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METHOD MODIFICATIONS IN A  
CONFIGURATION MANAGEMENT ENVIRONMENT 

Esswein, Werner, Technische Universität Dresden, Chair of Information Systems, esp. 
Systems Engineering, 01062 Dresden, Germany, werner.esswein@tu-dresden.de 

Weller, Jens, Technische Universität Dresden, Chair of Information Systems, esp. Systems 
Engineering, 01062 Dresden, Germany, jens.weller@tu-dresden.de 

Abstract 

Using configuration management (CM) within the method engineering discipline is a relatively new 
field of research (Greiffenberg, 2003; Saeki, 2006; Saeki & Oda, 2005). CM administrates revisions 
and variants of methods and provides a change process to control method modifications. Thus, method 
CM realizes the traceability of method changes, enables distributed method engineering and ensure a 
constantly high quality of engineered methods. 

In the past years, research focused on the development of appropriate method CM systems. The 
consequences of method modifications in such systems, however, have attained only little attention or 
were discussed only in a superficial way. As method modifications can lead to several problems 
(Weller & Esswein, 2006), it is important to know the consequences of such modifications to forecast 
the costs of a method change. Furthermore, this knowledge is useful to create or enhance appropriate 
CAME tools supporting (situational) method engineering. 

In this paper, we examine consequences of method modifications within configuration management. 
Thereby, we focus on the situational method engineering approach and the effects of method 
modifications on already instantiated models. We discuss critical modifications that lead to 
inconsistent models and analyze conditions for those problems.  

Keywords: Configuration Management, Method Engineering, Method Modifications 
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1 INTRODUCTION 

Conceptual models have been intensely used for the development and adaptation of software systems 
(Floyd, 2001; Dieste et al., 2000) in the past years. Moreover, they play an increasingly important role 
within business process reengineering activities to support the design and re-design of organizations 
and to document the company’s knowledge (Rosemann et al., 2005).  

To assist the modelling process and to define certain criteria of the resulting models, standardized 
methods, like UML (OMG, 2006b), ARIS (Scheer, 2000) or BPMN (OMG, 2006a) have been 
developed and enhanced over the last years. While those methods are very helpful in common 
projects, there are always situations, where they do not match the modellers needs. The situational 
method engineering approach has been developed to support the creation of methods, tailored to the 
requirements of a specific situation (Brinkkemper et al., 1998; Harmsen et al., 1994; Tolvanen, 1998). 
Thereby, methods are created especially for the use within a specific project and the methods are 
adjusted continuously to the changing needs within the project. 

While situational method engineering increases the acceptance of (adjusted) methods (Fitzgerald, 
1997), there are also some management problems arising within that context. The continuous 
adaptation of methods leads to an increasing number of method versions organizations must deal with 
(Saeki, 2006; Tolvanen, 1998). To avoid quality problems due to uncontrolled method modifications, 
a change process has to be installed. Therefore, method versions have to be administrated and 
modifications have to be documented.  

As it addresses similar questions, configuration management (CM) can help to implement such a 
change process. CM deals with the administration of several versions of artefacts, controls their 
modifications and, therewith, supports the traceability of changes. The activities of configuration 
management and the design of corresponding CM systems have been intensely discussed in the 
software engineering literature (Conradi & Westfechtel, 1998; Estublier et al., 2002; Zeller, 1997). In 
the past years the positive findings were adopted to the IS discipline to support the maintenance of 
conceptual models (Braun et al., 2006; Thomas, 2006) and latterly CM was used also within the 
method engineering field (Greiffenberg, 2003; Saeki, 2006; Saeki & Oda, 2005). Method CM systems 
administrate meta-models representing methods. Additionally, such systems store the results of the 
method use – the models – as well as the relationships between models and their meta-models.  

Most of the method CM literature focus on the development of adequate CM systems (Greiffenberg, 
2003; Saeki, 2006). The consequences of method changes, however, have attained only little attention 
or were discussed only in a superficial way. Mostly, method modifications are described as being 
trivial (Greiffenberg, 2003), a detailed discussion about differences between abstract and concrete 
syntax, e.g., is missed in most of the cases (Saeki, 2006). Method modifications, however, can lead to 
several problems (Weller & Esswein, 2006) and thus, from an economical viewpoint, it is important to 
know the consequences of such a change.  

