
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2007 Proceedings European Conference on Information Systems
(ECIS)

2007

Method Modifications in a Configuration
Management Environment
Werner Esswein
Lehrstuhl für Wirtschaftsinformatik, insb. Systementwicklung, Technische Universität Dresden, werner.esswein@tu-dresden.de

Jens Weller
Technische Universität Dresden, IWM, jens.weller@tu-dresden.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2007

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2007 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Esswein, Werner and Weller, Jens, "Method Modifications in a Configuration Management Environment" (2007). ECIS 2007
Proceedings. 80.
http://aisel.aisnet.org/ecis2007/80

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350791?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2007%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007?utm_source=aisel.aisnet.org%2Fecis2007%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2007%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2007%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007?utm_source=aisel.aisnet.org%2Fecis2007%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2007/80?utm_source=aisel.aisnet.org%2Fecis2007%2F80&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

METHOD MODIFICATIONS IN A
CONFIGURATION MANAGEMENT ENVIRONMENT

Esswein, Werner, Technische Universität Dresden, Chair of Information Systems, esp.
Systems Engineering, 01062 Dresden, Germany, werner.esswein@tu-dresden.de

Weller, Jens, Technische Universität Dresden, Chair of Information Systems, esp. Systems
Engineering, 01062 Dresden, Germany, jens.weller@tu-dresden.de

Abstract

Using configuration management (CM) within the method engineering discipline is a relatively new
field of research (Greiffenberg, 2003; Saeki, 2006; Saeki & Oda, 2005). CM administrates revisions
and variants of methods and provides a change process to control method modifications. Thus, method
CM realizes the traceability of method changes, enables distributed method engineering and ensure a
constantly high quality of engineered methods.

In the past years, research focused on the development of appropriate method CM systems. The
consequences of method modifications in such systems, however, have attained only little attention or
were discussed only in a superficial way. As method modifications can lead to several problems
(Weller & Esswein, 2006), it is important to know the consequences of such modifications to forecast
the costs of a method change. Furthermore, this knowledge is useful to create or enhance appropriate
CAME tools supporting (situational) method engineering.

In this paper, we examine consequences of method modifications within configuration management.
Thereby, we focus on the situational method engineering approach and the effects of method
modifications on already instantiated models. We discuss critical modifications that lead to
inconsistent models and analyze conditions for those problems.

Keywords: Configuration Management, Method Engineering, Method Modifications

2002

1 INTRODUCTION

Conceptual models have been intensely used for the development and adaptation of software systems
(Floyd, 2001; Dieste et al., 2000) in the past years. Moreover, they play an increasingly important role
within business process reengineering activities to support the design and re-design of organizations
and to document the company’s knowledge (Rosemann et al., 2005).

To assist the modelling process and to define certain criteria of the resulting models, standardized
methods, like UML (OMG, 2006b), ARIS (Scheer, 2000) or BPMN (OMG, 2006a) have been
developed and enhanced over the last years. While those methods are very helpful in common
projects, there are always situations, where they do not match the modellers needs. The situational
method engineering approach has been developed to support the creation of methods, tailored to the
requirements of a specific situation (Brinkkemper et al., 1998; Harmsen et al., 1994; Tolvanen, 1998).
Thereby, methods are created especially for the use within a specific project and the methods are
adjusted continuously to the changing needs within the project.

While situational method engineering increases the acceptance of (adjusted) methods (Fitzgerald,
1997), there are also some management problems arising within that context. The continuous
adaptation of methods leads to an increasing number of method versions organizations must deal with
(Saeki, 2006; Tolvanen, 1998). To avoid quality problems due to uncontrolled method modifications,
a change process has to be installed. Therefore, method versions have to be administrated and
modifications have to be documented.

As it addresses similar questions, configuration management (CM) can help to implement such a
change process. CM deals with the administration of several versions of artefacts, controls their
modifications and, therewith, supports the traceability of changes. The activities of configuration
management and the design of corresponding CM systems have been intensely discussed in the
software engineering literature (Conradi & Westfechtel, 1998; Estublier et al., 2002; Zeller, 1997). In
the past years the positive findings were adopted to the IS discipline to support the maintenance of
conceptual models (Braun et al., 2006; Thomas, 2006) and latterly CM was used also within the
method engineering field (Greiffenberg, 2003; Saeki, 2006; Saeki & Oda, 2005). Method CM systems
administrate meta-models representing methods. Additionally, such systems store the results of the
method use – the models – as well as the relationships between models and their meta-models.

