comparison process. Type con-
flicts can for example be avoided, if all modelling language constructs are required to be semantically
disjoint.

Proposition 1 (Type Conflicts): With ∅=∩′≠∈′∀ ′)()(:,, cc DMDMccCcc type conflicts between
the models CMG

IMCM and CMG
IMMC ′ are not feasible.

Proof: If it is possible to show that from ∅=∩′≠∈′∀ ′)()(:,, cc DMDMccCcc follows that
)()(),(),(eeAseAse ′=→′∈′∧∈ ττ type conflict cannot arise. In order that Ase ∈),(holds it is nec-

essary that:)()()(se DMDM ⊃τ (R7). From the condition ∅=∩′≠∈′∀ ′)()(:,, cc DMDMccCcc fol-
lows that: ∅=∩≠∈∀)()(:,,)()(ee DMDMeeEee &&&&&&&&& ττ . Thereof one can derive that there is at least one

)(ˆ ec τ= to meet the condition:)()()(se DMDM ⊃τ . Consequently, it must also hold for Ase ′∈′),(
that:)()()(se DMDM ⊃′τ . The application of the same modelling grammar leads to the identical:

)(ˆ ec ′= τ . Hence, it follows that:)()(ee ′= ττ if Ase ∈),(and Ase ′∈′),(. 

Homonym and synonym conflicts can be eliminated if these language defects are removed from the
domain language.

Proposition 2 (Synonym Conflicts): With)()(:,, ss DMDMssDLss ′≠′≠∈′∀ synonym conflicts be-
tween the models DLCMG

IMCM , and DLCMG
IMMC ,′ are not feasible.

Proof: From the definition of a CM it follows that DLS ⊆ . Consequently, if there are no synonyms in
DL there are also no synonym conflicts caused by S. 

Proposition 3 (Homonym Conflicts): With)()(: ss DMDMDLs ′=∈∀ homonym conflicts between
the models DLCMG

IMCM , and DLCMG
MIMC ,

′′ are not feasible.

Proof: If there are no homonyms in DL there are also no homonym conflicts caused by S. 

882

Subsequently, the implications of proposition 1 and proposition 2 on a syntactical model comparison
are evaluated. It is claimed that if the same internal model coupled with an identical modelling lan-
guage as well as the same domain language are employed, and according to the propositions all syno-
nyms are eliminated as well as all modelling language constructs are disjoint, then two syntactically
equivalent models arise. This means that different modellers who share the same internal model will
come to a syntactically identical result.

Proposition 4 (Syntactical Equivalence): R1- R7 and
1. ∅=∩′≠∈′∀ ′)()(:,, cc DMDMccCcc
2.)()(:,, ss DMDMssDLss ′≠′≠∈′∀

imply that DLCMG
IMsyn

DLCMG
IM MCCM ,, ′= .

Proof: ∅=∩′≠∈′∀ ′)()(:,, cc DMDMccCcc and R1 imply that:)(:, cDMCcIE ∈∈∃∈∀ εε and
)(:,, cDMccCcIE ′∈≠′∈′¬∃∈∀ εε . Thus, c is the only construct in C that can describe ε . R3 and

)()(:,, ss DMDMssDLss ′≠′≠∈′∀ analogical imply that:)(}{:, sDMSsIE =∈∃∈∀ εε and
)(}{:',, sDMssSsIE ′∈≠∈′¬∃∈∀ εε . Thus, s is the only domain statement in DL that can describe the

element of the internal model IE∈ε . Consequently, each ε is associated with exactly one pair),(sc
which can be used to represent it. Because of R4 and the properties of Ψ for each ε exactly one e is
instantiated with ce =)(τ . Thus, for each ε the pair),(sc can be extended to a triple),,(sce .

1. If)()(sc DMDM ⊂ then because of R7 e is labelled with s. This is expressed by the relation
Ase ∈),(. Because of R6 it follows that: Ss ∈ .

2. If)()(sc DMDM = then because of R7 and R6 Ase ∉),(and Ss ∉ .

3.)()(sc DMDM ⊃ contradicts R1 and R3.

