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Abstract 

The variety of procurement mechanisms present in the today’s e-procurement landscape ranging from 

electronic catalogue systems over e-negotiations to e-auctions, points at the fact that there exists no 

single best solution for all sourcing activities. Each mechanism rather has certain advantages and 

disadvantages. The discipline of economics has traditionally been devoted to the study of markets and 

market mechanisms. The fundamental lesson learned from economics is that even small changes in the 

exchange mechanisms can have considerable impact on the outcome. Stated differently, if the market 

engineer intends to attain a certain mechanism outcome (e.g., efficiency, fairness, revenue 

maximization), he can define the mechanism in a way that it induces the right incentives for market 

participants to act as desired in order to achieve the envisioned outcome. Unfortunately, a 

comprehensive system that combines all relevant design aspects into one single knowledge-based 

decision support system is missing. The main contribution of this paper is to develop such a system 

that guides the design of procurement mechanisms by prescribing mechanism formats using an 

adapted case-based reasoning algorithm. The knowledge-based system, KMS, is implemented in a web 

application as a proof-of-concept. 

Keywords: negotiation, electronic auction, e-auction, decision support, DSS, strategic sourcing, SRM, 

procurement, knowledge base, expert system. 

 

143



1 INTRODUCTION 

Since the uptake of the Internet, e-markets have become an important component in e-procurement by 

bringing together demand and supply. E-markets are meeting venues for component suppliers and 

purchasers, who use exchange mechanisms to electronically support the procurement process. 

Exchange mechanisms can be conceived as market institutions providing sets of rules, which 

determine the functioning of the market and the permissible actions such as bidding. Mechanisms vary 

from online catalogues, where requests and offers are publicly announced, to e-negotiations, where the 

participants bargain over the conditions of a trade using electronic message exchange and / or decision 

support platforms, to auctions, where one or two sides automate the process during which participants 

from the other side compete against each other (Kersten et al., 2006). 

The variety of exchange mechanisms present in the today’s e-procurement landscape suggests that 

there exists no single best solution for all sourcing activities; instead each mechanism has certain 

advantages and disadvantages as well. The discipline of economics has traditionally been devoted to 

the study of markets and market mechanisms. Especially, the study of auctions and auction design has 

produced several intriguing insights. Most prominently in this context are examples from the design 

and implementation of the UMTS auctions (Klemperer, 2001), which exhibit how easily design 

mistakes can be made. For example, while the British design of an ascending auction resulted in high 

revenues for the seller, the same auction design flopped in Switzerland.  

As a lesson learned from economics, it can be stated that the design of mechanisms is extremely 

difficult as details matter. Details pertain to the procurement situation - the economic environment - 

and to the details of the market mechanism as well. Theory typically offers only a very limited 

comparison of mechanisms but experiments do (e.g. Katok & Roth, 2004; Strecker & Seifert, 2003). A 

comprehensive framework that explains when to use which mechanism does not exist. This leaves, on 

the one hand, market operators such as Supply-On or SAP SRM (Casaseca, 2005) alone with the 

question which mechanisms to offer in their e-markets. On the other hand, suppliers and procurers 

face a similar decision problem as it is not trivial to decide which of the offered alternatives is most 

suitable in their specific sourcing context. 

This work aims at supporting these user groups by designing and implementing a decision support 

system for the selection of procurement mechanisms. In the proposed decision support system results 

from economic theory, laboratory experiments, numerical analysis and expert interviews are analyzed, 

structured and subsequently used for the generation of suitable mechanism recommendations. 

The purpose of the knowledge-based mechanism design support system (KMS) is twofold: 

 Support the analysis of procurement mechanisms and their impact on the market performance 

(e.g., revenue, efficiency, immediacy, fairness) and 

 Provide recommendations for procurement mechanisms dependent on sourcing objectives, 

supply situation, product characteristics, market conditions and legal or other constraints. 

With those two tasks accomplished it is possible to support (a) market operators in their decision 

making on which particular exchange mechanisms to offer and (b) suppliers and procurers in their e-

market selection. 