Most of the method CM literature focus on the development of adequate CM systems (Greiffenberg,
2003; Saeki, 2006). The consequences of method changes, however, have attained only little attention
or were discussed only in a superficial way. Mostly, method modifications are described as being
trivial (Greiffenberg, 2003), a detailed discussion about differences between abstract and concrete
syntax, e.g., is missed in most of the cases (Saeki, 2006). Method modifications, however, can lead to
several problems (Weller & Esswein, 2006) and thus, from an economical viewpoint, it is important to
know the consequences of such a change.

In this paper, we classify the modifications of methods administrated by a configuration management
system. Thereby we focus on methods created for a specific situation at hand and being modified
frequently within a modelling project (situational method engineering). We discuss critical method
modifications, analyze their effects on already instantiated models and identify conditions leading to
inconsistent models. Our findings can help to forecast effects of method changes (business
management viewpoint) and secondly, they can be used for the development of a CAME1 tool with
integrated method engineering CM system (IS viewpoint).

1 CAME = computer aided method engineering

2003

The paper is structured as follows. In section 2, we explain the fundamentals of conceptual models,
method engineering and configuration management. Section 3 gives a survey of the fundamentals of
configuration management of methods. Afterwards in section 4, we discuss the consequences arising
from method modifications. The paper ends with conclusions and suggestions for further research.

2 BACKGROUND

2.1 Models in the Information Systems Discipline

A model is understood as the result of a construction process ”... done by a modeller, who examines
the elements of a system for a specific purpose ...“ (Schuette & Rotthowe, 1998), which is defined by
the user of the model. Depending on the kind of system that is examined during the modelling process
(the problem domain), models in the information systems field can be classified as design models or
conceptual models. While design models represent software systems or parts of it, conceptual models
describe real world phenomena (Dieste et al., 2000; Evermann & Wand, 2005; Wand & Weber, 2002).
The language used to express the model is called the modelling language. Different modelling
languages are currently used, which comply with different problem domains as well as with different
modelling purposes (Brinkkemper et al., 1998). Lastly, models are valid for a certain time interval
leading to constant modifications of these models during their lifetime.

In the information systems discipline, models are used to redesign organizations or to develop
software systems (Fettke & Loos, 2002; Rosemann et al., 2005). Therefore, graphical models have
been established as ”...a medium to foster communication with prospective users...“ (Frank, 1999). For
reasons of simplicity, complex models often consist of several views showing just a section of the
whole model (Scheer, 2000; Strahringer, 1996). The different views, however, are not separated but
integrated using the same model elements within different views (Greiffenberg, 2003; Schuette &
Rotthowe, 1998). Thus, we can argue that a model always consists of its content and one ore more
graphical representation, each of which illustrates a set of the model’s elements and their relationships.
Considering this aspect, modelling languages comprises the definition of a graphical representation
(concrete syntax), the context (abstract syntax) and the meaning of the constructs (semantics) defined
within the language (Clark et al., 2002).

To assist the modelling process, methods have been established within the IS discipline. IS methods
consist of a specification of activities describing the steps of how to build up a model, and a
description of the modelling language used for modelling (Harmsen et al., 1994; Jeusfeld et al., 1998;
Tolvanen, 1998; Wand & Weber, 2002). The description of the modelling language is also called
product description; the activity part is called process description (Brinkkemper, 1996).

2.2 Method Engineering

Method engineering is a discipline “… to design, construct and adapt methods, techniques and tools
for the development of information systems.” (Brinkkemper, 1996) Within the method engineering
process, meta-models are used as a technique to describe the created or adapted methods. According to
the above-mentioned parts of a method, meta-models can represent the product description as well as
the process description of a method (Strahringer, 1996). Most of the standard methods provide their
meta-models to support the modeller in using the method concepts (OMG, 2006b; Scheer, 2000).