For each ε& there is also only one corresponding c& which is instantiated as e& . Due to R5 and R2 for
each IR∈),(εε & exactly one Fee ∈),(& is created.

In the case of two models DLCMG
IMCM , and DLCMG

IMMC ,′ for each IM∈ε there is exactly one triple
),,(sce with Ee ∈ and exactly one triple),,(sce ′′′ with Ee ′∈′ (R4). Because CMG and DL are the

same for both models, it follows that cc ′= and ss ′= . Because of S1-S3 from cc ′= and ss ′= fol-
lows that: Ω∈′),(ee . S4-S5 are fulfilled because),,(sce and),,(sce ′′′ map to the same ε and there is
no other ê which refers to ε . For each IR∈ρ exactly one Ff ∈ and exactly one corresponding

Ff ′∈′ exist. As ε and ρ are arbitrary elements or relations of IM the conditions S6-S9 are fulfilled.
It follows that: DLCMG

IMsyn
DLCMG

IM MCCM ,, ′= . 

Based on proposition 4 the consequences of proposition 3 on the semantic model comparison can be
analysed. For that purpose the idea of proposition 3 is transferred to the constructs of conceptual mod-
elling grammar. Also, in the set of constructs there must not be homonyms:)()(: cc DMDMCc ′=∈∀ .
Suppose two models which were created with the same modelling language and an identical domain
language. It is claimed that if these models are syntactically equivalent and neither the domain lan-
guage nor the modelling language contain homonyms then the two models are also semantically
equivalent.

Proposition 5 (Semantical Equivalence):

1. DLCMG
syn

DLCMG MCCM ,, ′=

2.)()(: cc DMDMCc ′=∈∀

3.)()(: ss DMDMDLs ′=∈∀

4. imply that DLCMG
sem

DLCMG MCCM ,, ′= .

Proof: From)()(: cc DMDMCc ′=∈∀ follows that: cc ′= implies)()(cc DMDM ′= because both
models apply the same modelling language. From)()(: ss DMDMDLs ′=∈∀ it follows that: ss ′=

883

implies)()(ss DMDM ′= , because both models apply an identical domain language. Every Ee ∈ be-
longs to a triple),,(sce , each Ee ′∈′ is part of),,(sce ′′′ . The syntactical equivalence of

DLCMG
syn

DLCMG MCCM ,, ′= implies that: Ω∈′),(ee . Consequently, it follows that)()(ee ′= ττ (S1) and
where applicable ss ′= (S2, S3). Thus, for every pair Ω∈′),(ee it holds that:)()()()(ee DMDM ′= ττ
(S11) and)()(ss DMDM ′= (S12). Hence, it follows: DLCMG

sem
DLCMG MCCM ,, ′= . 

Proposition 4 and Proposition 5 have important consequences. They assure that under the conditions:

(D1) ∅=∩′≠∈′∀ ′)()(:,, cc DMDMccCcc

(D2))()(:,, ss DMDMssDLss ′≠′≠∈′∀

(D3))()(: cc DMDMCc ′=∈∀

(D4))()(: ss DMDMDLs ′=∈∀

a semantic model comparison can be traced back to a syntactical model comparison. Starting from two
identical internal models two semantically and syntactically equivalent models can be explicated. It is
not necessary to apply a semantical operation on the conceptual models as a syntactical operation is
sufficient. This in turn implies that if D1-D4 hold then the semantic model comparison can be imple-
mented with operations on graphs and thus can be completely automated.

5 COMPARABLE DOMAIN SPECIFIC LANGUAGES

The implementation of the conditions D1-D4 provides a different challenge. Conditions D1 and D3
refer to the modelling grammar. A modelling grammar is an artificial artefact created by a method en-
gineer. Hence, the method engineer can freely modify the grammar CMG such that it complies with
D1 and D3. Constraints D2 and D4, however, bear on the domain language. The domain language DL
is naturally grown and cannot be easily adjusted as it is the shared property of the language commu-
nity LCDL. The language community decides on how DL is used. One possibility to cope with this
problem is to reconstruct DL in form of the language LD ′ and to eliminate all homonyms and syno-
nyms during that process. This language LD ′ could for example be represented by a domain ontology
(Guizzardi et al., 2002). Subsequently, it is necessary to oblige the modeller by additional rules or tool
support to apply only the vocabulary of LD ′ in order to explicate an internal model. All occurrences
of DL within the modelling rules have to be replaced by LD ′ .

