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REAL-TIME MARKET VALUATION OF OPTIONS BASED ON
WEB MINING AND NEUROSIMULATION

Bartels, Patrick, Institut fiir Wirtschaftsinformatik, Universitdt Hannover, K&nigsworther
Platz 1, 30167 Hannover, Germany. bartels@iwi.uni-hannover.de

Breitner, Michael, Institut fiir Wirtschaftsinformatik, Universitdt Hannover, Konigsworther
Platz 1, 30167 Hannover, Germany. breitner@iwi.uni-hannover.de

Abstract

Today’s theoretic, i.e. stochastic, option valuation models, inherently base on unrealistic assumptions.
Especially the adequate estimation of a volatility measure is discussed controversially. Several studies
show that the issuer’s individual volatility measure is used to exploit the consumer surplus. Moreover,
not only the well-known inputs but also "hidden" inputs affect option market prices significantly.
Therefore alternative options pricing approaches use artificial neural networks to learn market prices
models from observed market data. The core question is: Are time-varying artificial neural networks
(ANN) based on a high amount of automatically collected market data more accurate and more realis-
tic than classical methods like, e. g., the ones of Black/Scholes or Cox/Ross/Rubinstein? To answer
this question the software suite WARRANT-PRO-1 is used which incorporates the web mining agent
PISA (Partially Intelligent Software Agent) and the neurosimulator FAUN (Fast Approximation with
Universal Neural Networks). In real-time WARRANT-PRO-1 synthesizes ANN market valuation func-
tions of Internet-available data or other (semi-)structured text sources. FAUN trains ANN, e. g., mar-
ket prices for standard and user defined so called OTC (over the counter) options. Statistical analyses
and examples including German DAX warrants and OTC options presented in this article indicate the
feasibility of this approach.

Keywords: Options, derivatives, market price models, artificial neural networks, web mining,
Black/Scholes model.
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1 INTRODUCTION AND MOTIVATION

Risk management is essential in modern market economy. Financial markets enable companies and
households to select an appropriate level of risk in their transactions by redistributing risks towards
other agents who are willing and able to accept them. Markets for options, futures and other so-called
derivative instruments — derivatives for short — have a particular status. Futures allow agents to hedge
against upcoming risks. These contracts promise future delivery of a certain item at a certain strike
price. Options allow agents to hedge against one-sided risks. Options give the right, but not the obliga-
tion, to buy (call option) or sell (put option) something at a predefined strike price at expiration (Euro-
pean style option) or at any time up to expiration (American style option) (see Hull, 2003; Prisman,
2000). All classic analytical models, e.g. Black/Scholes and Cox/Ross/Rubinstein, for option valuation
have several constraints regarding accuracy. In this paper we present a generally more accurate ap-
proach to option valuation which is fully market oriented (instead of theoretic) with the WARRANT-
PRO-1 software suite. It synthesizes market prices for options using the PISA web mining agent and
the FAUN neurosimulator. Changing training variables market prices for other derivatives can also be
synthesized. The synthesized market prices can be compared with classical models like the ones of
Black/Scholes or Cox/Ross/Rubinstein.

Dirk Thiel shows that issuers use individual settings of the volatility parameter within the
Black/Scholes formula to control hedging performance of their own options and to exploit the con-
sumer surplus (Thiel, 2001 pp. 223-265). The individual setting is not observable at the market. There-
fore related studies use either historical or forecasted volatility measures to estimate the future volatil-
ity for market price training. As these are not issuer dependant WARRANT-PRO-1 includes the op-
tions’ issuers in the market price functions. Integration of a volatility measure is discarded. ANN learn
the current volatility out of the presented input values. Thereby companies as well as private investors
can compare options of different issuers and/or to single out over- or under-priced ones. Market prices
allow option evaluation when options for a certain risk are unavailable simultaneously, e.g. OTC-
options.