Using a given method is sometimes difficult when creating models of a specific domain the language
was not explicitly made for (Brinkkemper et al., 1998). In this case, modellers might want to add new
concepts or rules that are not covered by the original modelling language. The situational method
engineering approach addresses that problem (Harmsen et al., 1994; Tolvanen, 1998). Following that
approach, methods used within a modelling project are adapted permanently according to the needs of

2004

the modellers. An overview about the different types of (situational) method engineering is given in
(Ralyté et al., 2004).

To support the modelling process with different, individual methods, CAME tools have been widely
established. Those tools enable the user to define and modify methods that will be used within the
modelling project. Afterwards, the methods can be used for modelling instantly (Cubetto, 2006) or for
creating new modelling tools based on the defined method (Keller et al., 1996).

2.3 Configuration Management

Configuration management (CM) has been intensely discussed in theory and established in practice for
many years. Norms like ISO 2000:9000 demand it to increase process and product quality and it is
therefore also suggested by process maturity models (Kneuper, 2003; Paulk et al., 1993). In general,
configuration management is defined as an ”...activity that applies technical and administrative
direction over the life cycle of a product, its configuration items, and related product configuration
information.“ (ISO, 2003) While configuration management is an activity, a configuration
management system is a socio-technical system consisting of people, organizational rules, tools and
their relationships realising configuration management. Configuration management tools support one
or more of the CM activities (Estublier, 2000).

The basic element in configuration management is the configuration item. Configuration items are the
elements (source code files, requirement documents, models) being under control of the CM (Conradi
& Westfechtel, 1998; ISO, 2003). To document all modifications of an item, every modification leads
to a new state of the item which is called version (Braun et al., 2006; Zeller, 1997).

According to the purpose of the modification, versions can be characterized as follows: Versions that
are created to replace an older version (e. g. for the purpose of development or maintenance) are called
historical versions or revisions (Thomas, 2006; Zeller, 1997). In contrast, versions created with the
intention to coexist are called variants. Variants are usually created to support different user purposes,
e.g. a car component for different user groups (Thompson, 1997). Versions can also be created to
support parallel working. Coexisting versions for the purpose of the development in different
workspaces are called temporary variants (Braun et al., 2006).

A set of all versions of exactly one configuration item is called a version family. Version graphs are
established to illustrate version families and the different kinds of versions existing within a version
family (Conradi & Westfechtel, 1998). As the versions of different configuration items are
independent from each other (Estublier, 2000), there has to be a container keeping them all together.
This container is called the configuration. A configuration is a bundle of versions of configuration
items, which represent a complex product (ISO, 2003). It is itself a configuration item. Thus, a new
version of a configuration is created, when modifying an item that belongs to the configuration.

3 CONFIGURATION MANAGEMENT WITHIN METHOD
ENGINEERING

3.1 Motivation

As the requirements of models change permanently, there is need to adapt appropriate methods the
same way (Ralyté et al., 2004). As pointed out in the previous sections, the situational method
engineering approach is based on that fact. Thus, methods – when following that approach – are
modified constantly and are valid for a certain time interval only.

To ensure the quality of a method, however, the process of modifying methods must be regulated.
Otherwise, the individual requirements of each method user can ‘blow up’ or ‘destroy’ the method

2005

(Häggmark & Ågerfalk, 2006). To give an example: When user A never uses a specific concept, he or
she might remove it from the meta-model. Another user B from within the same project team,
however, might need it anymore. This conflict can be solved only by installing a regulated change
request process (Dart, 1991). Additionally, all versions of a method should be stored, to enable the
recovery of ineffective modifications. To use the knowledge of past decisions for or against a
requested change, it is, furthermore, necessary to document the decisions. Thus, the knowledge
generated in one project can be used for later decisions within similar projects as well.

