
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2008 Proceedings European Conference on Information Systems
(ECIS)

2008

EPCIS-based Decision Support for Assembly
Networks
Christoph Goebel
Humboldt-University, Berlin, christoph.goebel@wiwi.hu-berlin.de

Christoph Tribowski
Humboldt-Universitat zu Berlin, christoph.tribowski@wiwi.hu-berlin.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2008

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Goebel, Christoph and Tribowski, Christoph, "EPCIS-based Decision Support for Assembly Networks" (2008). ECIS 2008
Proceedings. 186.
http://aisel.aisnet.org/ecis2008/186

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350658?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2008%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008?utm_source=aisel.aisnet.org%2Fecis2008%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2008%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2008%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008?utm_source=aisel.aisnet.org%2Fecis2008%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008/186?utm_source=aisel.aisnet.org%2Fecis2008%2F186&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

EPCIS-BASED DECISION SUPPORT FOR ASSEMBLY
NETWORKS

Goebel, Christoph, Humboldt-Universität zu Berlin, Spandauer Straße 1, 10178 Berlin,
Germany, christoph.goebel@wiwi.hu-berlin.de

Tribowski, Christoph, Humboldt-Universität zu Berlin, Spandauer Straße 1, 10178 Berlin,
Germany, christoph.tribowski@wiwi.hu-berlin.de

Abstract

The coordination of assembly networks still represents a major challenge in today’s business
environment. We present a RFID-based inter-organizational system architecture which provides the
technological basis for appropriate decision support. While mapping requirements in terms of
information storage and exchange to technical system features, we consistently refer to current
EPCglobal specifications. In contrast to the pull-based architecture proposed by EPCglobal, which is
designed to retrieve and process historical data with a long lifetime, our system architecture follows a
push approach. It allows for the propagation of relevant decision support information on past as well
as future suppy chain events with short validity. The EPCglobal event data specification is extended to
include the required context information. A common protocol layer which interconnects supply chain
stages is described in detail. The use of the protocol layer in connection with standardized formats for
event and context data supports the interoperability of information systems used in different
organizations and facilitates the integration of event-based applications into enterprise architectures.

Keywords: Supply Chain Collaboration, RFID, Information System Integration, EPCglobal.

1 INTRODUCTION

Automatic identification and tracking of material movement by advanced data collection devices such
as Radio Frequency Identification (RFID) is expected to enable more efficient supply chain
management (Gaukler & Seifert 2007). Standardization of a number of components, which make up
the architecture of event management solutions, is on the way. Apart from protocols and data schemas
designed to serve the purpose of receiving, accumulating, filtering, and reporting events pertaining to
particular electronic product codes (EPCs), a preliminary standard for storing and exchanging these
events across the supply chain called EPC Information Services (EPCIS) has been specified by the
global industry consortium EPCglobal (EPCglobal 2007a). While EPC formats and RFID reader
protocols have come a long way, the EPCIS as well as the Object Name Service (ONS) and the EPCIS
Discovery Services (EPCIS DS) are still in an early stage of development. EPCglobal offers the
possibility to certify EPCIS implementations. Such certificates serve to guarantee that software
applications being offered on the market adhere to the standard. IBM has been offering an EPCIS-
compliant software component since December 2006 (Bacheldor 2007). Other software vendors are
expected to follow.

Although the software industry is quick to offer products able to process EPC data, the development of
value-generating business applications still lags behind. As long as real-world applications are rare, it
is hard to justify the definition of a comprehensive standard. Little academic research on supply chain
wide decision support systems based on auto ID technologies has been published so far. Chow et al.
(2007) provide a schematic description of an inter-organizational information system based on RFID
which provides visibility of the processes taking place at a third party logistics provider via a web
front-end. Trappey et al. (2007) describe an intelligent agent system that among other things supports
real-time surveillance of production progress. Although these authors provide interesting starting
points for the realization of inter-organizational event-based applications, they do not go into technical
details concerning the data formats and protocols required to realize these applications. Further
research on inter-organizational decision support systems based on auto ID technology is thus needed.
In particular, it has to be determined which architectures suit which business applications. Since
standardization plays a significant role in the design of inter-organizational information systems,
research on the appropriateness of the current standards proposed by EPCglobal is warranted.