However, there is an alternative approach to meet the conditions D2 and D4. The relevant statements
from LD ′ can be transformed into modelling language constructs and added to C. A domain specific
language emerges. In parallel the sets S and A are required to be empty in order to ensure that no am-
biguous domain statements from DL can be added. A resulting conceptual model CM has the follow-
ing form: PFECM ,,,, ∅∅= . Based on the grammar CMG a modified grammar

ZGVRCGCM ′′′′′=′ ,,,, evolves with LDCC ′∪⊆′ and)()(:, sc DMDMDLsCc =∈∃′∈′∀ ′ . The
multi-purpose grammar CMG is transformed into a domain specific language GCM ′ . The drawback of
this modification is that GCM ′ loses the flexibility to be used in an arbitrary domain but is now rather
specific to a particular knowledge area.

A domain specific language CMG that meets the constraints D1 and D3 provides the following advan-
tages:

1. Abstraction conflicts are avoided. Condition D1 is stricter than constraint D2, as D2 just de-
mands for the elimination of synonyms within the domain language but D1 additionally requires
the modelling constructs to be semantically disjoint. Thus, it is not possible to have more gen-
eral and more specific modelling constructs within C simultaneously. There cannot be two dif-
ferently abstract constructs that refer to the same element of the internal model IE∈ε . There-
fore, the constraint D1 prevents abstraction conflicts as described in C4. If the modelling gram-
mar CMG is declared as mandatory in a certain project because of R1-R3 it is necessary that the

884

internal models of all modellers share the same level of abstraction. To put it in other words,
CMG ensures that different modellers represent the reality in an identically abstract manner.

2. Semantically meaningful operations can be defined at the design time of the CMG. When do-
main statements become modelling language constructs, the modelling language does not only
provide measures to structure the domain but also it is sufficient to describe it. The use of addi-
tional statements from the domain language DL is no longer required. With a multi-purpose lan-
guage the domain specific terms are not part of the modelling language but are added when the
conceptual model is constructed. Thus, multi-purpose languages allow for the definition of se-
mantically meaningful operations after the models are constructed. However, with domain spe-
cific languages this can already be done at the design time of the language as the domain state-
ments are part of the grammar. Although, domain specific languages are overall less general
than multi-purpose languages from the perspective of their semantic operations, they are more
widely reusable. For example, an UML diagram can be examined for how many activities it
comprises. This is no domain specific analysis though. Alternatively, suppose a domain specific
language with the construct “Enter data into IT”. With this language it is possible to count how
often paper documents are digitised. Hence, consequences for the introduction of a document
management system can be derived. With UML such an analysis could be defined based on a
set of existing models but not with the language alone. Moreover, contrary to the domain spe-
cific language with UML the conflicts C1-C4 had to be addressed.

Beneath the elimination of the conflicts C1-C4 a domain specific language CMG that fulfils the condi-
tions D1 and D3 also simplifies the specification of other semantic operations. Such a domain specific
language CMG is therefore called operational.

The applicability of a domain specific language is limited by the dissemination of its particular under-
lying domain language. Therefore, domain specific languages are especially useful in areas where a
common terminology has already been established. Due to legal regulations and a strictly hierarchical
organisation structure, the public sector possesses a largely consolidated domain language. In the next
section we present an operational domain specific language from this area.

6 PICTURE - AN OPERATIONAL DOMAIN SPECIFIC LANGUAGE

PICTURE is a domain specific language for the efficient representation of the process landscape in
public administrations (Becker et al., 2006). With PICTURE processes are modelled as a sequential
flow of domain specific process building blocks. A process building block represents a predefined set
of activities within an administrational process (Rupprecht et al., 2000). The semantics of a process
building block is defined by a corresponding domain statement which is part of the modelling lan-
guage. The process building blocks can be further described with the aid of attributes. The attributes
collect additional information about a process as basis for a subsequent semantical analysis. PICTURE
contains altogether 29 process building blocks and more than 50 attributes. An example process with
process building bocks and attributes is shown in Figure 3.