To support the above-mentioned criteria, configuration management was adopted to the method-
engineering field in the past years (Greiffenberg, 2003; Saeki, 2006; Saeki & Oda, 2005). The
motivation for developing a CM for models and methods instead of using existing configuration
management systems from the software engineering field are the differences between the
configuration items administrated by these systems. In source code oriented CM systems configuration
items are text files and differences between those files are recovered by comparing the files line by
line. ”Since we use diagram documents..., we should manage the changes on the diagrams, not in the
granularity of a line, but of a logical component...“ (Saeki & Oda, 2005), such as a model element or a
method construct.

3.2 Administrating Meta-Models

Existing approaches of method CM systems base on model CM and, therefore, administrate meta-
models representing methods (Greiffenberg, 2003; Saeki, 2006). Thereby, configuration items
represent meta-model elements (method constructs) as well as relationships between those elements.
All items are versioned what means that changes on a meta-model element leads to a new version of
that element. To recognize different types of meta-model element modifications (e.g. add attribute,
remove attribute), it is necessary to administrate the attributes of a meta-model as configuration items
as well (Greiffenberg, 2003). Otherwise, from a technical perspective, changing the name of an
attribute of a method construct (meta-model element) cannot be distinguished from changing the name
of the construct itself.

As meta-models represent methods, CM systems ought to cover all aspects of a method.
Unfortunately, it is difficult or even impossible to cover all aspects (product and process description)
of a method by a meta-model. In general meta-models represent the concrete syntax (part of the
product description) and the process description (Brinkkemper et al., 1998; Saeki, 2003; Strahringer,
1996). Depending on the meta-modelling language, also the graphical representation can be covered
by meta-models (Greiffenberg, 2003), but usually the notation is held outside the meta-model as a
simple table containing the construct name and its graphical representation (OMG, 2006b).

The semantics of the method constructs describes “…how to identify modelling language constructs in
their application domain and what meaning they represent in this environment…” (Pfeiffer & Gehlert,
2005). In existing method descriptions this fact is also held outside the method in terms of natural
language statements, either as simple text enclosed to the meta-model (OMG, 2006b), in terms of a
domain language dictionary (Greiffenberg, 2003) or as method rational models (Ågerfalk & Wistrand,
2003).

Thus, when using a method CM system just administrating meta-models, information of the methods
get lost. Additionally, such a configuration management system cannot automatically detect and react
on modifications that lay outside the system. To overcome those deficits, a configuration management
system has to administrate meta-models representing the abstract syntax of a method but has to
administrate also the graphical representation and the semantics of the method constructs, to cover all
aspects of a method.

2006

3.3 Adding model CM to method CM

As modifications of a method affect appropriate models and modelling deficiencies leads to changes
of a method, method CM literature usually considers both, configuration management of methods and
of models (Greiffenberg, 2003; Saeki, 2006). Thereby, each model is assigned to exactly one method
to indicate what method was used for its creation. Model elements point to exactly one method
constructs, respectively.

Considering configuration management, models and methods are controlled by a configuration
management system. As mentioned in section 2.3, changes on a configuration item do not overwrite
older versions, but lead to a new state of the item (Dart, 1991). Thus, when changing a method, the old
method version still exists and corresponding models are still consistent with that version. When
modelling deficiencies lead to method modifications, however, it might be useful that existing models
follow the modifications made on the corresponding method (Saeki, 2006; Saeki & Oda, 2005; Weller
& Esswein, 2006).

From the technical viewpoint of a configuration management system, this means creating new
versions for all affected models and creating new versions for all model elements whose method
constructs have been changed. The created model element versions will refer to the new version of the
method construct and the model version to the new method version respectively (Greiffenberg, 2003;
Saeki, 2006).

4 METHOD MODIFICATIONS

Considering the effects on existing models, modifying a method can lead to three different results.
Firstly, related models may be still consistent to the new method version. Secondly, one or more
models are not consistent, but modifying the models (e.g., removing values) to remain consistency is
uncritical. Thirdly, the model cannot be adapted automatically to the new method version (critical
modification).

In the following sections, we will state critical modifications only. Thus, there might be some
uncritical modifications, we do not consider. Modifications on a configuration item are indicated by
the creation of a new version of that item. Removing an element means creating a new version of that
element as well. In this case the new version will be marked as ‘removed’, but is still hold in the CM
system (state-based versioning, see (Conradi & Westfechtel, 1998)).