Current research concentrates on evaluating option pricing models using neural networks with a high
amount of training data. For artificial neural network (ANN) training usually commercial data provid-
ers like Reuters, Bloomberg and others are used. Most of those only provide a part of the worldwide
traded options and the data are usually expansive. Both using commercial data and the amount of used
training data reduce practical applicability. In contradiction to common research this paper’s major
research issue is real-time market price synthesis with practical applicability on common desktop
computers. For about one decade both research on web mining and on option pricing with ANN ex-
isted separately. WARRANT-PRO-1 is the first attempt known to the authors that combines these two
areas of research. It automatically extracts option spot prices from the Internet for free and performs
neural network trainings. The software suite can be adjusted to various input data. Input files are of
high quality, i. e. outlier free, and have pre-definable denseness. It offers a platform independent suite
to calculate highly accurate option market prices in real-time using data from the near past only. The
resulting market prices are exemplarily evaluated and compared with the Black/Scholes model. The
core question is: Are time-varying Artificial Neural Network (ANN) models based on a high amount
of automatically collected market data more accurate and more realistic? For the first time issuer re-
lated differences in market prices are evaluated using ANN. An ANN curvature measure for evalua-
tion is used in option pricing with ANN for the first time, too.

To show feasibility of our approach this article proceeds as follows. In section 2 weaknesses of classic
option pricing models are discussed in detail and current research on option pricing with ANN is
briefly introduced. Section 3 introduces WARRANT-PRO-1 in detail including a short introduction to
ANN. Section 4 presents an advanced prototype of the software suite. A test with 141 German DAX
call options is used to prove the system’s ability to learn market price functions from a single day’s
intraday data accurately. Afterwards this empiric market price function is evaluated against the
Black/Scholes-prices for the given data. Section 5 concludes the article with a summary and an out-
look to further research.
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2 RESEARCH ON OPTION MARKET PRICES

Option valuation has been a major topic in financial literature for over 100 years now. Today’s most
popular option pricing formulas were published in 1973 by Fisher Black and Myron Scholes (Black &
Scholes, 1973) and 1976 by John C. Cox and Stephen A. Ross (Cox & Ross, 1976a; Cox & Ross,
1976b) and are commonly known as "the classic models of option pricing". Common to both theoretic
models is that the correct option price is investigated by an option underlying portfolio with risk free
profit. The theoretically fair option price pps (Black/Scholes) depends on the underlying price S, the
strike price X, the time to expiration 7, the risk-free interest rate » to expiration and the future volatility
o, of the underlying price. The latter is estimated by the annualized standard deviation of percentage
change in daily price. The Cox/Ross/Rubinstein-model depends on S, X, T and r, too. Future volatility
is represented by the likelihood of rising and falling of S in time steps with appropriate length.

Both mentioned analytical models base on at least two well-known problematic assumptions: First,
markets are assumed to be efficient so that a prediction of the direction of the market or an individual
underlying is not possible. Second, future volatility g, of the underlying price is assumed to be accu-
rately estimatable and is a priori known to seller and buyer of an option. Since the volatility in both
models is estimated, o, "varies" and often neither the Black/Scholes model nor the
Cox/Ross/Rubinstein model capture option market prices accurately. Numerous studies have docu-
mented sizable and persistent cross-sectional differences in a smile or sneer pattern called "Volatility
Smile" (see e.g. Black, 1975; Ederington & Guan, 2005; Rubinstein, 1994). In particular the important
option price sensitivities ("Option Greeks") I, ®, A, and Q usually are inaccurate. Numerous research-
ers focus their research on the evaluation of these classic models (e.g. MacBeth & Merville, 1980;
Pape & Merk, 2003; Rubinstein, 1985; Bates, 2003). Results are consistent that the Black/Scholes
model has significant shortcomings. Even the originators of the Black/Scholes model admitted that the
reason for their model's popularity is not accuracy but ubiquity. Black noticed: "Because the formula
is so popular, because so many traders and investors use it, option prices tend to fit the model even
when they shouldn’t" (Black, 1992, p.21). Since the first publication more advanced models have been
developed that take violations of classic assumptions into account and are much more accurate as con-
sequence (For an overview see Hull, 2003 pp. 435-458; Bakshi et al., 1997 pp. 2003-2005). Most ap-
proaches focus on specific advancements. As a practical matter, the perfectly specified option pricing
model incorporates all advancements and is therefore bound to be too complex for applications.