Motivated by the knowledge gap identified above, we focus on three promising areas for further
research:
• The specification of concrete business applications of event-based inter-organizational supply chain

management systems
• The interoperability of the different components that need to be integrated in order to realize such

systems
• The intra- as well as inter-organizational management of the EPC context data provided by

different enterprise applications

We believe that without a specific requirements analysis, the degree of system interoperability cannot
be assessed. The type of context data that needs to be managed and exchanged naturally depends on
the application. Our approach thus consists of first putting the discussion about EPC-based material
tracking into a concrete business context. To this end we describe the challenges involved in
coordinating decentralized make-to-order assembly networks. Our choice of the business context and
application example tries to be as simple and general as possible. Thereafter, we derive technical
requirements that need to be addressed by the architectural design, in particular with respect to inter-
organizational system interoperability. We present an approach to realize a two-layered inter-
organizational event-based architecture. In contrast to the components proposed by EPCglobal, our
architecture follows a push approach for the dissemination of event data. In section 4.1 we describe a

protocol layer providing all necessary communication primitives to interconnect the enterprise systems
of several organizations.

Our main contributions are the following:
• We describe a relevant business application of event-based systems in a multi-organisational

context.
• Business requirements are mapped to technical system features while consistently referring to

current EPCglobal specifications.
• We specify a tentative protocol layer serving to integrate heterogeneous enterprise systems that

exchange EPC context data in order to coordinate an assembly network.
• We identify strengths and weaknesses as well as guidance for the further development of the

current EPCIS standard.

The paper is structured in the following way. Section 2 outlines the business application we focus on.
Section 3 provides a short introduction to the current EPCglobal standard as far as it concerns our
work. In section 4 the main ideas behind and some details of our proposed architecture are
summarized. Section 5 concludes and outlines further reseach opportunities.

2 BUSINESS APPLICATION

Fierce competition and the resulting pressure to reduce costs while maintaining high customer
satisfaction has drawn attention to possible ways to improve supply chain wide coordination.
Collaboration in this context means that several independent organizations work together to achieve
the common goal of supply chain wide cost reduction (Chopra & Meindl 2004, Simatupang &
Sridharan 2005). Supply chain collaboration is a growing field of research, however most
collaborative efforts have so far been focussing on the demand side (Waller et. al 1999, VICS 1998):
Sharing information on historical or expected demand and planning production jointly can greatly
reduce common supply chain inefficiencies caused by phenomena such as the bullwhip effect (Lee
1997). Although more advanced identification technology can help to increase downstream inventory
accuracy (Atali 2006), it has often been argued that the many benefits of standardized auto ID
technologies can be obtained from the ability to track items as they are moving through the supply
chain (Gaukler 2005). Interestingly, short-term coordination of supply processes using upstream
information sources has received little attention in the operations community to date (Chen 2003).

2.1 Event-based Supply Chain Management

The business application described in this paper aims at realizing the benefits of short-term supply
coordination by sharing real-time order progress information among the participants of a supply chain.
Auto ID technologies such as RFID are expected to provide more real time visibility of upstream
supply chain stages and therefore play a pivotal role in building systems to support operational supply
chain management. A recent concept in logistics management termed Supply Chain Event
Management (SCEM) conceives upstream information as a stream of discrete events that can be used
to identify exceptions and trigger alarms (Otto 2003). However, little has been published to date about
the system architecture required to meet the requirements of SCEM and how they can be integrated
into current enterprise system infrastructures. Günther et al. (2006) provide useful starting points for
research in this area.

In order to optimize short-term operations, decision makers along the supply chain need to be
informed about problems at upstream stages as well as their options to deal with a particular problem.
The short-term actions available to steer supply vary according to individual supply chain
characteristics. In long- and medium-haul transportation there oftentimes exist the possibility to
choose among different transportation modes, e.g. sea, sea/air, and air. The picking process taking
place in warehouses can be accelerated if needed, for instance by skipping certain quality assurance

processes. Capacity can be added to production processes, e.g. by increasing machine throughput or by
extending shifts. Information on the available short-term control options is usually valid for a very
short period of time only. Thus, any event management system designed to support operational supply
chain management has to include a component capable of transmitting and offering up-to-date control
options.