The remainder of the paper is structured as follows. In Section 2, the computer-aided market 

engineering workbench meet2trade is introduced, which automates all parts of the engineering 

process. It is shown how the proposed decision support system KMS fits into the workbench. Section 

3 describes related work while section 4 and 5 show how knowledge is acquired in practice and how 

this knowledge is handled in the prototypical implementation of KMS. Section 6 concludes with a 

summary and an outlook on future work. 
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2 COMPUTER AIDED MARKET ENGINEERING 

Designing e-markets in such a way that a specified objective is attained (e.g. rapid rollout and savings 

capture or widespread user adoption) is a demanding task involving several activities. Market 

engineering strives to provide a methodology for designing e-markets in a structured and reproducible 

way (Neumann, 2004; Weinhardt et al., 2003). Relying on a discursive approach the overall complex 

design process is decomposed into several phases, each of them being easier to deal with: At the outset 

of the market engineering process stands the strategic task of defining the segment in which the e-

market is intended to operate. Subsequently, the exchange mechanisms that describe the flow of the 

transaction process are designed and implemented. In the last phase of the process the performance of 

the e-market is benchmarked against the objectives laid out in the first process phase in order to make 

sure that the original objectives are met. 

It should be noted that market engineering is an inherently interdisciplinary problem comprising tasks 

from marketing, management, economics and computer science.  

The market engineering process alleviates the interface problem of the many disciplines by defining 

the documents, which are result of the respective phases and the procedure how to develop those 

documents. The integrated computer-aided market engineering (CAME) workbench meet2trade strives 

now to automate these procedures beginning with the design of a market mechanism and 

complementary services and ending with the implementation and testing (Neumann et al., 2005; 

Weinhardt et al., 2006). 

 

Figure 1: The CAME workbench meet2trade 

The computer aided market engineering CAME workbench meet2trade comprises several components 

as shown in Figure 1. 

 ARTE - Auction run-time environment: The design of market mechanisms is based on a 

parameterization approach - i.e. any exchange mechanism (mostly auctions) can be described by a 

set of parameters representing their specific rules. ARTE is responsible for creating market 

mechanisms defined by XML instances that contain the required sets of parameters. Hence ARTE 

is at the core of the computer-aided market engineering workbench. A configuration editor 
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facilitates the generation of XML instances and also provides a convenient mechanism to upload 

them into ARTE (Mäkiö & Weber, 2004).  

 AC - Adaptive client: The main user interface of the CAME tool suite is the adaptive client (AC). 

Its graphical user interface is remotely configured by the ARTE core in order to present a suitable 

user interface for a specific mechanism as defined in the respective XML instance. The adaptability 

of the client is a key enabler that allows the dynamic rendering of different GUIs according to the 

needs of specific mechanisms. 

 AMASE - Agent-based market simulation environment: AMASE is an agent-based simulation 

environment, which allows the automated testing of market mechanisms. Simple test scenarios can 

be produced on-the-fly, while more complex scenarios require some coding of the agent behaviour 

(Czernohous, 2005). AMASE renders predictions about how market mechanisms will perform 

using simulation techniques that allow valid predictions even about sophisticated market 

mechanisms. 

 MES - Market experiment shell: In order to examine specific procurement mechanisms, an 

experimental system has been added to the meet2trade software suite. The main objective is to 

conduct experiments on the original system instead of replicating and running the mechanism in 

experimental software. This approach facilitates experimental studies since the market has to be 

modelled only once within meet2trade and avoids potential biases from the usage of different user 

interfaces. For experiments the standard AC client is running in experimental mode, which enables 

more detailed logging of user actions and allows tight control over permitted actions in different 

stages of the experiments (Kolitz & Weinhardt, 2006). 

Currently missing in this set of tools is a decision support system, which gives prescriptions on what 

mechanism to use in which situation. This gap is filled by the KMS system. It is capable of storing 

economic design knowledge as well as empirically collected mechanism recommendation e.g. in the 

field of e-Procurement and providing it to meet2trade users in a consistent manner. 