Therefore researchers focus on ANN that learn market conditions of given data. Most prior studies
tried to increase the processed data volume (e. g. Andreou et al., 2002 use more than 80.000 datasets)
or opt for very complex topologies (e. g. Hanke, 1999 use 7 input and 50 inner neurons). Usually daily
closing prices are used (Andreou et al., 2006; Bennell & Sutcliffe, 2004; Pape & Merk, 2003). A high
amount of data and daily quotations extend the data period into the past. Thereby data of market situa-
tions are contained within the training data that have only little relevance for current market prices,
e. g. the incidents on 09/11. Synchronization of the used option prices and their underlying is prob-
lematic. WARRANT-PRO-1 uses current synchronous intraday quotations only. Related research also
focuses on evaluating different historical volatility measures to optimize market price approximation
(see Andreou et al., 2006). WARRANT-PRO-1 does not use historical volatility measures at all. Like
the classic models the market price py(?, S, X, T) depends on the permanently available underlying
price S, strike price X and time to expiration 7. Instead of » and the artificially estimated o the time ¢ is
used as direct input for the valuation model. In difference to most closed-form models ANN are appli-
cable not only to options but to most derivatives.

3 WARRANT-PRO-1 SOFTWARE SUITE

3.1 Overview and Concept

The WARRANT-PRO-1 software suite is designed to avoid the weaknesses mentioned above and

enables users to profit from the advantages of autonomous web mining and ANN for real-time option

valuation without the necessity of high-performance computing and without special skills. The fields

of application are versatile, e.g. OTC-options and market price synthesis in risk management. The

software suite is Java-based and is still under development. It integrates two research programs of the
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Institut fiir Wirtschaftsinformatik of the Leibniz Universitdit Hannover: The web mining software
agent PISA and the FAUN neurosimulator. The software suite has been tested in detail and already
works satisfactorily (Bartels & Breitner, 2004a; Bartels & Breitner, 2004b; Breitner, 2003). The archi-
tecture of the complete software suite is illustrated in Figure 1.

Financial websites, The Warrant Pro 1-Framework incorporates the software agent PISA and the A priori and
e. g. of financial neurosimulator FAUN. The framework extracts needed training data and a posteriori calculation
service providers generates neural network training files. Neural networks for market prices are of market prices

trained automatically.

Warrant Pro 1 Mathematical function

| |
® N N By |
SR : | PISA >> Processing >> FAUN > : i

WWW

Processes recieved Formats extracted Generates neural output
- webpages patterns network |
Figure 1. Overview of the WARRANT-PRO-1 software suite, including the web mining software

agent PISA and the FAUN neurosimulator.
3.2 Web Mining and the Software Agent PISA

Research on autonomous agents goes back to the 1990ies when Wooldridge and Jennings first dis-
cussed the definition of agents (Wooldridge & Jennings, 1995). Primary advantage of using agents is
that they can work efficiently 24 hours a day and 7 days a week (except breakdowns and maintenance
work). Agents can handle dozens of extraction operations per minute automatically. Therefore soft-
ware agents are well qualified for web mining tasks.

There are many approaches to utilize agent technology for extracting information from websites.
Tredwell, Kuhlins and Irmak, Suel give a detailed overview over existing web mining agents (Tred-
well & Kuhlins, 2004 pp. 562-563; Irmak & Suel, 2006). Most agents focus on special perspectives.
The requirements of autonomous agents that find and extract derivatives’ data within websites effi-
ciently and pre-process the extracted data for neurosimulation are only partially available. Furthermore
creating a real-time market valuation tool requires easy usage and fully compatibility to common desk-
top computers. Many existing agent programs do not have a programming interface, e.g., for SQL
(Structured Query Language), and are not platform independent. Therefore the software agent PISA is
developed. The full support of multi-threaded design allows PISA to utilize the full advantage of com-
mon computers with multiple cores and/or multiple processors.

PISA identifies relevant webpages by the option's International Securities Identification Numbers
(ISIN). The websites of major financial service providers are contacted automatically to find the cor-
rect webpage. Webpages are repeatedly requested in user-defined intervals. Beside Internet pages any
other semistructured or structured text sources are supported, e.g. XML-feeds. The structure of the
source code is analyzed automatically to identify the correct information (For further details of the
extraction process, see Bartels & Breitner, 2004a; Bartels & Breitner, 2004b).