In this paper, we classify the modifications of methods administrated by a configuration management 
system. Thereby we focus on methods created for a specific situation at hand and being modified 
frequently within a modelling project (situational method engineering). We discuss critical method 
modifications, analyze their effects on already instantiated models and identify conditions leading to 
inconsistent models. Our findings can help to forecast effects of method changes (business 
management viewpoint) and secondly, they can be used for the development of a CAME1 tool with 
integrated method engineering CM system (IS viewpoint).  

                                              
1 CAME = computer aided method engineering 
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The paper is structured as follows. In section 2, we explain the fundamentals of conceptual models, 
method engineering and configuration management. Section 3 gives a survey of the fundamentals of 
configuration management of methods. Afterwards in section 4, we discuss the consequences arising 
from method modifications. The paper ends with conclusions and suggestions for further research. 

2 BACKGROUND 

2.1 Models in the Information Systems Discipline 

A model is understood as the result of a construction process ”... done by a modeller, who examines 
the elements of a system for a specific purpose ...“ (Schuette & Rotthowe, 1998), which is defined by 
the user of the model. Depending on the kind of system that is examined during the modelling process 
(the problem domain), models in the information systems field can be classified as design models or 
conceptual models. While design models represent software systems or parts of it, conceptual models 
describe real world phenomena (Dieste et al., 2000; Evermann & Wand, 2005; Wand & Weber, 2002). 
The language used to express the model is called the modelling language. Different modelling 
languages are currently used, which comply with different problem domains as well as with different 
modelling purposes (Brinkkemper et al., 1998). Lastly, models are valid for a certain time interval 
leading to constant modifications of these models during their lifetime. 

In the information systems discipline, models are used to redesign organizations or to develop 
software systems (Fettke & Loos, 2002; Rosemann et al., 2005). Therefore, graphical models have 
been established as ”...a medium to foster communication with prospective users...“ (Frank, 1999). For 
reasons of simplicity, complex models often consist of several views showing just a section of the 
whole model (Scheer, 2000; Strahringer, 1996). The different views, however, are not separated but 
integrated using the same model elements within different views (Greiffenberg, 2003; Schuette & 
Rotthowe, 1998). Thus, we can argue that a model always consists of its content and one ore more 
graphical representation, each of which illustrates a set of the model’s elements and their relationships. 
Considering this aspect, modelling languages comprises the definition of a graphical representation 
(concrete syntax), the context (abstract syntax) and the meaning of the constructs (semantics) defined 
within the language (Clark et al., 2002). 

To assist the modelling process, methods have been established within the IS discipline. IS methods 
consist of a specification of activities describing the steps of how to build up a model, and a 
description of the modelling language used for modelling (Harmsen et al., 1994; Jeusfeld et al., 1998; 
Tolvanen, 1998; Wand & Weber, 2002). The description of the modelling language is also called 
product description; the activity part is called process description (Brinkkemper, 1996).  

2.2 Method Engineering 

Method engineering is a discipline “… to design, construct and adapt methods, techniques and tools 
for the development of information systems.” (Brinkkemper, 1996) Within the method engineering 
process, meta-models are used as a technique to describe the created or adapted methods. According to 
the above-mentioned parts of a method, meta-models can represent the product description as well as 
the process description of a method (Strahringer, 1996). Most of the standard methods provide their 
meta-models to support the modeller in using the method concepts (OMG, 2006b; Scheer, 2000). 

Using a given method is sometimes difficult when creating models of a specific domain the language 
was not explicitly made for (Brinkkemper et al., 1998). In this case, modellers might want to add new 
concepts or rules that are not covered by the original modelling language. The situational method 
engineering approach addresses that problem (Harmsen et al., 1994; Tolvanen, 1998). Following that 
approach, methods used within a modelling project are adapted permanently according to the needs of 
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the modellers. An overview about the different types of (situational) method engineering is given in 
(Ralyté et al., 2004). 

To support the modelling process with different, individual methods, CAME tools have been widely 
established. Those tools enable the user to define and modify methods that will be used within the 
modelling project. Afterwards, the methods can be used for modelling instantly (Cubetto, 2006) or for 
creating new modelling tools based on the defined method (Keller et al., 1996).  