Before the KMS prototype is described in more detail, the main results from mechanism design (a sub-

field of economics) and from e-procurement, are summarized to show what kind of knowledge KMS 

needs to cope with. 

3 RELATED WORK 

The theory of mechanism design is mainly concerned with the conceptual design of procurement 

mechanisms on the blackboard (Bichler, 2001). Mechanism design can be characterized as manual 

craftwork: guided by intuition and experience, a designer claims that a certain mechanism enfolds a 

desirable effect and subsequently he tries to prove this. Alternatively, a designer can determine the 

"optimal" mechanism by formulating the mechanism design problem as mathematical optimization 

problem (Myerson, 1981). Since its rise as a discipline initiated by Hurwicz's seminal paper in 1973 

(Hurwicz, 1973), mechanism design has produced a small canon of mechanisms, where each of these 

mechanisms attains a specific desideratum in a certain class of environments: 

The most seminal mechanism is called after its inventors "Vickrey-Clarke-Groves" (VCG). The VCG 

mechanism is attractive for several reasons: It achieves an efficient allocation of resources while it still 

remains individually rational (i.e. participation does not yield lower utility than non-participation). 

Also the VCG mechanism does not require payments from the mechanism (Clarke, 1971; Groves, 

1973; Vickrey, 1961). Thus the VCG is the only mechanism that achieves those three desiderata 

(Green & Laffont, 1977; Holmstrom, 1979). 

Except VCG, almost all mechanisms crucially depend on common knowledge about private 

information of the bidders. Common knowledge among the bidders who actually participate in the 

mechanism is already a strong assumption. However, extending this common knowledge to the 

mechanism designer is arguably untenable. These rather strong assumptions currently prevent the 

mechanisms to be applied in practice. But also the VCG mechanism is plagued with severe drawbacks. 
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Some of them are associated with the computational complexity of the mechanism (Sandholm, 2002), 

the information it requires from the bidders or the inability to accommodate budget constraints, 

leaving the VCG mechanism as a (theoretical) benchmark rather than a practical auction. 

In addition to this small excerpt from the “possibility results”, mechanism design theory has also 

developed several “impossibility results”. Impossibility results state in which settings no mechanism 

exists that satisfies some desiderata. For example the Myerson-Satterthwaite impossibility theorem 

states that it is impossible to find a mechanism that allocates goods of the same resource efficiently 

such that the budget is balanced and the individual rationality condition is satisfied as Bayesian-Nash 

equilibrium (Myerson & Satterthwaite, 1983). Impossibility theorems like this one are rather powerful, 

as they generally demonstrate the limitations of mechanisms. 

Besides theoretical approaches towards mechanism design, a significant amount of research has also 

been conducted in the area of applying mechanism knowledge to real life problems, especially with 

respect to e-procurement. In a field study Beall (2003) found e.g. that English reverse auctions are 

most appropriate to “source goods and services that are highly standardized, have sufficient spend 

volume, can be replicated by a reasonable number of qualified competitors, and have insignificant 

switching cost”. Jap (2002) describes the importance of pre-qualifying potential suppliers before 

running an electronic auction, while Kambil & Sparks (2001) recommend to always use soft-closing 

rules
1
 for procurement auctions. Millet et al. (2004) use regression analysis and machine learning to 

deduce recommendations from historic e-auction data of a large company. According to their results, 

procurement auctions are most successful if 5-6 suppliers bid on 2-8 lots of goods in a time window of 

2.5 to 5.5 hours. A more conservative approach is taken by Emiliani (2006) who finds electronic 

auctions extremely counter productive for long-term buyer-supplier relationships and thus argues that 

avoiding this mechanism and instead cooperatively improving the supply chain is much more fruitful 

in the end. Still studies like the ones mentioned beforehand have limitations in their descriptive power 

as well. Most of them were conducted for (a) specific industries only and (b) focusing only on very 

few mechanisms, e.g. English reverse auction vs. catalogue procurement. Additionally, all these 

studies define mechanism related terms like “English reverse auction” only in an informal manner 

leaving readers alone with a considerable amount of uncertainty on how the mechanism details might 

look like. 