Before starting the discussion on consequences of method modifications, we have to state some basic
assumptions. Firstly, considering the abstract and concrete syntax, we assume that the configuration
management system stores the method constructs, their relationships and their graphical
representation. Thus, there are configuration items for constructs their properties and their graphical
representation (Greiffenberg, 2003). Secondly, we assume that all method modifications are relevant
for the user what means that existing models have to be adapted to remain consistent to the modified
method. This is important as it is not useful to follow the modifications of a method in any case
(Weller & Esswein, 2006).

For formal reasons, the kind of modifications we consider base on the research results of (Ralyté et al.,
2004). Thereby, we focus on element changes and structural changes. Naming changes of method
elements are trivial, as related models are not affected. Furthermore, we do not consider inter-model
changes as we are not interested in effects of method modifications on related methods, but on
consequences for instantiated models only. To cover modifications of the concrete syntax and on the
semantics as well, we consider the configuration items given by (Greiffenberg, 2003).

2007

4.1 Abstract syntax

4.1.1 Adding Elements

Adding a construct to a method is uncritical in general. If the meta-model prescribes that an existing
construct has be connected with at least one instance of the added construct, however, existing models
may not consistent to the new method (see Figure 1). This problem only occurs, if the related construct
(Relationship-type in Figure 1) is used within the model. Otherwise, the add operation is uncritical.

Figure 1. Inconsistency caused by adding method constructs

To solve this conflict, a new instance has to be created in the model for each instance of the related
construct (for Relationship-type ‘rent’ in Figure 1) to ensure model consistency. A modelling tool
could create model elements with default-values, but due to the nature of conceptual models, it is
strongly recommend involving the modeller and asking him or her to revise the resulting model.

When adding a property to an existing construct, the same problems arise, when the added property is
mandatory and when the construct is used within the model. To overcome the problem, a default-
property can be added to all model elements related to the construct, but the modeller has to revise the
model as well.

4.1.2 Removing elements

Removing a method construct means that this construct cannot be used in the related models anymore.
Therefore, all instances of the construct must be deleted from the dependent models to ensure model
consistency (Greiffenberg, 2003; Schuette & Rotthowe, 1998).2 While this causes no problems in
general, removing a method construct can also lead to inconsistencies when using generalisation
within the meta-model.

2 In practice, it might be interesting to indicate all instances of a construct as deprecated instead of removing them. While this
leads to syntactical inconsistent models regarding the meta-model, we do not follow that idea.

2008

Figure 2. Inconsistency caused by removing method constructs

The upper part of Figure 2 shows a meta-model after removing the construct ER-type (gray). The
model (lower part of Figure 2), however, becomes inconsistent with the method, because ‘Contract’ is
related to one instance of Abstract Element only. This problem only occurs when the removed
construct is used within the model and there is a relationship to the construct specifying a min-
cardinality. The problem cannot be solved automatically, except by removing all instances of the
meta-construct (abstract element in our example) or by adding necessary instances with default-values
(see problems discussed in section 4.1.1 also). We demand, however, just to inform the user to correct
the erroneous model.

4.1.3 Modifying elements

Modifying the properties of a construct means adding, removing or modifying the configuration item
of the property (Greiffenberg, 2003). Thus, the construct itself is not affected in the configuration
management system. As we already discussed add and remove operations, we focus on property
modifications below.

When changing a property, we have to consider two critical modifications. First, the value range of the
property might be changed. This has a strong effect on related models, as existing values may not be
transferred to the new range. Thus, when changing the range from TEXT to BINARY existing values
have to be removed. There might be migration strategies for that problem (e.g. “false” to false), but in
general the modeller has to revise all affected values. This problem only occurs when the construct of
the modified property is used within the model.

Another critical modification is changing the cardinality of a property. If the min-cardinality
(specifying how many values have to exist at least) raises, there is need to add default-values to a
model element (see again section 4.1.1) to remain consistency. If the max-cardinality (maximum
number of values) lowers, values have to be removed. Because adding default-values or removing
values change the content of a model, this has to be revised by the modeller. The problem only occurs
when the construct of the modified property is used within the model.