2.3 Configuration Management 

Configuration management (CM) has been intensely discussed in theory and established in practice for 
many years. Norms like ISO 2000:9000 demand it to increase process and product quality and it is 
therefore also suggested by process maturity models (Kneuper, 2003; Paulk et al., 1993). In general, 
configuration management is defined as an ”...activity that applies technical and administrative 
direction over the life cycle of a product, its configuration items, and related product configuration 
information.“ (ISO, 2003) While configuration management is an activity, a configuration 
management system is a socio-technical system consisting of people, organizational rules, tools and 
their relationships realising configuration management. Configuration management tools support one 
or more of the CM activities (Estublier, 2000).  

The basic element in configuration management is the configuration item. Configuration items are the 
elements (source code files, requirement documents, models) being under control of the CM (Conradi 
& Westfechtel, 1998; ISO, 2003). To document all modifications of an item, every modification leads 
to a new state of the item which is called version (Braun et al., 2006; Zeller, 1997).  

According to the purpose of the modification, versions can be characterized as follows: Versions that 
are created to replace an older version (e. g. for the purpose of development or maintenance) are called 
historical versions or revisions (Thomas, 2006; Zeller, 1997). In contrast, versions created with the 
intention to coexist are called variants. Variants are usually created to support different user purposes, 
e.g. a car component for different user groups (Thompson, 1997). Versions can also be created to 
support parallel working. Coexisting versions for the purpose of the development in different 
workspaces are called temporary variants (Braun et al., 2006).  

A set of all versions of exactly one configuration item is called a version family. Version graphs are 
established to illustrate version families and the different kinds of versions existing within a version 
family (Conradi & Westfechtel, 1998). As the versions of different configuration items are 
independent from each other (Estublier, 2000), there has to be a container keeping them all together. 
This container is called the configuration. A configuration is a bundle of versions of configuration 
items, which represent a complex product (ISO, 2003). It is itself a configuration item. Thus, a new 
version of a configuration is created, when modifying an item that belongs to the configuration. 

3 CONFIGURATION MANAGEMENT WITHIN METHOD 
ENGINEERING 

3.1 Motivation 

As the requirements of models change permanently, there is need to adapt appropriate methods the 
same way (Ralyté et al., 2004). As pointed out in the previous sections, the situational method 
engineering approach is based on that fact. Thus, methods – when following that approach – are 
modified constantly and are valid for a certain time interval only.  

To ensure the quality of a method, however, the process of modifying methods must be regulated. 
Otherwise, the individual requirements of each method user can ‘blow up’ or ‘destroy’ the method 
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(Häggmark & Ågerfalk, 2006). To give an example: When user A never uses a specific concept, he or 
she might remove it from the meta-model. Another user B from within the same project team, 
however, might need it anymore. This conflict can be solved only by installing a regulated change 
request process (Dart, 1991). Additionally, all versions of a method should be stored, to enable the 
recovery of ineffective modifications. To use the knowledge of past decisions for or against a 
requested change, it is, furthermore, necessary to document the decisions. Thus, the knowledge 
generated in one project can be used for later decisions within similar projects as well.  

To support the above-mentioned criteria, configuration management was adopted to the method-
engineering field in the past years (Greiffenberg, 2003; Saeki, 2006; Saeki & Oda, 2005). The 
motivation for developing a CM for models and methods instead of using existing configuration 
management systems from the software engineering field are the differences between the 
configuration items administrated by these systems. In source code oriented CM systems configuration 
items are text files and differences between those files are recovered by comparing the files line by 
line. ”Since we use diagram documents..., we should manage the changes on the diagrams, not in the 
granularity of a line, but of a logical component...“ (Saeki & Oda, 2005), such as a model element or a 
method construct.  

3.2 Administrating Meta-Models 

Existing approaches of method CM systems base on model CM and, therefore, administrate meta-
models representing methods (Greiffenberg, 2003; Saeki, 2006). Thereby, configuration items 
represent meta-model elements (method constructs) as well as relationships between those elements. 
All items are versioned what means that changes on a meta-model element leads to a new version of 
that element. To recognize different types of meta-model element modifications (e.g. add attribute, 
remove attribute), it is necessary to administrate the attributes of a meta-model as configuration items 
as well (Greiffenberg, 2003). Otherwise, from a technical perspective, changing the name of an 
attribute of a method construct (meta-model element) cannot be distinguished from changing the name 
of the construct itself.  