In summary, theoretical mechanism design provides apt mechanisms for only very restricted settings. 

If those settings are slightly changed, the mechanism may lose its properties. The number of analyzed 

restricted settings is in total relatively small, such that mechanism design can only provide little 

guidance for practical design. Besides theoretical approaches towards mechanism design, also a 

considerable amount of empirical literature exists and can be used as a source for deducing mechanism 

recommendations. Unfortunately this literature is mostly limited in scope, mechanism description and 

coverage; furthermore the two fields of research are not very consistent in their results and even e.g. 

within the descriptive literature different (opposing) opinions and lines of argumentations have to be 

considered and harmonized. 

Overall neither the theoretical nor the empirical literature provides a systematic methodology for 

engineering procurement mechanisms. Thus, a new approach is proposed that is capable of using the 

knowledge accrued by mechanism design, experimental economics, management literature and expert 

interviews. This approach needs to combine different results (interpreted as economic effects) in the 

form of cases, which describe context (economic environment), mechanism and outcome and may be 

collected from various sources, e.g. experiments or literature. To cope with these requirements KMS
2
 

uses a case-based reasoning approach for the generation of mechanism recommendations. This 

approach is also used in similar applications like e.g. the SAGE Solvent Alternative Guide (SAGE, 

                                              
1 A soft closing rule is a bidding time extension that is executed whenever a bid occurs within the last minutes of an auction 

in order to ensure that that competing bidders have sufficient time for a reaction (Ockenfels, 2002). 
2 A Prototype of KMS is available online on http://www.anegom.de 
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2005). Though, to the author’s best knowledge, there is no other system so far aimed at providing 

automated and systematic support to market engineers designing market mechanisms. 

4 KNOWLEDGE ACQUISITION, STORAGE AND EVALUATION 

Before describing the knowledge acquisition and its subsequent processing, we will shortly sketch up 

what “knowledge” means in our context. Davenport & Prusak (2000) define knowledge as “a fluid 

mix of framed experience, contextual information, values and expert insight that provides a framework 

for evaluating and incorporating new experiences and information.” Thus the KMS system has to 

accomplish both, providing (i) a storage facility for contextual information, values and expert insight 

and (ii) a mechanism that allows knowledge retrieval in a context of new experiences and information. 

For fulfilling the first part, KMS offers several different fields to store e.g. verbal recommendations 

(e.g. “use an English reverse auction”), literature and other references as well as a variable number of 

parameters describing the preconditions for which the recommendation holds (e.g. “at most low 

probability of collusion among bidders” for the recommendation to use an English Auction). Figure 2 

shows an example screenshot of KMS during data entry of new knowledge.     

The second part is implemented by an inference mechanism that takes a set of parameters describing a 

situation the user seeks advice for, and computes similarities to those cases (situations) already stored 

in the knowledge base. Sufficiently similar cases, which consist of a set of preconditions describing 

the procurement situation as well as suitable recommendations, are returned to the user conveying 

knowledge on how to proceed best in the respective setting. 

As with all knowledge based systems, the most crucial task for the KMS project is the acquisition, 

adaptation, verification and maintenance of the underlying knowledge base. Especially challenging in 

this case is the fact that normative literature on auction design could be a possible source for providing 

knowledge, as can be empirical literature, structured interviews e.g. with procurement experts from 

industry, or even common sense (c.f. section 3). 

For the acquisition of knowledge we followed a twofold approach: On the one hand we took 

recommendations from existing literature, identified their respective prerequisites, condensed them 

into a parametric format and stored them into the knowledge base. On the other hand we conducted 

interviews with procurement experts from several different industries trying to confirm that the 

findings from literature are in line with business practice in today’s industry sourcing. For the 

interviews we chose a semi-structured format (Drever, 2003) which allowed us to collect structured 

data (e.g. type and size of the companies, industry the expert comes from, type of products mostly 

procured) but also left room for exploiting topics that were raised throughout the course of the 

discussions. Experts e.g. oftentimes expressed difficulties when asked to provide advice on how to 

proceed best in stylized procurement situations that were described only on an abstract level. In these 

cases, specific examples drawn from the business domain of the expert helped clarifying the issues.  