Based on the example in Figure 3 PICTUREC results as },,,,,,,,,{ LTMTSMSDFDFACDIDC PICTURE ⊇ .
The construct L stands for the links between process building blocks and corresponds to the domain
statement “is followed by”. The complete PICTURE-grammar contains additional building blocks,
attributes, and attribute values.

The PICTURE-language has been constructed in consideration of the conditions D1 and D3. It has
been strived for a set of modelling constructs whose members are semantically disjoint (cf. D1) and do
not comprise homonyms (cf. D3). The constructs have been chosen based on an analysis of existing
process models from the public administration domain and an evaluation of electronic government
literature. As all PICTURE-constructs correspond with language statements from the public sector,
they are domain specific. Attributes have been added with regard to the effects certain basic technolo-

885

gies, such as document management systems or virtual post offices, exert on specific properties of the
processes. Although, the PICTURE constructs have been specifically developed for public administra-
tions some of them may also be useful for administrational processes in other domains.

Process Process Building Blocks Attributes

Incoming Document (ID)

Document (D)

Source (S)

Source Medium (SM)

Create Document (CD)

Document (D)

Formal Assessment (FA)

Document (D)

Create Document (CD)

Document (D)

Incoming
Document

Document: Research
Semester Form
Source: Professor
Source Medium: Mail

Create
Document

Document: Leave Form

Formal
Assessment

Document: Leave Form

Forward
Document

Document: Notification
Target: Professor
Target Medium: Mail

Create
Document

Document: Notification

Forward Document (FD) Document (D)

Target (T)

Target Medium (TM)

Figure 3. Example process with process building blocks and attributes.

With the help of process building blocks and attributes the PICTURE-language supports the distrib-
uted modelling of the process landscape of a public administration. The resulting process models have
the same level of abstraction and can be analysed for structural similarities and building block pat-
terns. For example it is possible to identify so called Ping-Pong processes in which a document alter-
nates between different organisational units multiple times. Furthermore, PICTURE has proven to be
an efficient method to model processes in the public administration domain. So far in two large case
studies 21 modellers have collected more than 330 processes with PICTURE. In these two projects,
the acquisition of the processes took significantly less time than with traditional modelling approaches
(Becker et al., 2006).

The PICTURE-language shows that operational domain specific languages are feasible and can be
constructed. It also demonstrates that this language class provides the potential for further advanced
semantic operations.

7 CONCLUSIONS AND FUTURE RESEARCH

The perspective of the paper is not to take conceptual models as given when they are compared.
Rather, we have argued that if the modelling language complies with certain rules then the comparison
process can be noticeably simplified. We have proven that a domain specific language, where all con-
structs are semantically disjoint and homonyms have been eliminated, significantly reduces the ambi-
guities during the construction of conceptual models. We have introduced the class of operational do-
main specific languages that prevent the emergence of type, synonym, homonym, and abstraction con-
flicts. Furthermore, this language class allows for tracing back the semantic model comparison to the
syntactic one. With the PICTURE-language we have presented an example of an operational domain
specific language and indicated its potential for advanced semantic operations.

As we have taken internal models for granted so far, our research has focused on their explication.
However, this is a simplification since deviations between conceptual models are often also due to
varying internal models. Not all of the conflicts emerge because of the freedom a modelling or domain
language offers. Conflicts of detail occur when modellers represent a certain fact of reality in differ-

886

ently explicit form in their internal models, for example with more attributes or multiple constructs.
Disparities between conceptual models can also arise when the borders of a certain phenomenon are
not clear-cut and thus inconsistent internal models are created by different modellers. By reversing the
conditions R1-R3 a mandatory modelling language can influence the way the internal model is shaped.
It is subject to further research to evaluate appropriate language properties to address the remaining
conflicts. In the PICTURE-language the elimination of ramifications has pointed out one possibility.