4.1.4 Relationships between constructs

A Relationship (association, aggregation) between constructs can be represented by properties of the
constructs pointing to the other construct. Thus, modifying a relationship means adding, removing or
changing a property (see previous sections). A special kind of relationship is generalisation. Adding a
generalisation between two existing constructs means adding all properties of the super-construct to

2009

the sub-constructs (see problems described in section 4.1.1). Removing a generalisation means
removing all super-construct properties from the sub-construct (section 4.1.2).

4.2 Concrete Syntax

4.2.1 Removing graphical representation of a method construct

Removing a graphical representation of a construct means removing all representations of model
elements related to that construct representation. If there is more than one representation for the
construct, the model element representation can be replaced by another representation of the construct
(see next section). E.g. when removing the circle representation of the UML construct “interface”, the
rectangle representation can be used instead. The modeller, however, should revise the result of such
an operation.

As illustrated in Figure 3, removing the representation of a model element can lead to ‘broken’
models. Thus, graphical connections between model elements have to be removed and rearranged by
the modeller. The problem occurs only, if the representation is used within the model. As removing a
construct also means removing its graphical representation, this problem also occurs when a construct
that is used within the model is removed.

Broken process
flow caused by
removing all
instances of
'event'

check invoice

enter invoice data
into application

original model construct 'event' removed

invoice correct

check invoice

enter invoice data
into application

Figure 3. Visual problems caused by removing (graphical representation of) constructs

4.2.2 Changing graphical representation of construct

According to the purpose of modelling, it can be necessary to change the graphical representation of a
construct (Becker et al., 2004). In this case, all instances of the construct have to be adapted according
to the new graphic. Thereby, a different size or shape of the new representation can cause visual
discrepancies that negatively effect the quality of resulting models (Schuette & Rotthowe, 1998). If the
size of the graphic increased, other model elements might overlap with the new graphic. To avoid such
side effects, we recommend adapting the size of the new model element’s representation according to
the size of the old representation. Changing the representation of a construct is critical only when the
modified representation is used within the model.

4.3 Semantics

Modifying the semantics of a method construct is indicated by the creation of a new version of the
configuration item containing the construct description. As the semantics of methods in conceptual
modelling cannot be formalized, all model elements of the modified construct have to be revised by
the modeller. This problem only arises when the construct is used within the model.

2010

5 CONCLUSIONS AND FURTHER RESEARCH

This paper has shown the problems arising when modifying a method in a configuration management
environment. We discussed consequences of method modifications for existing models in the case it is
necessary that the models follow the modifications of their related methods. Thereby, we have shown
that these problems do not occur in any case, but under certain conditions. Table 4 summarizes our
findings.

No. Modification Condition Solution Effects
1a Add construct Construct mandatory & used

within model
Create default-model element &
revise by user

1b Add construct
property

Property mandatory & construct
used within model

Create default-value & revise by
user

2 Remove
construct

Construct is sub-construct of a
generalisation & the super-
construct is mandatory &
construct is used within model

Remove model elements related to
that construct & inform user to
revise model

4

3a Change value
range of property

Automatic migration strategy not
feasible

Inform user to revise model

3b Raise min-
cardinality of
property

Related construct used within the
model

Add default values or
Add relationship (when value range
is construct)

1a, 1b

3c Lower max-
cardinality of
property

Related construct used within the
model

Remove values or relationships 2

4 Remove
graphical
representation of
construct

Representation of construct used
within the model

Inform user to revise model

5 Change graphical
representation of
construct

Representation of construct used
within the model & new graphic
has different shape

Adjust size of new graphic to size
of the old one & revise by user

6 Change construct
semantics

Construct used within the model Inform user to revise model

Table 4. Consequences of method modifications within a method CM system

Our findings can be used to forecast the consequences of method modifications. Within a tool-
supported method engineering process, this knowledge is important for developing tools that can
handle method modifications and inform the user about problems before the new method version will
be published or handle model migrations after such a modification. This will help developing CAME
tools with integrated CM support such as (Saeki, 2006) or (Cubetto, 2006).