Additionally a specific feature of the knowledge base proved especially valuable when eliciting advice 

during interviews: While oftentimes unable to give a definite recommendation on which mechanism to 

choose best, experts were still quite clear on which mechanism not to choose. E.g. in a case where 

strong bidder asymmetries occur it is easy to predict that an English auction will lead to an inefficient 

outcome, while it is not clear if e.g. a Dutch auction or an electronic negotiation might be the more 

favourable alternatives instead. In such a case, the KMS user still receives the warning (i.e. negative 

recommendations) not to choose an English auction, which increases his awareness and helps him 

avoid stepping into a “trap” of severe design failures.  

With a growing number of recommendations entered into the knowledge base, data consistency 

becomes an important issue. As users are allowed to define their own parameters, rules, and 

recommendations, an automated approach for consistency checks is hard to implement. Thus our 

current solution to this problem is to give users of KMS the possibility to manually check at the time 

of entering new recommendations into the system, which other existing recommendations also match 
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their specific set of preconditions (c.f. button "Show all matching recommendations" in Figure 2). 

Furthermore we implemented a rating system that enables other users to judge recommendations and 

like this provides qualitative information on goodness of the knowledge stored. 

Figure 2 shows a screenshot of KMS that displays the administration page used to enter or adjust 

recommendations. Basically a procurement expert wishing to enter knowledge into KMS needs to 

specify the type of recommendation that should be stored (e.g. “Recommendation”, “Warning”,...). 

Subsequently he fills in short and long descriptions of his recommendation (e.g. “Use English Reverse 

Auction”) and lastly he may add References to related resources in order to increase the credibility of 

this recommendation.  

Left in this state, the recommendation would be generally valid and thus always displayed to users 

using KMS no matter which search parameters they specify. In order to limit the applicability or scope 

of a recommendation one can add an arbitrary number of preconditions. KMS then only returns the 

recommendation as a search result if the preconditions can be matched
3
 with the search parameters.  

For specifying a precondition, the expert first has to choose a parameter (e.g. “Switching Cost” of a 

product) from an (extensible) list of parameters provided by KMS. In the case of “Switching Cost”, 

the parameter is specified as an enumeration
4
, which basically means that for this parameter a 

predefined, ordered set of parameter values is given. After having selected the parameter, the expert 

needs to determine the parameter value (e.g. “Medium”) and an operator (e.g. “LessOrEqual”5
) in 

order to finish adding the precondition. Overall, the expert specified in this case that “Use English 

Reverse Auction” is a valid recommendation iff product switching cost are at most medium. 

 

Figure 2: Storing a recommendation in KMS 

                                              
3 A recommendation is matched if its preconditions are “sufficiently similar” to a user’s search parameters (c.f. Section 5.2). 
4 Supported parameter types in KMS are String, Boolean, Number, Decimal, and Enumeration 
5 Different operators are provided for different parameter type as e.g. LessOrEqual is not meaningful for string parameters. 
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In the long term, the system’s success will heavily depend on the participation of users and their 

contribution of knowledge. There are two scenarios intended to ensure the sufficient supply and 

verification of recommendations for KMS. Firstly the system can be offered as an add-on to 

configurable marketplace solutions (e.g. SAP, Moai, SupplyOn) where the knowledge acquisition is 

accomplished by the commercial vendor. In this scenario an integration into the existing software 

landscape of the respective company is desirable, where KMS might receive parameters from Business 

warehouses and return responses directly to the market platforms avoiding user interaction. Like this 

the market platforms can be automatically pre-configured according to the KMS recommendation and 

thus provide their users with sensible and automatically adjusted defaults.  