The proposed construction rules for conceptual modelling languages represent a theoretical result that
needs further practical evaluation. Languages that meet these criteria have only a limited scope of ap-
plication and loose the ability to be used in situations where different abstraction levels are needed or a
flexible use of domain language is required. It is due to further research to analyse how some of the
criteria can be relaxed without increasing the comparison efforts.

The rules of disjoint constructs and the exclusion of homonyms show similarities with construct-
redundancy and construct-overload as derived from the BUNGE-WAND-WEBER ontology (Wand,
1996). It is up to further investigations to evaluate the connections between these research streams.

Acknowledgements

The work published in this paper is partly funded by the European Commission through the STREP
PICTURE. It does not represent the view of European Commission or the PICTURE consortium and
the authors are solely responsible for the paper's content.

References
Balzer, W., Moulines, C. U. and Sneed, J. D. (1987). An Architectonic for Science - The Structuralist

Program. D. Reidel Publishing Company, Dordrecht et al.
Bardohl, R., Minas, M., Schürr, A. and Taentzer, G. (1999). Application of Graph Transformation to

Visual Languages. In Handbook of Graph Grammars and Computing by Graph Transformation:
Applications, Languages and Tools (Ehrig, H., Engels, G., Kreowski, H.-J. and Rozenberg, G.
Eds.), World Scientific Publishing, Singapore.

Becker, J., Algermissen, L., Falk, T., Pfeiffer, D. and Fuchs, P. (2006). Model Based Identification
and Measurement of Reorganization Potential in Public Administrations – the PICTURE-
Approach. In Proceedings of the Tenth Pacific Asia Conference on Information Systems (PACIS
2006), pp. 860-875, Kuala Lumpur, Malaysia.

Bernstein, P. A., Halevy, A. Y. and Pottinger, R. A. (2000). A vision for management of complex
models. SIGMOD Record (ACM Special Interest Group on Management of Data), 29 (4), pp. 55-
63.

Chen, P. P.-S. (1976). The Entity Relationship Model - Toward a Unified View of Data. ACM Trans-
action on Database Systems, 1 (1), pp. 9-36.

Davis, I., Green, P., Milton, S. and Rosemann, M. (2003). Using Meta Models for the Comparison of
Ontologies. In Proceedings of the Eighth CAiSE/IF IP8.1 International Workshop on Evaluation of
Modeling Methods in Systems Analysis and Design, Austria.

Desel, J. and Reisig, W. (1998). Place/Transition Petri Nets. In Lectures on Petri Nets I: Basic Models
(Reisig, W. and Rozenberg, G. Eds.), pp. 122-173, Springer, Berlin.

Diestel, R. (2000). Graph Theory. Springer, New York.
Evermann, J. and Wand, Y. (2001). Towards Ontologically Based Semantics for UML Constructs. In

Proceedings of the 20th International Conference on Conceptual Modeling (ER 2001) (Kunii, H.
S., Jajodia, S. and Sølvberg, A. Eds.), pp. 354-367, Yokohama, Japan.

Guizzardi, G., Pires, L. F. and Sinderen, M. J. v. (2002). On the role of Domain Ontologies in the de-
sign of Domain-Specific Visual Modeling Languages. In Proceedings of the 17th ACM Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA 2002), Seattle.

887

Hadar, I. and Soffer, P. (2006). Variations in Conceptual Modeling: Classification and Ontological
Analysis. Journal of the AIS, 7 (8), pp. 568-592.

Hakimpour, F. and Geppert, A. (2001). Resolving Semantic Heterogeneity in Schema Integration: an
Ontology Based Approach. In Proceedings of the International Conference on Formal Ontologies
in Information Systems FOIS'01 (Welty, C. and Smith, B. Eds.), pp. 297-308, Ogunquit, Maine.

Jilani, L. L., Desharnais, J. and Mili, A. (2001). Defining and Applying Measures of Distance Between
Specifications. IEEE Transactions on Software Engineering, 27 (8), pp. 673-703.

Kamlah, W. and Lorenzen, P. (1984). Logical Propaedeutic. Pre-School of Reasonable Discourse.
University Press of America, Lanham, MD.