In supply chains providing highly complex products such as cars, the end product usually consists of
thousands of parts being delivered to the Original Equipment Manufacturer (OEM) by different
suppliers. Those in turn have their own suppliers who are not visible for the OEM because it maintains
no direct business relationship with them. As cost pressure further increases, complex assembly
networks will become even more dispersed due to specialization, short-term supply contracting and
outsourcing of production and transportation functions. Furthermore, many manufacturing companies
have introduced just-in-time production to minimize undedicated inventory along the supply chain.
The only way to cope with the resulting increase of supply uncertainty is to acquire effective means to
coordinate the flow of material on a real-time basis. The information systems used to provide the
required visibility and decision support need to be highly flexible and easily deployable.

2.2 Formalization of Assembly Networks

To be able to analyze the problem of short-time management of assembly networks in a structured
manner, we introduce the semantics of a simple formalization of such networks in the following.
According to Chopra and Meindl (2004) the four drivers of supply chain management are facilities,
inventories, transportation and information. The way that these drivers are applied determines the
performance and operational cost of a supply chain. Each of the four drivers will be reflected in our
formalization. According to our model, an assembly network consists of one or more supply chain
organizations. A supply chain organization in turn consists of an arbitrary number of internal nodes
which can either be an assembly process node, an inventory node or a transportation node. Internal
nodes are connected by edges indicating the flow of material. Assembly and transportation processes
always need to be decoupled by an inventory node. Furthermore, one inventory node always refers to
one particular item type. The upstream end of the formal assembly network is marked by order book
nodes. Each order book holds the production orders for a subsequent assembly node.

Figure 1 shows an exemplary assembly network consisting of four supply chain organizations forming
a three-tiered assembly network. The network conforms to the rules states above. We will use this
example throughout the paper to illustrate the working of our event-based architecture.

Figure 1. Example of formalized assembly network

The information required to optimize the coordination of an assembly network basically consists of
schedules, i.e. events that are expected to take place at certain dates, the events actually taking place as
material moves downstream, and the relevant control options. The purpose of the system architecture
proposed in section 4 of this paper is to provide all nodes in the network with the technical means to
share the required information in a decentralized way.

3 THE EPCGLOBAL SPECIFICATIONS

3.1 The EPCglobal Architecture Framework

The EPCglobal specifications describe a number of components required to realize a platform-
independent system architecture for storage and retrieval of EPC-related data. EPCglobal has specified
air interfaces for several tag types and reader protocols that serve to effectively read out EPC data in
multi-tag, multi-reader environments. The Application Level Events (ALE) specification defines how
to request event data from readers so that it can be used as input for higher level applications. These
applications are supposed to work on the basis of the EPCIS which is described in more detail in
section 3.2. To enable easy access to worldwide EPC-related data, EPCglobal has provided the
specification for a hierarchical EPCIS lookup service. It is based on similar principles as the well-
known Domain Name Service (DNS) used for the resolution of Internet host addresses. The lookup
service used to access the EPCIS of the company which commissioned the EPC is specified in the
Object Name Service (ONS) standard, whereas the EPCIS Discovery Services standard, which will be
used to access the EPCIS of all companies that have information about the object, is still under
development.

3.2 The EPCglobal EPCIS Specification

The EPCIS as conceived by EPCglobal consists of three components: A repository for event data and
two interfaces serving to capture and query event data stored in this repository. Although EPCglobal
does not provide an implementation of any of these components they have developed the specification
of an extendable data model for supply chain events which is depicted in figure 2.