Secondly the introduction of public and private recommendations is considered. While in this scenario 

the system still searches the complete knowledge base, only public recommendations are directly 

returned as results. For private recommendations a disclosure request can be send to the anonymous 

holder of the private information giving this person the possibility to freely decide if or if not to share 

his knowledge without him fearing any threats. This approach might be especially useful within 

company internal networks, where otherwise people might deny entering their knowledge for fear of 

losing their competitive advantage over colleagues and thus worsen their position in future labour 

negotiations. 

 

5 DESIGN & IMPLEMENTATION OF THE SYSTEM 

In this paragraph we focus on the implementation of the KMS system as described in section 3. First, 

the system architecture is introduced to establish a common notion of the domain model and its 

interaction with the system. Subsequently, the case-based reasoning for the recommendation retrieval 

is shown. 

5.1 System Design 

Following the typical Separation of Concern (SoC) pattern, our knowledge based system is divided 

into five distinct application tiers (Alur et al., 2003), user Interface, controller, service, persistence and 

domain model. Each of these layers encapsulates its specific tasks and logic from the other layers in 

order to achieve a maximum code decoupling and like this a high system stability, maintainability and 

adaptability.  

The domain model is implemented in a relational database as displayed in Figure 3. The main entity is 

called recommendation which stores instances of recommendations, warnings and so on. For each 

recommendation to be valid, 0..* prerequisites must hold. These prerequisites are specific values (or 

value ranges) from different parameters, stored in the database. If a recommendation is true, not only a 

verbal description as stored in the recommendation entity but also a structured (parameterized) 

recommendation stored in Mechanism and MechanismParam may be returned. These mechanism 

parameter sets could be parsed into several formats (like e.g. XML, property files, …) that afterwards 

might be used to automatically pre-configure market platforms like meet2trade.  

The relational database storing the domain model is accessed from the KMS application using a 

distinct persistence layer, which allows the manipulation of the data using the data access objects 

(DAO) pattern. Like this, the underlying storage technology could be appended or switched with 

minimal impact on the program itself. Above the persistence layer, a service layer implements the 

more complex business logic like e.g. the case-based reasoning algorithm. Separating this logic from 

the DAO on the one hand, and from the application workflow on the other, ensures that e.g. different 

recommendation retrieval mechanisms could be implemented without changing the principal 

workflow. The last distinct layer is introduced between application workflow and view layer, the fifth 
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layer of KMS. This separation allows different front-ends like a HTML interface and a web services 

interface to be implemented transparently using the same application logic. 

Recommendation

PK recommendation_id

 short_text

 description

 reference

 type

 rating_count

 rating_sum

ParameterValue

PK parameter_value_id

 value

 predicate

Parameter

PK parameter_id

 name

 description

 type

Mechanism

PK mechanism_id

 name

 description

MechanismParam

PK mechanism_param_id

 key

 value

 rank

▼ has prerequisites

▲ has values

▼ is valid for

▼ has parameters

1

0…*

1…*

1…*

1

1…*1

0...1

▲ permitted

values

Area

PK area_id

 parent

 rank

 name

Domain

PK domain_id

 name

 value

 rank

 ▼  has 

parameters

1

0…*

0…*

1

 

Figure 3: ER-Diagram of the KMS Knowledge Base 

5.2 System Workflow for Recommendation Retrieval 

For the implementation of recommendation retrieval algorithms, several approaches already exist. 

Forgy (1982) introduces RETE, an algorithm for matching many patterns on many objects, which is 

oftentimes used in rule based expert systems. Many alternatives have been proposed since then, the 

most notable ones being TREAT (Miranker, 1987) and LEAPS (Batory, 1994). The main problem 

with this group of algorithms is of technical nature: Existing implementations of these rule engines 

rely on proprietary storage formats that do not cope well with traditional DBMS. To the authors’ 

knowledge only one (quite complex) approach exist that adapts the RETE algorithm to directly work 

on a database (Jin et al., 2005). 

For our system a database for storage and retrieval of recommendations was more advantageous as it 

provides a convenient way to store verbal recommendations along with structured information and 

allows easy manipulation of the stored data. Thus we adapted an alternative approach for the 

recommendation retrieval which stems from the research on recommender-systems. In this area, case-

based reasoning is oftentimes used to compute similarities between a new case and existing (historic) 

cases (Chi & Kiang, 1991; Porter et al., 1993). 