Kashyap, V. and Sheth, A. (1996). Semantic and schematic similarities between database objects: a
context-based approach. The International Journal on Very Large Data Bases, 5 (4), pp. 276-304.

Lawrence, R. and Barker, K. (2001). Integrating relational database schemas using a standardized dic-
tionary. In Proceedings of the 16th ACM Symposium on Applied Computing, Las Vegas, USA.

Milner, R. (1980). A Calculus of Communicating Systems. Springer, Berlin.
Mitra, P., Wiederhold, G. and Jannink, J. (1999). Semi-automatic Integration of Knowledge Sources.

In Proceedings of the Second International Conference on Information Fusion (Fusion '99) (Blasch,
E. Ed.), Sunnyvale, California.

Object Management Group (2004). UML 2.0 Superstructure Specification. Downloaded from
http://www.omg.org/cgi-bin/doc?formal/05-07-04 on 2006-Apr-30.

Patig, S. (2004). Measuring Expressiveness in Conceptual Modeling. In Proceedings of the 16th Inter-
national Conference on Advanced Information Systems Engineering (CAiSE 2004), Riga, Latvia.

Pfeiffer, D. and Gehlert, A. (2005). A framework for comparing conceptual models. In Proceedings of
the Workshop on Enterprise Modelling and Information Systems Architectures (EMISA 2005), pp.
108-122, Klagenfurt, Austria.

Pfeiffer, D. and Niehaves, B. (2005). Evaluation of Conceptual Models - A Structuralist Approach. In
Proceedings of the 13th European Conference on Information Systems (ECIS 2005), Regensburg,
Germany.

Pomello, L., Rozenberg, G. and Simone, C. (1992). A Survey of Equivalence Notions for Net Based
Systems. In Lecture Notes in Computer Science, Vol. 609; Advances in Petri Nets 1992 (Rozen-
berg, G. Ed.), pp. 410-472, Springer, Berlin.

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema matching.
Rosemann, M. (2003). Preparation of Process Modeling. In Process Management (Becker, J., Kugeler,

M. and Rosemann, M. Eds.), pp. 41-78, Berlin et al.
Rosemann, M. and van der Aalst, W. M. P. (2007). A configurable reference modelling language. In-

formation Systems, 32 (1), pp. 1-23.
Rossi, M., Ramesh, B., Lyytinen, K. and Tolvanen, J.-P. (2004). Managing Evolutionary Method En-

gineering by Method Rationale. Journal of the Association for Information Systems, 5 (9), pp. 356-
391.

Rupprecht, C., Funffinger, M., Knublauch, H. and Rose, T. (2000). Capture and Dissemination of Ex-
perience about the Construction of Engineering Processes. In Proceedings of the 12th International
Conference on Advanced Information Systems Engineering (CAiSE2000) (Wangler, B. and Berg-
man, L. Eds.), pp. 294-308, Stockholm, Sweden.

Schütte, R. and Rotthowe, T. (1998). The Guidelines of Modeling - An Approach to Enhance the
Quality in Information Models. In Proceedings of the 17th International Conference on Conceptual
Modeling (ER 1998) (Ling, T. W., Ram, S. and Lee, M. L. Eds.), pp. 240-254 Singapore.

van der Aalst, W. M. P., Alves de Medeiros, A. K. and Weijters, A. J. M. M. (2006). Process Equiva-
lence: Comparing Two Process Models Based on Observed Behavior. In Proceedings of the 4th In-
ternational Conference on Business Process Management (BPM2006) (Dustdar, S., Fiadeiro, J. L.
and Sheth, A. P. Eds.), pp. 129-144, Vienna, Austria.

van Glabbeek, R. J. and Weijland, W. P. (1996). Branching Time and Abstraction in Bisimulation Se-
mantics. Journal of the ACM 43 (3), pp. 555-600.

Wand, Y. (1996). Ontology as a foundation for meta-modelling and method engineering. Information
and Software Technology, 38 (1996), pp. 281-287.

888

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	Constructing Comparable Conceptual Models with Domain Specific Languages
	Daniel Pfeiffer
	Recommended Citation

	Constructing Comparable Conceptual Models with Domain Specific Languages