3.3 Neurosimulation and the FAUN Neurosimulator

ANN in general have a long history in financial applications. They are used for time series forecasts as
well as for market simulation and market price synthesis (Andreou et al., 2002; Andreou et al., 2006;
Breitner, 2003; Bennell & Sutcliffe, 2004; Garcia & Gencay, 2000). First attempts of market price
synthesis with ANN were made in the 1990ies (Hutchinson et al., 1994; Malliaris & Salchenberger,
1993; Malliaris & Salchenberger, 1996). Most research on using ANN for option pricing use the same
underlying technology, i. €. so called perceptrons.

An ANN is a collection of interconnected simple processing elements, i. e. input neurons #;, hidden

neurons 7, and output neurons #,, structured in successive layers — and then called multi-layered per-

ceptron. It can be depicted as a network of arcs/connection and nodes/neurons. Using a propagation

algorithm the input values and the inner neurons are weighted to calculate an output value. Within

each neuron the given value is processed by an activation function that determines a neuron’s output
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value. To find the right weights within a so-called training process thousands of multi-layer percep-
trons with various topologies and with different weight initializations are trained. An ANN’s topology
is its specific configuration set including the number of hidden layers, the number of inner neurons in
each hidden layer and the propagation and activation function. Each ANN has a specific static topol-
ogy. The topology defines the approximation capabilities of the ANN. Technically and mathematically
training means optimization of topology and weights. A more complex topology increases both ap-
proximation capabilities and training effort.

Training quality is highly dependent on the used neurosimulator’s learning algorithm. A common and
high efficient optimization method is "sequential quadratic programming", SQP for short (Gill et al.,
2004). Recently general-purpose SQP methods have been developed that reliably solve constrained
optimization problems with many hundreds, thousands or ten thousands of variables and constraints in
short time. Therefore SQP is considered superior here. An advanced implementation of SQP is
NPSOL (Nonlinear Programming Solver). NPSOL is suitable for mainframes, workstations and PCs,
preferably with at least IMB or more of main storage (Gill et al., 2001). Its efficiency and platform
independency makes NPSOL most suitable for real-time market price synthesis. The FAUN neu-
rosimulator incorporates NPSOL and is used therefore. The neurosimulator is being developed since
1996 (Breitner, 2003. For details on ANN and especially perceptrons see Zell, 2003). An exemplary
ANN is illustrated in the following figure.

Pre-Processing  Input neurons n, Variable number of Output neuron 7,
hidden neurons 7,

Bias-Neuron

Quotation time ¢

Strike price X Option
Py market
Underlying price S price
Issuer /
Time to expiration T ing Weights of the neuron connections
- — — — — Direct connections/Shortcuts (can be enabled/disabled)
Figure 2. An exemplary Artificial Neural Network'’s topology (three-layered perceptron) used

for market price synthesis in the scenario analyses, here.

The ANN architecture used in this study is a feedforward network with three layers. The first layer
includes the four major influencing variables of an option: time ¢, strike price X, remaining time to
expiration 7 and current price of the underlying S. Additionally networks with each option’s issuer / as
input value are trained. Prior studies of related research have shown that a three-layer network can be
trained to approximate most functions arbitrarily well. Network architectures with more than three
layers only sometimes lead to significant enhancements. The second layer has a varying number of
hidden neurons. The more inner neurons are processed the better the approximation is but the longer
the training takes. The third layer contains only the trained options’ market prices p). For numerical
performance FAUN requires standardized input files. Its activation function, i. e. hyperbolic tangens,
requires scaling of the input values. It uses a pre-processing program to scale training and
(cross-)validation files automatically. To assure an averaged weight for each strike price and for each
issuer the input data are adjusted automatically regarding the number of observations for each strike
price and issuer.

Approximation quality of ANN is estimated with the training and (cross-)validation error functions
&(W) and ¢,(W). W is the matrix of the weights that constitute an ANN. The perceptron is trained itera-
tively, i. e. ¢, is decreased by adaptation of W, as long as &, < &, or &, = &, holds (prevention of overtrain-
ing). A quality indicator of a generated ANN is defined, among other criteria, by the (cross-)validation
quality, i. e. the quotient of ¢, and ¢,. Both training and validation error are exclusively affected by the
used topology, i. e. number of inner neurons and shortcuts activation. Both ¢, and ¢, converge to their
lower limit. In this state FAUN calculates the true market price. The differences of the options’ spot
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prices ps from the trained market price p), are caused by the issuers’ individual pricing methods, i. e. if
an option is underpriced or overpriced.