As meta-models represent methods, CM systems ought to cover all aspects of a method. 
Unfortunately, it is difficult or even impossible to cover all aspects (product and process description) 
of a method by a meta-model. In general meta-models represent the concrete syntax (part of the 
product description) and the process description (Brinkkemper et al., 1998; Saeki, 2003; Strahringer, 
1996). Depending on the meta-modelling language, also the graphical representation can be covered 
by meta-models (Greiffenberg, 2003), but usually the notation is held outside the meta-model as a 
simple table containing the construct name and its graphical representation (OMG, 2006b).  

The semantics of the method constructs describes “…how to identify modelling language constructs in 
their application domain and what meaning they represent in this environment…” (Pfeiffer & Gehlert, 
2005). In existing method descriptions this fact is also held outside the method in terms of natural 
language statements, either as simple text enclosed to the meta-model (OMG, 2006b), in terms of a 
domain language dictionary (Greiffenberg, 2003) or as method rational models (Ågerfalk & Wistrand, 
2003).  

Thus, when using a method CM system just administrating meta-models, information of the methods 
get lost. Additionally, such a configuration management system cannot automatically detect and react 
on modifications that lay outside the system. To overcome those deficits, a configuration management 
system has to administrate meta-models representing the abstract syntax of a method but has to 
administrate also the graphical representation and the semantics of the method constructs, to cover all 
aspects of a method.  
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3.3 Adding model CM to method CM 

As modifications of a method affect appropriate models and modelling deficiencies leads to changes 
of a method, method CM literature usually considers both, configuration management of methods and 
of models (Greiffenberg, 2003; Saeki, 2006). Thereby, each model is assigned to exactly one method 
to indicate what method was used for its creation. Model elements point to exactly one method 
constructs, respectively.  

Considering configuration management, models and methods are controlled by a configuration 
management system. As mentioned in section 2.3, changes on a configuration item do not overwrite 
older versions, but lead to a new state of the item (Dart, 1991). Thus, when changing a method, the old 
method version still exists and corresponding models are still consistent with that version. When 
modelling deficiencies lead to method modifications, however, it might be useful that existing models 
follow the modifications made on the corresponding method (Saeki, 2006; Saeki & Oda, 2005; Weller 
& Esswein, 2006).  

From the technical viewpoint of a configuration management system, this means creating new 
versions for all affected models and creating new versions for all model elements whose method 
constructs have been changed. The created model element versions will refer to the new version of the 
method construct and the model version to the new method version respectively (Greiffenberg, 2003; 
Saeki, 2006). 

4 METHOD MODIFICATIONS 

Considering the effects on existing models, modifying a method can lead to three different results. 
Firstly, related models may be still consistent to the new method version. Secondly, one or more 
models are not consistent, but modifying the models (e.g., removing values) to remain consistency is 
uncritical. Thirdly, the model cannot be adapted automatically to the new method version (critical 
modification).  

In the following sections, we will state critical modifications only. Thus, there might be some 
uncritical modifications, we do not consider. Modifications on a configuration item are indicated by 
the creation of a new version of that item. Removing an element means creating a new version of that 
element as well. In this case the new version will be marked as ‘removed’, but is still hold in the CM 
system (state-based versioning, see (Conradi & Westfechtel, 1998)). 

Before starting the discussion on consequences of method modifications, we have to state some basic 
assumptions. Firstly, considering the abstract and concrete syntax, we assume that the configuration 
management system stores the method constructs, their relationships and their graphical 
representation. Thus, there are configuration items for constructs their properties and their graphical 
representation (Greiffenberg, 2003). Secondly, we assume that all method modifications are relevant 
for the user what means that existing models have to be adapted to remain consistent to the modified 
method. This is important as it is not useful to follow the modifications of a method in any case 
(Weller & Esswein, 2006). 