Currently, we evaluate existing CAME tools according to their possibilities to administrate method
versions and to handle modification problems as described above. Depending on the results of that
evaluation, we will possibly start designing and implementing an appropriate tool or enhance an
existing one. Our future research will focus the problem of merging method modifications made
within different projects to build up or to enhance a company wide method, reflecting the
methodology knowledge of the company. Thereby, we will use the positive findings made with
configuration management of reference models (Braun et al., 2006). Additionally, we will discuss the
advantages of using models and methods from the information systems discipline within managerial
economics for business process improvement projects.

2011

References
Ågerfalk, P. J. and Wistrand, K. (2003) Systems development method rationale: A conceptual

framework for analysis. In 5th International Conference on Enterprise Information Systems
(ECEIS '03), pp 185-190.

Becker, J., Delfmann, P., Dreiling, A., Knackstedt, R. and Kuropka, S. (2004) Configurative process
modeling: Outlining an approach to increased business process model usability. Innovations
Through Information Technology,

Braun, R., Esswein, W., Gehlert, A. and Weller, J. (2006) Configuration management for reference
models. Reference Modeling for Business Systems Analysis, IDEA Group, Hershey.

Brinkkemper, S. (1996) Method engineering: Engineering of information systems development
methods and tools. Information and Software Technology 38 (4), 275-280.

Brinkkemper, S., Saeki, M. and Harmsen, F. (1998) Assembly techniques for method engineering. In
Proceedings of the Conference on advanced information systems engineering (CAiSE), pp
381-400.

Clark, T., Evans, A. and Kent, S. (2002) Engineering modelling languages: A precise metamodelling
approach. In Fundamental Approaches to Software Engineering (Weber, H., Ed), pp 159-
1732, Grenoble, France.

Conradi, R. and Westfechtel, B. (1998) Version models for software configuration management. ACM
Computing Surveys 30 (2), 232-282.

Cubetto (2006) Cubetto toolset. http://wise.wiwi.tu-dresden.de/cubetto.
Dart, S. (1991) Concepts in configuration management systems. In Proceedings of the 3rd

international workshop on Software configuration management, pp 1-18, ACM Press,
Trondheim, Norway.

Dieste, O., Juristo, N., Moreno, A. M., Pazos, J. and Sierra, A. (2000) Conceptual modelling in
software engineering and knowledge engineering: Concepts, techniques and trends. Handbook
of Software Engineering and Knowledge Engineering, World Scientific Publishing Company,
pp 733-766.

Estublier, J. (2000) Software configuration management: A roadmap. In ICSE '00: Proceedings of the
Conference on The Future of Software Engineering, pp 279-289, ACM Press, Limerick,
Ireland.

Estublier, J., Leblang, D., Clemm, G., Conradi, R., Tichy, W., Hoek, A. V. D. and Wiborg-Weber, D.
(2002) Impact of the research community on the field of software configuration management:
Summary of an impact project report. SIGSOFT Software Engineering Notes 27 (5), 31-39.

Evermann, J. and Wand, Y. (2005) Ontology based object-oriented domain modelling: Fundamental
concepts. Requirements Engineering 10 (2), 146-160.

Fettke, P. and Loos, P. (2002) Klassifikation von informationsmodellen - nutzenpotenziale, methode
und anwendung am beispiel von referenzmodellen. Johannes Gutenberg-Universität Mainz,
Lehrstuhl für Wirtschaftsinformatik und BWL, Mainz.

Fitzgerald, B. (1997) The use of systems development methodologies in practice: A field study.
Information Systems Journal 7 (3), 201-212.

Floyd, C. (2001) Das mögliche ermöglichen: Zur praxis der realitätskonstruktion am beispiel der
softwareentwicklung. Konstruktivismus und Kognitionswissenschaft: Kulturelle Wurzeln und
Ergebnisse, 115-134.

Frank, U. (1999) Conceptual modelling as the core of the information systems discipline - perspectives
and epistemological challenges. In Proceedings of the Fifth America's Conference on
Information Systems (AMCIS 99) (Goodhue, D., Ed), pp 695-697, Milwaukee.