Every ANN is stored in a single file for further analyses. All files can be reloaded or distributed to
other users and applied to user given datasets, e. g., for the pricing of OTC-options.

34 Real-time Computation of Option Market Prices

WARRANT-PRO-1 is designed to generate real-time market prices that can be used in daily business
to generate OTC-option prices or to evaluate an existing option price. Related research usually concen-
trates either on market simulation or on a posteriori market analyses (Andreou et al., 2002; Bichler &
Klimesch, 2000). Other studies use up to 20 different financial indicators as input variables, e.g., trad-
ing days vs. calendar days, moneyness ratio and annualized historical volatility with different bases.
Our approach uses only five values, i. e. ¢, S, X, T'and /. S and X are replaced by the so called "volatil-
ity hint" S/X which is common to related research to reduce training effort. The number of input vari-
ables n; (n=3 without issuers and n~=4 incl. issuers) is directly proportional to both the number of nec-
essary input values and to the number of needed inner neurons #, in order to achieve adequate net-
works. Both increase the required training effort significantly. To provide a real-time and easy to use
market price synthesis only short training times on common computers are acceptable. Using only few
input values allows short training times without corrupting training accuracy.

It is well known that the issuers’ calculation of option prices varies in time depending on the implied
volatility used (proven for DAX-Options by Thiel, 2001). Including the issuer as input variable the
ANN consequently includes an issuer specific calculation approach for market prices.

Related research focuses on cash settlement prices of a long period. The study at hand uses intraday
prices instead. Adequacy of intraday prices for option valuation has been tested by several researchers
and has been found to be correct. Intraday prices are extracted simultaneously while ANN trainings
are conducted to allow WARRANT-PRO-1 to calculate market prices anytime.

4 REAL-TIME MARKET PRICE SYNTHESIS

4.1 Test Scenario and Environment

The presented test for real-time option market prices includes 141 European call options on the major
German index DAX. All examined options have an expiration date in June 2006. Data are extracted
between 9:00 am and 8:00 pm during May 2006. At 5:45 pm the cash price of the underlying asset,
i. e. DAX, is determined. The training data only consist of prices observed between 9:00 am and 5:45
pm. The test is executed on a common desktop computer. In operational use WARRANT-PRO-1 cal-
culates py, instantaneously. Then trainings are executed either on time schedule or user initiated using
only one topology to adjust the ANN to the current market situation. In this paper the ANN training is
not processed in real-time because multiple topologies are trained and analyzed.

4.2 Selection and Download of Option Prices

The major influencing variables of option prices are identified above, i. e. ps, including bid- and ask-
price, t, X, S, T and I. Training patterns are extracted semi-automatically from the Internet. For every
option static option characteristics are extracted once, i. . security identification number, X, expiration
date and /. Only ps and quotation time ¢ are extracted frequently to minimize processor load.

Training data should not have any data gaps. Data gaps are caused by poor quality of the offered data
and by poor webserver availability. Prior tests showed that a few hundred or thousand training values
are enough for an option price synthesis (Bartels & Breitner, 2004c; Breitner, 2003). A further in-
crease of input data does not lead to significant enhancements. This determines the extraction interval
to use. Here, all values for the options are alternately extracted every 20 minutes from the Onvista
website (http://www.onvista.de) and Finanztreff (http://www.finanztreff.de). Onvista is market leader
at financial real-time quotes. Both providers offer real-time quotes from the European Warrant Ex-
change (EUWAX) in Stuttgart. All other HTML formatted websites can be used as well. Long-term

tests have shown that both websites did not have any webserver breakdowns and offer high and reli-
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able data. The underlying asset is the German stock index DAX. Index options are used in many re-
lated studies as have a high liquidity. DAX values are alternately extracted from multiple websites.

The minimal number of training patterns is determined by experience. Availability of options with a
reasonable moneyness and their update frequency determine the required size of the time slot used for
ANN training. Two hours are usually enough to build up an adequate database. For experienced users
WARRANT-PRO-1 is able to create training files for every given time slot. The EUWAX offers 221
different DAX call options with a strike price within a spread of 10% out of the money and in the
money, i. €. between 5,700 and 6,500, and with an expiration date in June 2006. Filtering the options
with an adequate number of observations 141 options of the major 10 issuers remained. Only these
were extracted.