We implemented a case based reasoning algorithm that compares a new case (recommendation 

request) to cases (recommendations) already stored in KMS. Like this the task of finding a suitable 

mechanism recommendation can be reduced to comparing parameter lists with each other and 

returning one list if the number of matches between the list elements exceeds a certain predefined 

threshold value. 
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The first list (Figure 4) consists of parameters a user enters into the system in order to describe the 

procurement situation he seeks advice for. The second list contains parameters from the same 

parameter domain as the first list but in this case the parameters are prerequisites that must be fulfilled 

for the recommendation to be valid. Figure 5 shows schematic examples of these lists. For the 

recommendation retrieval, the input parameter list is compared with each recommendation prerequisite 

list stored in the knowledge base. For each comparison cycle the similarity between all list items from 

both compared lists is computed on a per attribute basis. If an attribute is found in the input parameter 

list but not in the respective recommendation prerequisite list, the parameter is counted as relaxation, 

as it is not necessary for the current recommendation to be valid. If a parameter on the other hand is 

only found in the recommendation prerequisite list, it is counted as restriction as the parameter was 

not specified by the user but is required for the recommendation to be valid. 

If a parameter is found in both lists, the similarity between both parameter values will be computed. It 

is counted as a match if the similarity exceeds an (adjustable) threshold level. Finally, after all 

comparisons, three measures are available indicating the matching quality of a recommendation: 

 # restrictions 

 # relaxations 

 matching quality := # matching parameters / total # parameters matched 

A recommendation is returned to the user if (a) its matching quality exceeds a predefined threshold, 

(b) the number of restrictions does not exceed a predefined threshold, and (c) none of the "restriction" 

parameter was marked as "knock-out" criterion. For convenience, the results are sorted by matching 

quality in descending order. The number of relaxations and the number of restrictions are also 

displayed to the user as further indicators. 

 

 

 

 
 

Figure 4: Input  Parameter List Figure 5: Recommendation Prerequisite Lists 

 

6 SUMMARY & OUTLOOK 

The paper at hand proposes the conception and implementation of a decision support system for 

selecting procurement mechanisms. The reasoning component is realized by means of a case-based 

reasoning approach. In contrast to other approaches, such as (manual) mechanism design, the proposed 

knowledge based approach is capable of generating recommendations by combining several effects 

and patterns. The peculiarity of the approach is that it can make recommendations in cases, which are 
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hitherto not studied and other sources are silent. The proposed approach is shown to work by a 

prototypical implementation. 

This paper is a step towards understanding the effect and strength of different procurement 

mechanisms in different scenarios. Contributions include the definition of an extensible default 

domain model and the integrated case based reasoning approach. The prototype KMS is intended to 

support practical design by making reasonable recommendations. 

Future research needs to further investigate possibilities for providing incentives to users to actively 

contribute knowledge to the system avoiding free rider phenomena known from p2p systems. Future 

research as well will be the confrontation of KMS with practical market engineering. To gear up KMS 

for such a purpose, the knowledge base needs to be extended; additional recommendations need to be 

extracted from theory and experiments. Once the knowledge base contains a critical mass of 

recommendations, a field experiment with the entire CAME tool suite will demonstrate the usefulness 

of the approach. 

Overall, KMS is a useful system that supports industrial sourcing managers with systematic decision 

support on which procurement mechanism to choose best in which procurement situation. Thus, it can 

be offered as add-on to procurement systems. However, KMS is not limited to procurement scenarios 

and could potentially also be used for C2C auctions such as eBay. If an auction house allowed 

configuring several mechanisms, the private user can become a market designer by means of the 

KMS.  In this case, although useful and usable on its own, the full advantage of this system will unfold 

especially in combination with other CAME tools that allows the use of KMS recommendations to 

automatically configure and launch recommended market mechanism instances reducing manual user 

effort as much as possible. 
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