Figure 2. Extended EPCglobal Data Model

The capture interface receives formatted event data from the ALE and adds the required context data
resulting in one of the event types shown in figure 2. The query interface allows applications to
specify and manage queries for event data using a query control interface. Querying can be done on-

demand ('pull' approach) or by using the control interface to define and register standing queries that
are executed periodically ('push' approach).1

An EPCISEvent can refer to anything happening in a supply chain that can be linked to a physical
item and a discrete date. The different event types specified in the EPCglobal data model constitute the
basic information handled by the EPCIS. Each event makes a statement about the what, where, when,
and why of a supply chain event. The what dimension is specified by a list of EPCs identifying one or
several physical objects and a list of so-called business transactions that these items are involved in. A
business transaction can for instance be a production order. While the EPCs can be read from the
transponder itself, the information of the corresponding business transaction needs to be retrieved from
some information system. The when of an event is established by two time stamps specifying the time
when the event was captured and the time it took place. The where dimension is specified by the two
variables readPoint and bizLocation representing the place where the event was recorded and
the place where the item is expected to be located after the occurance of the event. The value of
readPoint is expected to be a technical ID (for instance derived from the reader infrastructure),
whereas the business location provides the corresponding context information. The why refers to a
business step (bizStep) and disposition ID (disposition) denoting the state of the physical item
by the time its EPC is read and its disposition after that moment. For more detailed information on the
different types of events present in figure 2 we refer the reader to Hribernik et al. (2007).

3.3 Application Requirements versus EPCglobal Architecture Features

Using a common data format like the one specified by EPCglobal to store EPC-related data is
definitely valuable in providing interoperability between applications used in one organization as well
as for the interchange of event data between organizations. However, the business application
described in section 2 requires context data in the shape of expected events. Therefore we extended the
EPCIS event data framework by the class ExpectedEvent.

According to EPCglobal, inter-organizational sharing of event data should be done using the
EPCglobal core services, in particular the Object Name Service and the EPCIS Discovery Services.
However, this results in a centralized query infrastructure in the hands of EPCglobal with the two
mentioned services representing possible single points of failure. Furthermore, the context data
required to make sense of the event data would have to be shared via an additional, unstandardized
communication channel. We strive to specify an architecture that works in a decentralized manner and
takes advatage of existing bilateral business relationships in the supply chain. We believe that the
alternative system architecture proposed in the following suits the requirements of our business
application better than the one envisioned by EPCglobal.

4 AN EPCIS-BASED SYSTEM ARCHITECTURE FOR SCEM

4.1 Protocol Layer

The entities communicating on the protocol layer are the nodes of the assembly network. Within our
architecture these nodes represent communication hubs and controllers at the same time. Each node in
the assembly network maintains a list of predecessors and a successor node for each type of product.
Upstream messages are sent to some subset of predecessor nodes while downstream messages are sent
to the successor node. Different product types have different bills of material, i.e. nodes would
maintain at most one predecessor and successor list for each product type.

1 In a very general sense both approaches follow the pull principle since in both cases data delivery is preceded by a more or
less specific request.

Figure 3. Protocol Layer for EPCIS-based SCEM

The communication taking place to coordinate the assembly of products is separated into six phases.
Figure 3 presents an overview of the entire protocol. During phase one, lead times are quoted
recursively. Each node implementing the protocol's communication primitives can query its upstream
assembly network to find out if a certain delivery date can be met. Answering the query implies
searching the assembly tree of a particular product type for the maximum lead time path. The answer
consists of the date by which the order has to be issued at the root node in order to meet the requested
delivery date. There are two message formats defined for this communication phase. An upstream
message called leadtimeRequest containing the attributes productType and endDate, and a
downstream message called leadtimeQuote containing the attribute startDate. Phase 1 is
given as pseudo code below:
• Upon reception of leadtimeRequest(productType:productTypeID,

endDate:Date) by node i:
o If node i is of type orderbook:

� Set startDate to the earliest startDate incremented by node i’s
expected duration

� Send leadtimeQuote(productType:productTypeID, startDate:Date) to
involved successor node

o Otherwise:
� Send leadtimeRequest(productType:productTypeID, endDate:Date) to all

corresponding predecessor nodes
• Upon reception of leadtimeQuote(productType:productTypeID,

startDate:Date) by node i from all involved predecessor nodes:
o Set startDate to the maximum startDate quoted by the predecessors

incremented by i's expected duration
o Send leadtimeQuote(productType:productTypeID, startDate:Date) to the

involved successor node

In our example, if the root node of organization A initiates the request, it will eventually end up with
the expected lead time of the entire assembly process. From the value of startDate it can infer
whether the order can be filled before the requested delivery date or not. If the quoted startDate
has already passed, another query using a later delivery date can be initiated.