Note that extraction and usage of Internet data requires special regards towards legal aspects. Usually
the general terms and conditions of financial service providers impose legal restrictions to the usage of
the published data. Usage is restricted to private or scientific purposes.

4.3 Pre-Processing of the Training and (Cross-)Validation Data

Option prices are joined with their related price of the underlying and the static option values to build
the training patterns. All used quotations are time synchronous. The five possible input variables for
ANN training are: time ¢, strike price X, price of the underlying S, issuer / and time to expiration 7, see
section 3.4. Instead of using S and X as separate values the so called "volatility hint" S/X is used. Sev-
eral studies show that this increases training performance significantly (Breitner, 2000 p 320; Andreou
et al., 2006 p 332; Hutchinson et al., 1994 pp. 864-868). Contrary to most related research the real
time to expiration is used instead of complicated alternatives like the remaining trading days or the
360-day-basis used by banks. Randomly chosen alias numbers substitute issuers’ names. Other alias
numbers would suggest a linear correlation that is unrealistic.

As output value for ANN training the observed market price pyg is used. Additionally the theoretical
Black/Scholes price is calculated pgs(S, X, T, r, o) for each input for evaluation. Other theoretical op-
tion pricing models are also supported, e.g., Binomial trees, Monte-Carlo simulations. The risk free
interest rate » and the volatility of the underlying o are not directly observable on the market. For » the
Euribor interest rate for the related maturity is used. For o the estimated value is used that gives the
Black/Scholes option prices the best fit to ps regarding the used evaluation criteria, i. e. the mean abso-
lute percentage error (MAPE). Therefore o is optimized regarding MAPE. In related research either
historical volatilities or forecast volatilities are used. All option prices are standardized to equity ex-
change ratio since the Black/Scholes formula provides the price for an option of one underlying asset.

To evaluate the training process a validation dataset is used. PISA automatically splits the values into
training and validation files. 20% of the data are used for validation. Validation patterns consist of five
uniformly distributed segments with an equal number of patterns each. Two training scenarios are
processed. For real-time simulation training files are generated every 30 minutes for a time slot of two
hours. Additionally for evaluation purposes training files for the whole day are generated for each
issuer using only four input variables.

4.4 Training Process and Adequate ANN Topology

For ANN training a three-layered perceptron is used. The arbitrary accuracy of an ANN is only ob-
tained by the used topology. Topologies differ in the number of inner neurons and activation of short-
cuts. In the article at hand topologies with a number of inner neuron from 2 to 6 are used, each with
and without shortcut connections. Prior studies have shown that ANN with only few inner neurons can
adequately approximate even complex market price functions and have the optimal ratio between
training effort und output quality. ANN with a higher number of inner neurons tend to have highly
frequent oscillations. Experience leads to a recommended number of successfully trained networks
between 100 and 1000. This is quite enough for problems even more complex. Trainings are aborted if
cross-validation quality is inadequate. For each trained ANN ¢, exceeds ¢, by 5% per pattern at most.

Consistent with related research the training results are evaluated using the coefficient of determina-
tion (R?), the mean absolute percentage error (MAPE) and the root mean square error (RMSE). Results
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of every training process are saved for further analyses. WARRANT-PRO-1 supports export and im-
port of stored networks using text and spreadsheet files, e.g., Microsoft Excel.

5 RESULTS

5.1 Extraction

About 4,000 datasets with a size of 1.2 Megabyte are extracted each day. The extraction process with
PISA works satisfactorily. The generated datasets are of high quality and no data gaps occur. The ex-
tracted data/patterns are applicable for ANN training. The given environment even offers the possibil-
ity to shorten extraction intervals and to process more webpages. A shorter time interval is not reason-
able: Changes of the extracted values are too small then.

The average size of a processed webpage is 30 kilobyte. Using a time delay of 2 seconds between the
requests an average transfer rate of 15 kilobytes per second is required for the extraction. This means
that an ordinary ISDN connection with two channels and together up to 128 kilobit/s is suitable to use
WARRANT-PRO-1. Current UMTS connections even have a usual bandwidth of up to 384 kilobit/s
and more using HSDPA. Thus the software suite can be used on mobile devices as well, e.g., by mo-
bile employees of issuers at their customer’s site.