For formal reasons, the kind of modifications we consider base on the research results of (Ralyté et al., 
2004). Thereby, we focus on element changes and structural changes. Naming changes of method 
elements are trivial, as related models are not affected. Furthermore, we do not consider inter-model 
changes as we are not interested in effects of method modifications on related methods, but on 
consequences for instantiated models only. To cover modifications of the concrete syntax and on the 
semantics as well, we consider the configuration items given by (Greiffenberg, 2003).  
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4.1 Abstract syntax 

4.1.1 Adding Elements 

Adding a construct to a method is uncritical in general. If the meta-model prescribes that an existing 
construct has be connected with at least one instance of the added construct, however, existing models 
may not consistent to the new method (see Figure 1). This problem only occurs, if the related construct 
(Relationship-type in Figure 1) is used within the model. Otherwise, the add operation is uncritical. 

 
Figure 1. Inconsistency caused by adding method constructs 

To solve this conflict, a new instance has to be created in the model for each instance of the related 
construct (for Relationship-type ‘rent’ in Figure 1) to ensure model consistency. A modelling tool 
could create model elements with default-values, but due to the nature of conceptual models, it is 
strongly recommend involving the modeller and asking him or her to revise the resulting model. 

When adding a property to an existing construct, the same problems arise, when the added property is 
mandatory and when the construct is used within the model. To overcome the problem, a default-
property can be added to all model elements related to the construct, but the modeller has to revise the 
model as well.  

4.1.2 Removing elements 

Removing a method construct means that this construct cannot be used in the related models anymore. 
Therefore, all instances of the construct must be deleted from the dependent models to ensure model 
consistency (Greiffenberg, 2003; Schuette & Rotthowe, 1998).2 While this causes no problems in 
general, removing a method construct can also lead to inconsistencies when using generalisation 
within the meta-model. 

                                              
2 In practice, it might be interesting to indicate all instances of a construct as deprecated instead of removing them. While this 
leads to syntactical inconsistent models regarding the meta-model, we do not follow that idea. 
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Figure 2. Inconsistency caused by removing method constructs 

The upper part of Figure 2 shows a meta-model after removing the construct ER-type (gray). The 
model (lower part of Figure 2), however, becomes inconsistent with the method, because ‘Contract’ is 
related to one instance of Abstract Element only. This problem only occurs when the removed 
construct is used within the model and there is a relationship to the construct specifying a min-
cardinality. The problem cannot be solved automatically, except by removing all instances of the 
meta-construct (abstract element in our example) or by adding necessary instances with default-values 
(see problems discussed in section 4.1.1 also). We demand, however, just to inform the user to correct 
the erroneous model.  

4.1.3 Modifying elements 

Modifying the properties of a construct means adding, removing or modifying the configuration item 
of the property (Greiffenberg, 2003). Thus, the construct itself is not affected in the configuration 
management system. As we already discussed add and remove operations, we focus on property 
modifications below. 

When changing a property, we have to consider two critical modifications. First, the value range of the 
property might be changed. This has a strong effect on related models, as existing values may not be 
transferred to the new range. Thus, when changing the range from TEXT to BINARY existing values 
have to be removed. There might be migration strategies for that problem (e.g. “false” to false), but in 
general the modeller has to revise all affected values. This problem only occurs when the construct of 
the modified property is used within the model. 

Another critical modification is changing the cardinality of a property. If the min-cardinality 
(specifying how many values have to exist at least) raises, there is need to add default-values to a 
model element (see again section 4.1.1) to remain consistency. If the max-cardinality (maximum 
number of values) lowers, values have to be removed. Because adding default-values or removing 
values change the content of a model, this has to be revised by the modeller. The problem only occurs 
when the construct of the modified property is used within the model. 

4.1.4 Relationships between constructs 

A Relationship (association, aggregation) between constructs can be represented by properties of the 
constructs pointing to the other construct. Thus, modifying a relationship means adding, removing or 
changing a property (see previous sections). A special kind of relationship is generalisation. Adding a 
generalisation between two existing constructs means adding all properties of the super-construct to 
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the sub-constructs (see problems described in section 4.1.1). Removing a generalisation means 
removing all super-construct properties from the sub-construct (section 4.1.2).  

4.2 Concrete Syntax 

4.2.1 Removing graphical representation of a method construct 

Removing a graphical representation of a construct means removing all representations of model 
elements related to that construct representation. If there is more than one representation for the 
construct, the model element representation can be replaced by another representation of the construct 
(see next section). E.g. when removing the circle representation of the UML construct “interface”, the 
rectangle representation can be used instead. The modeller, however, should revise the result of such 
an operation.  