Order propagation constitutes the second communication phase. In our example, upon reception of a
customer order, organization A initializes an upward information diffusion process of order data: A's
root node sends an order message to its predecessors indicating that an order has been issued. The
message contains a unique order ID as well as the scheduled date of delivery. Each order ID is
represented by a BizTransaction object. The predecessor nodes propagate the order ID and the
scheduled delivery date decremented by their respective expected process durations. The propagation
process terminates when an order book node is reached. Thereafter, the order is stored in the order

book until the transmitted date coincides with the actual time. If this happens, the assembly process
represented by the successor node is triggered. Phase 2 is given as pseudo code below:
• Upon reception of order(orderID:BizTransaction, deliveryDate:Date) by

node i from successor:
o Set deliveryDate to the deliveryDate sent by the successor decremented

by i's duration
o Send order(orderID:BizTransaction, deliveryDate:Date) to all involved

predecessor nodes

The third communication phase consists of messages containing ExpectedEvent objects which are
sent downstream. The expectedEvents messages used in this phase serve to let downstream nodes
know when certain items are scheduled to enter and leave each node. The ExpectedEvent class
which is used to store expected events represents an extension of the EPCglobal EPCIS standard. We
embedded the event type ExpectedEvent as child of EPCISEvent (see figure 2). According to
EPCglobal, adding a new event type implies updating the standard specification (EPCglobal 2007b).
In our case the semantics of the EPCISEvent class would have to be adapted to include the
possibility of events that have not yet taken place. Upon reception of an expectedEvents message
concerning a particular order from all involved predecessors, a node remembers which events are
scheduled to take place in the future by storing them in its local event repository or in the volatile
storage of an SCEM application. Then it creates the events it expects to happen at its own entry and
exit points. As indicated by figure 2, an expected event requires the attributes epcList, action and
BizStep. By the time an ExpectedEvent object is created, there are no EPCs stored as values of
its epcList attribute. If the object is created in response to an order, the action attribute is set to
ADD. In case expected events need to be withdrawn, for instance because the corresponding order was
cancelled, the action attribute is set to DELETE. The BizStep attribute is needed as a key to later
match the expected with the actual events and is either set to the BizStepID of the entry or the exit
point of the node. Newly created ExpectedEvent objects are combined with the received objects
into a new set and sent downstream. Phase 3 is given as pseudo code below:
• Upon reception of expectedEvents(expectedEventSet:Set[Expected-Event])

pertaining to a particular BizTransaction by node i from all involved
predecessors:
o Capture all ExpectedEvent objects contained in all expectedEventSets
o Merge all expectedEventSets to obtain mergedExpectedEventSet
o Create own ExpectedEvent objects and add them to

mergedExpectedEventSet
o Send expectedEvents(mergedExpectedEventSet:Set[Expected-Event]) to the

involved successor node

Phase 4 serves to complete the expected events created in phase 3 by the EPCs. This information is
needed to identify pairs of expected and actual events which have to be compared in order to detect
delays. We assume that EPCs are allocated at about the same time that physical objects are associated
with an EPC. We believe that this is a reasonable assumption considering practical constraints such as
RFID printers, which store fixed EPCs on passive tags. When a physical object gets associated with an
EPC at some node, this node sends an itemTagged message to its successor. Each message of this
type contains an EPC as well as the keys required to map the allocated or removed EPC to event
entries at downstream nodes. Furthermore, it contains the type of action to be triggered by the
message, i.e. either association or disassociation of EPC and expected event. When all stored
ExpectedEvent objects have been enabled by adding one or several EPCs, each node possesses the
information it needs to identify delays as upstream events of any type. Phase 4 is given as pseudo code
below:
• Upon reception of itemTagged(epc:EPC, orderID:BizTransID,

nodeStep:BizStepID, action:ActionID) by node i from a predecessor:
o If action is ADD:

� Add EPC to all previously captured ExpectedEvents with the
corresponding BizTransID and BizStepID

o If action is DELETE:
� Remove EPC from all previously captured ExpectedEvents with the

corresponding BizTransID and BizStepID

o Send itemTagged(epc:EPC, orderID:BizTransID, nodeStep:BizStepID,
action:ActionID) to involved successor node