5.2 ANN Evaluation

ANN approximate a market price function for given input values. As described above ANN quality is
measured by &, &, MAPE, RMSE and R? In a state where ¢, and ¢, converge to their lower limit a
positive difference between pg and p,, indicates an option price above the market price py, and vice
versa. For analytical outcomes the dependencies of ps, pys and ppg are analyzed.

For real-time option valuation the ANN’s approximation capabilities are very important. The training
error & decreases with an increase of the number of trained networks as well as with the number of
inner neurons. The number of trained networks is set high enough by experience to assure that an ade-
quate good network for each topology is found. With more than six inner neurons an increase of used
inner neurons only results in marginal improvements of &; and ¢, but in tedious increases of the neces-
sary training time. &, and ¢, are near to their lower limit with only six inner neurons. Table 1 illustrates
the results of four ANN with six inner neurons as an example. The first two use only three input neu-
rons (¢, S/X, T) whereas the second two use the issuer / as fourth input value (¢, S/X, T, I). Each set of
neurons is processed with and without shortcuts. Comparison of these topologies shows that shortcuts
do not lead to a significant advantage regarding the output measures. It is noticeable that including the
Issuer 7 as input parameter results in a superior coefficient of determination. Prior research of the au-
thors has shown that activation of shortcuts is not advantageous for option pricing, see also Table 1.

Shortcuts  n, & & Curvature MAPE, RMSE y Ry MAPEgs RMSEgs Rl

no 3 3143E-02 31.90E-02 178675 1.67E-02 747E-04 99.89E-02  4.00E-02  2.64E-03  99.79E-02
yes 3 3473E-02 36.16E-02  1698.30 1.60E-02 7.85E-04 99.88E-02  4.05E-02  2.62E-03  99.82E-02
no 4 39.88E-02 41.17E-02  1347.12 1.68E-02 841E-04 99.96E-02  3.97E-02  2.61E-03  99.80E-02
yes 4 51.63E-02 48.39E-02 370624 1.78E-02 9.94E-04 99.24E-02  4.67E-02  8.04E-03  98.94E-02
Table 1. Statistical results for the best of each training with six hidden neurons for May 11,

2006, and 1000 training iterations each.

Curvature is a measurement for the generalization abilities of an ANN (For details on the curvature
measure, see Breitner, 2003, p. 93). The curvature has never been used in option pricing with ANN in
the literature before. High curvature indicates that the ANN fits the given training and validation data
well but oscillates which indicates low generalization abilities. The used curvature measure is scaled
linearly. The smallest curvature is realized using four input neurons (including issuers) and without
shortcuts. Choosing a specific ANN beside ¢, or ¢, curvature should be considered as criterion.

The second criterion for applicability of the WARRANT-PRO-1 software suite is the time needed for
successful training. Training times are almost linearly depending on the number of trained networks.
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Larger networks take too much processing time in operational use. Moreover many high frequent os-
cillations occur which result in outliers and poor generalization capabilities. Training times can be
significantly reduced if the initializing boxes for the weights are optimized. An optimized training for
the best identified network, i. e. four input neurons, six inner neurons and no shortcuts, takes only
minutes on a common desktop computer.

5.3 Real-time Market Price Synthesis

As shown in the previous section including the issuer as an input parameter leads to a superior market
price function. To evaluate the ANN only the superior ANN as described above are considered, i. e.
using the issuer as fourth input neurons, six hidden neurons, no shortcuts used. Both p,, calculated by
the ANN and the artificially calculated pps are evaluated by their relative deviation of the observed
prices ps. It is noticeable that the distribution of the deviation of pps and py is significantly right-
skewed for the used volatility measure. Volatility is optimized regarding MAPE, here. Few signifi-
cantly poor priced options for certain deep-out-of-the-money strike prices cause the observable shift in
the distribution. Note that an alternative approach of volatility optimization for pgg might produce dif-
ferent results, e.g., priori outlier elimination might result in a more suitable distribution. Figure 3 illus-
trates the percentage errors of p), and pps compared to ps for May 11 2006.
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Figure 3. Histogram of the relative deviation of pgs and py of the observed prices ps.