As illustrated in Figure 3, removing the representation of a model element can lead to ‘broken’ 
models. Thus, graphical connections between model elements have to be removed and rearranged by 
the modeller. The problem occurs only, if the representation is used within the model. As removing a 
construct also means removing its graphical representation, this problem also occurs when a construct 
that is used within the model is removed. 

Broken process 
flow caused by 
removing all 
instances of 
'event'

check invoice

enter invoice data 
into application

original model construct 'event' removed

invoice correct

check invoice

enter invoice data 
into application

 
Figure 3. Visual problems caused by removing (graphical representation of) constructs 

4.2.2 Changing graphical representation of construct 

According to the purpose of modelling, it can be necessary to change the graphical representation of a 
construct (Becker et al., 2004). In this case, all instances of the construct have to be adapted according 
to the new graphic. Thereby, a different size or shape of the new representation can cause visual 
discrepancies that negatively effect the quality of resulting models (Schuette & Rotthowe, 1998). If the 
size of the graphic increased, other model elements might overlap with the new graphic. To avoid such 
side effects, we recommend adapting the size of the new model element’s representation according to 
the size of the old representation. Changing the representation of a construct is critical only when the 
modified representation is used within the model. 

4.3 Semantics 

Modifying the semantics of a method construct is indicated by the creation of a new version of the 
configuration item containing the construct description. As the semantics of methods in conceptual 
modelling cannot be formalized, all model elements of the modified construct have to be revised by 
the modeller. This problem only arises when the construct is used within the model.  
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5 CONCLUSIONS AND FURTHER RESEARCH 

This paper has shown the problems arising when modifying a method in a configuration management 
environment. We discussed consequences of method modifications for existing models in the case it is 
necessary that the models follow the modifications of their related methods. Thereby, we have shown 
that these problems do not occur in any case, but under certain conditions. Table 4 summarizes our 
findings. 

 
No. Modification Condition Solution Effects 
1a Add construct Construct mandatory & used 

within model 
Create default-model element & 
revise by user 

 

1b Add construct 
property 

Property mandatory & construct 
used within model 

Create default-value & revise by 
user 

 

2 Remove 
construct 

Construct is sub-construct of a 
generalisation & the super-
construct is mandatory & 
construct is used within model 

Remove model elements related to 
that construct & inform user to 
revise model 

4 

3a Change value 
range of property 

Automatic migration strategy not 
feasible 

Inform user to revise model  

3b Raise min-
cardinality of  
property 

Related construct used within the 
model 

Add default values or 
Add relationship (when value range 
is construct) 

1a, 1b 

3c Lower max-
cardinality of 
property 

Related construct used within the 
model 

Remove values or relationships 2 

4 Remove 
graphical 
representation of 
construct 

Representation of construct used 
within the model 

Inform user to revise model  

5 Change graphical 
representation of 
construct 

Representation of construct used 
within the model & new graphic 
has different shape 

Adjust size of new graphic to size 
of the old one & revise by user 

 

6 Change construct 
semantics 

Construct used within the model Inform user to revise model  

Table 4. Consequences of method modifications within a method CM system 

Our findings can be used to forecast the consequences of method modifications. Within a tool-
supported method engineering process, this knowledge is important for developing tools that can 
handle method modifications and inform the user about problems before the new method version will 
be published or handle model migrations after such a modification. This will help developing CAME 
tools with integrated CM support such as (Saeki, 2006) or (Cubetto, 2006). 

Currently, we evaluate existing CAME tools according to their possibilities to administrate method 
versions and to handle modification problems as described above. Depending on the results of that 
evaluation, we will possibly start designing and implementing an appropriate tool or enhance an 
existing one. Our future research will focus the problem of merging method modifications made 
within different projects to build up or to enhance a company wide method, reflecting the 
methodology knowledge of the company. Thereby, we will use the positive findings made with 
configuration management of reference models (Braun et al., 2006). Additionally, we will discuss the 
advantages of using models and methods from the information systems discipline within managerial 
economics for business process improvement projects. 
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