In phase 5 messages of type upstreamEvent are sent downstream to spread the news on actual
events taking place upstream. Each of them carries an EPCISEvent object including the attached
BizTransaction object referring to the order. It would be straightforward to only use the
generated ObjectEvent objects in the protocol since they are created at all process steps. Phase 5 is
given in pseudo code below:
• Upon capturing of event:EPCISEvent at node i:

o Send upstreamEvent(event:EPCISEvent) to the involved successor node
• Upon reception of upstreamEvent(event:EPCISEvent) by node i from a

predecessor:
o Capture event
o Send upstreamEvent(event:EPCISEvent) to the involved successor node

The final phase of the communication protocol allows each node to collect up-to-date action
alternatives to make up for a particular delay. By comparing the dates of expected and actual events
that have been captured during the previous communication phases a node can identify upstream
delays. However, in order to exert control, the node requires information about which actions can
currently be taken to influence the processing of a particular order. We refer to the path of nodes
between the node which has caused the delay and the node that identifies it as the action path of a
delay. Our protocol provides the opportunity to query the upstream network for these action paths.
Any node can initiate such a query by sending a message of type actionsRequest to all its
predecessors. This message contains three attributes: The EPCs that the delayed event refers to, the
orderID of the delayed order and the BizStepID of the processing step at which the delay
occurred. When an upstream node receives a message of type actionsRequest, it first checks
whether it has stored an ExpectedEvent containing the EPCs in the message. If this is the case, it
compares the BizStepID with the one of its exit point. If the two BizStepIDs are not equal, it
forwards the message to all of its predecessors that are involved in the assembly process. Otherwise,
the node which has caused the delay has been reached. This node then creates a message of the type
upstreamActions containing information on all possible actions that can be taken to speed up
order processing at its site. Then it forwards the message to its successor. If the successor is not the
original requester, it adds its own ways to deal with delays concerning this order and sends the
message to its own successor. This way the original requester ends up with a list of all up-to-date
opportunities along the action path to speed up a particular order. Phase 6 is given in pseudo code
below:
• Upon reception of actionsRequest(EPCs:Set[EPC], orderID:BizTransaction,

delayedStepID:BizStepID) by node i from successor:
o If an ExpectedEvent containing any of the EPCs in EPCs exists:

� If delayedStepID equals exitStepID:
• Retrieve available speedup actions for EPCs and orderID
• Send message upstreamActions(actions:Set[Action]) to involved

successor
� Otherwise:

• Send message actionsRequest(EPCs:Set[EPC], orderID:BizTransaction,
delayedStepID:BizStepID) to all involved predecessors

• Upon reception of upstreamActions(EPCs:Set[EPC], orderID:BizTransaction,
actions:Set[Action]) by node i from a predecessor:
o If node i is the original requester:

� Evaluate and trigger actions
o Otherwise:

� Retrieve available speedup actions corresponding with EPCs and
orderID

� Append these speedup actions to actions
� Send message upstreamActions(EPCs:Set[EPC], orderID:BizTransaction,

actions:Set[Actions]) to the involved successor

4.2 Application Layer

Having presented the protocol layer of our architecture in the previous section, we now turn to its
application layer. The application layer consists of all enterprise systems that use the primitives of the
protocol described in section 4.1.

Capacity in the shape of production slots, warehouse space or transportation capacity is usually
managed by a corresponding information system which forms part of an Enterprise Resource Planning
(ERP) solution. The quotation of process durations in phases 1 and 2 of the communication protocol
described in section 4.1 thus depends on the input from those systems. The data that has to be
provisioned to the protocol includes the quotable process start dates, the identifiers of entry and exit
points of nodes in the assembly network, and the available speedup actions. Customer facing systems
such as order management provide other inputs required for the working of the protocol. These inputs
include the requested delivery date for an order, the type of product to be assembled and the allocated
order IDs. Order management forms part of most standard ERP solutions.

EPCs are allocated by the EPC management of an organization. Each EPCglobal subscriber manages
its own set of EPCs which contain the organization's unique General Manager Number. The subscriber
organization is responsible for maintaining the numbers of Object Classes and Serial Numbers, which
together with the organization's General Manager Number form the EPC (EPCglobal 2006). When a
new EPC is created and attached to a physical object, this information needs to be published on the
protocol layer.