Quality of ANN is determined by the appearance of outliers that interfere with both market prices and
reliability. ANN trainings are free of outliers. Analyses indicate that options that are deep out-of-the-
money have market prices that significantly differ from the market valuation model. Relative devia-
tions are shown for each issuer in Table 2. This is consistent with other research which claims that the
Black/Scholes model overprices out-of-the money options significantly (see e. g. Black, 1992; Cox &
Ross, 1976b; MacBeth & Merville, 1980; Pape & Merk, 2003). Reasons for individual issuer specific
pricing of theses options are discussed in detail by Thiel (Thiel, 2001 pp. 223-265). Major reason is
the small trading volume that initiates issuers to control customer behavior using an individual volatil-
ity. Because of the low trading volume there are only few prices available. Deep out-of-the-money
options are underrepresented in the training. Beside deep out-of-the-money options WARRANT-PRO-
1 calculates p,, for at-the-money and in-the-money options adequately.

The training process is fast enough to calculate p), near real-time. Therefore the market price function
can be used to separate expensive options. As shown by related research issuers use the volatility to
control market behavior and options’ trading volume to adjust them to their own hedging preferences.
Analyses of the correlation between input variables and resulting price difference indicate only small
correlations between issuers and outliers. Issuers’ pricing preferences change in time. Thus R* does
not indicate a significant correlation. The market price synthesis offers the possibility to calculate is-
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suer specific prices just-in-time at the moment of a purchasing decision even if no comparable prices
are observable. Furthermore it allows to single out over- and underpriced options. The issuer specific
mean relative deviations from pg are shown in Table 2.

In-the-money Out-of-the-money
Issuer 5700 5800 5900 6000 6100 6200 6300 6400 6500
Commerzbank  0.68%  0.39 % 1.93 % 1.00 % 146%  234% 439% 474% -2146%
Sal. Oppenheim -0.68% -039% -099% -216% -220% -1.96% -029% -1.89% -60.41%
BNP Paribas 0.16% 066% 090% 081% 081% 246% 490% 2.67% -17.92%
Goldman Sachs -1.94% -041% 0.10% -086% -2.86% -1.04% -477% -6.90% -32.93%
Deutsche Bank -0.57%  0.04% 0.05% -0.74%  0.05% 138% 4.03% 595% -17.84%
Uni Credito -1.05% -038% 049% -144% -325% 211% 347% 721% -3523%
Citibank 084% 025% 003% 0.02% 032% 079% -235% 3.11% -1841%

Table 2. Mean percentage difference of ps and py, for selected issuers (six hidden neurons
used) for May 11, 2006. In-the-money options are priced more precisely.

6 CONCLUSIONS AND OUTLOOK

The web mining software agent PISA and the FAUN neurosimulator used in combination offer a wide
range of important financial applications. For the first time both approaches are combined in the soft-
ware suite WARRANT-PRO-1 for real-time option pricing. Financial market data are extracted from
the Internet to synthesize ANN market valuation functions. A feasibility test for German DAX call
options is presented in this article. Financial market data are extracted efficiently and are of high qual-
ity, i. e. the data have no data gaps and no outliers. The neurosimulator reliably trains ANN market
price functions in real-time with various topologies which are evaluated automatically. Unlike other
research approaches the ANN approach does not include estimated future volatility functions or inter-
est rates. In contrast to theoretical option valuation models the heuristic ANN model learns market
price functions from observed option prices only. For example buyers or sellers can single out over-
priced and underpriced options a priori or a posteriori (interpolation/extrapolation of market data).
Issuers can price (OTC-)options for ordinary underlying assets just-in-time and after a few minutes of
(semi-)automatic computation for other underlying assets, too. A comparison to the classic
Black/Scholes model shows significantly improved accuracy of the ANN market price model.

A test with 141 German DAX call warrants shows that the trained ANN calculate prices for relevant
options satisfactorily. Analyses of the calculated market prices also validate research results of others:
The Black/Scholes model clearly tends to overprice out-of-the-money options. Additionally for the
first time warrant issuers are used as input to determine issuer specific deviations from market prices.
Some specific issuer deviations are identified exemplarily based on the ANN model. All singled out
computations are real-time or near-time capable.

Future research will focus on longer observation periods. Additionally the ANN training will be fur-
ther optimized regarding the needed training times. The usability of WARRANT-PRO-1 will be in-
creased, i.e. more statistical analyses, more interfaces to common analysis software like spreadsheet
programs and more advanced ANN option pricing models for evaluation will be realized in the near
future.
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