Greiffenberg, S. (2003) Methodenentwicklung in wirtschaft und verwaltung. Dr. Kovac, Hamburg.
Häggmark, M. and Ågerfalk, P. J. (2006) Why software engineers do not keep to the principle of

separating business logic from display: A method rationale analysis. Lecture Notes in
Computer Science 4001/2006, 399-413.

Harmsen, F., Brinkkemper, S. and Oei, J. L. H. (1994) Situational method engineering for information
system project approaches. In Methods and associated tools for the information systems life

2012

cycle, Proceedings of the IFIP Working Conference (Olle, T. W., Ed), pp 169-194, Elsevier
Science B.V. (North-Holland).

Iso (2003) Quality management systems: Guidelines for configuration management (iso 10007:2003).
Beuth Verlag GmbH, Berlin.

Jeusfeld, M. A., Jarke, M., Nissen, H. W. and Staudt, M. (1998) Conceptbase: Managing conceptual
models about information systems. Handbook on Architectures of Information Systems,
Springer, pp 265-285.

Keller, G., Kelly, S., Lyytinen, K. and Rossi, M. (1996) Metaedit+ a fully configurable multi-user and
multi-tool case and came environment. Lecture Notes in Computer Science 1080, 1-21.

Kneuper, R. (2003) Cmmi: Verbesserung von softwareprozessen mit capability maturity model
integration. dpunkt.

Omg (2006a) Business process modeling notation specification (bpmn 1.0). www.bpmn.org.
Omg (2006b) Unified modeling language specification (uml 2.0). www.uml.org.
Paulk, M. C., Curtis, B., Chrissis, M. B. and Weber, C. V. (1993) Capability maturity model, version

1.1. IEEE Software 10 (4), 18-27.
Pfeiffer, D. and Gehlert, A. (2005) A framework for comparing conceptual models.
Ralyté, J., Rolland, C. and Deneckère, R. (2004) Towards a meta-tool for change-centric method

engineering: A typology of generic operators. Lecture Notes in Computer Science 3084, 202-
218.

Rosemann, M., Schwegmann, A. and Delfmann, P. (2005) Vorbereitung der prozessmodellierung.
Prozessmanagement: Ein Leitfaden zur prozessorientierten Organisationsgestaltung, 45-103.

Saeki, M. (2003) Came : The first step to automated method engineering. In OOPSLA 2003:
Workshop on Process Engineering for Object-Oriented and Component-Based Development,
pp 7-18.

Saeki, M. (2006) Configuration management in a method engineering context. Lecture Notes in
Computer Science (4001), 384-398.

Saeki, M. and Oda, T. (2005) A conceptual model of version control in method engineering
environment. In CAiSE´05 Forum.

Scheer, A.-W. (2000) Aris - business process modeling. Springer-Verlag New York, Inc., Secaucus,
NJ, USA.

Schuette, R. and Rotthowe, T. (1998) The guidelines of modeling: An approach to enhance the quality
in information models. Lecture Notes in Computer Science 1507, 240-254.

Strahringer, S. (1996) Metamodellierung als instrument des methodenvergleichs: Eine evaluierung am
beispiel objektorientierter analysemethoden. Shaker, Aachen.

Thomas, O. (2006) Version management for reference models: Design and implementation. In
Multikonferenz Wirtschaftsinformatik 2006 (MKWI '06).

Thompson, S. M. (1997) Configuration management - keeping it all together. BT Technology Journal
15 (3), 48-60.

Tolvanen, J.-P. (1998) Incremental method engineering with modeling tools: Theoretical principles
and empirical evidence. University of Jyväskylä.

Wand, Y. and Weber, R. (2002) Research commentary: Information systems and conceptual
modeling--a research agenda. Information Systems Research 13 (4), 363-377.

Weller, J. and Esswein, W. (2006) Consequences of meta-model modifications within model
configuration management. In 2nd Workshop on Meta-Modelling (WoMM).

Zeller, A. (1997) Configuration management with version sets: A unified software versioning model
and its applications. Braunschweig Technical University.

2013

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2007

	Method Modifications in a Configuration Management Environment
	Werner Esswein
	Jens Weller
	Recommended Citation

	Method Modifications in a Configuration Management Environment