The application layer component of the EPCIS-based decision support architecture required at each
node consists of two components: A local EPCIS implementation and a SCEM application interfacing
with users. Expected and actual events are stored in local EPC repositories which need to be accessed
by the SCEM application to identify delays. Alternatively, SCEM applications can maintain their own
event storage which eliminates the need for stand-alone EPC repositories as envisioned by EPCglobal.
Furthermore, the SCEM application also needs to have direct access to the protocol layer in order to
retrieve action paths.

Figure 4. Two-layered EPCIS-based Architecture for SCEM

The purpose of the SCEM application is to provide the human decision maker, who is responsible for
the coordination of the decentralized assembly network, with the means to monitor and control
activities. The SCEM application could for instance allow for the individual specification of service
levels that need to be met. These service levels would then be translated into tolerable delays so that
action paths are only retrieved if delays reach a certain threshold. Furthermore, the functionality of the

SCEM application could include optimization routines that support the decision maker to pick an
optimal action plan in each situation. Since there exists a potentially large number of possible actions
that can be taken to speed up order processing on the action path and little time to decide which
combination results in the least implementation cost, further IT support is definitely warranted.

Figure 4 depicts the general layout of the proposed architecture. The three components Supply Chain
Event Management, EPC Management and EPC Information Services have to be added to the existing
ERP solution in order to let an organization take advantage of the data being transmitted on the
protocol layer.

5 CONCLUSIONS

We have presented a business application and a corresponding information system architecture
providing the basis for the short-term coordination of a multi-organizational assembly network. The
proposed system architecture was chosen for a number of reasons each of which can be attributed to
the requirements of short-term decision support in dynamic multi-organizational business
environments, in particular system interoperability and the inter-organizational management of EPC
context data.

We have chosen to address the informational needs of our business application in order to derive
concrete requirements. The concept we describe comes near to what is known as SCEM. SCEM has
found general approval in practice since it addresses a number of pressing problems in today's
competitive environment. To the best of our knowledge, the paper at hand represents the first attempt
to suggest possible ways to realize SCEM applications based on the EPCglobal specifications while
taking their specific requirements regarding interoperability and systems integration in multi-
organizational environments into account.

From an operational point of view, an obvious shortcoming of the proposed architecture is that it does
not address dynamic scheduling. Although it allows for order cancellation, the schedule of other orders
encoded in the form of ExpectedEvent objects throughout the network cannot be changed in
response to such an event. Certainly the protocol layer could be extended in order to deal with
dynamic scheduling but it remains to be seen if such an extension is feasible in practical
circumstances. Another limitation of the architecture results from its decentralized structure. Messages
are forwarded along the supply chain, i.e. if an organization in the middle of the supply chain does not
implement the protocol, our approach will not work. This problem could be solved by a third party
willing to act as a trusted communication intermediary.

The proposed architecture supports interoperability in two ways: Firstly, due to its two-layered design
there is no need to standardize any components on the application layer which facilitates the
development and integration of the EPC/SCEM components. Secondly, one common way to describe
event data and its context based on the EPCglobal event data specification is used both for intra- and
inter-organizational communication.

Regarding the use of the EPCglobal specifications for SCEM applications we come to the following
conclusions: Firstly, although EPCglobal provides a very good starting point for the format of event
data, the specifications would need to be extended semantically to include the expectation of events.
Secondly, an implementation of the EPCIS query interface is optional for the application described in
this paper. Neither do we use the EPCglobal core services which are designed to search and retrieve
EPC-related event data for our application. However, we acknowledge that the distribution of actual
events (phase 5 of our protocol) could also be realized by querying the EPC Discovery Services for
events related to all EPCs known to be involved in the processing of the order.

In our application up-to-date context data required by downstream nodes and organizations gets
distributed without former request as soon as it becomes available. This approach disburdens
downstream organizations from the need to maintain a comprehensive up-to-date internal process view

of other organizations. Furthermore, ex-ante knowledge of the organisational structure of the assembly
network is not required, which represents a crucial advantage in today's dynamic and complex supply
chains. Synchronization of data and context is assured by design since data and context are sent via the
same communication channel.

We see a number of promising areas for further research on the proposed architecture. First of all, the
architectural design needs to undergo further validation. Secondly, it needs to be extended to cope
with dynamic rescheduling. The business logic of the actual decision support system, i.e. the
development of algorithms used to optimize courses of action based on action path data, are a
promising research direction. Still another issue that needs to be dealt with is authentication and
security. The communication taking place on the protocol layer needs to be secured against malicious
behaviour, e.g. by using dedicated public key infrastructures.

References
Atali, A., Lee, H. and Özer, Ö. (2006). If the Inventory Manager Knew: Value of Visibility and RFID

under Imperfect Inventory Information. In Proceedings of the Manufacturing and Service
Operations Management Conference, Evanston, Illinois.

Bacheldor, B. (2007). EPCglobal Readies EPCIS Certification Program. http://www.rfidjournal.com.
Chen, F. (2003). Information Sharing and Supply Chain Coordination. In T. de Kok and S. Graves

(eds.): Handbook of Operations Research and Management Science: Supply Chain Management,
North-Holland, Amsterdam, The Netherlands, p. 341-421.

Chopra, S. and Meindl, P. (2004). Supply Chain Management. Strategy, Planning, and Operations.
Prentice-Hall, Upper Saddle River.

Chow, H. K. H., Choy, K. L., Lee, W. B. and Chan F. B. S. (2007). Integration of Web-based and
RFID Technology in Visualizing Logistics Operations - A Case Study. Supply Chain Management:
An International Journal, 12 (3), 221-234.

EPCglobal (2006), Tag Data Standard Version 1.3.1 Specification. http://www.epcglobalinc.org.
EPCglobal (2007a). EPC Information Services (EPCIS) Version 1.0 Specification.

http://www.epcglobalinc.org.
EPCglobal (2007b). The EPCglobal Architecture Framework. http://www.epcglobalinc.org.
Gaukler, G. M. (2005). RFID in Supply Chain Management. Ph.D. dissertation, Stanford University.
Gaukler, G. M. and Seifert, R. W. (2007). Applications of RFID in Supply Chains. In H. Jung, F. F.

Chen, and B. Jeong, (eds.): Trends in Supply Chain Design and Management: Technologies and
Methodologies, Springer-Verlag London Ltd.

Günther, O., Ivantysynova, L., Teltzrow, M. and Ziekow, H. (2006). Kooperation in RFID-gestützten
Wertschöpfungsnetzen. Industrie Management, 22 (3), 41-44.

Hribernik, K. A., Schnatmeyer, M., Plettner, A. and Thoben, K.-D. (2007). Application of the
Electronic Product Code EPC to the Product Lifecycle of Electronic Products. Proceedings of the
EU RFID Forum 2007, Brussels, Belgium.

Lee, H. L., Padmanabhan, V. and Whang, S. (1997). Information Distortion in a Supply Chain: The
’Bullwhip Effect’. Management Science, 43 (4), 546-558.

Otto, A. (2003). Supply Chain Event Management: Three Perspectives. International Journal of
Logistics Management, 14 (2), 1-13.

Simatupang, T. M. and Sridharan, R. (2005). An Integrative Framework for Supply Chain
Collaboration. The International Journal of Logistics Management, 16 (2), 257-274.

Trappey, A. J. C., Lu, T.-H. and Fu, L.-D. (2007). Development of an Intelligent Agent System for
Collaborative Mold Production with RFID Technology. Robotics and Computer-Integrated
Manufacturing, Article in Press.

Voluntary Interindustry Commerce Standards Association (VICS) (1998). Collaborative Planning,
Forecasting and Replenishment. http://www.cpfr.org.

Waller, M., Johnson, E. M. and Davis, T. (1999). Vendor Managed Inventory in the Retail Supply
Chain. Journal of Business Logistics, 20 (1), 183-203.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	EPCIS-based Decision Support for Assembly Networks
	Christoph Goebel
	Christoph Tribowski
	Recommended Citation

	Microsoft Word - $ASQ4108933_File000000_55977777.doc

