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Abstract

It is well known that complexity affects software development and maintenance costs. In the Open 
Source context, the sharing of development and maintenance effort among developers is a 
fundamental tenet, which can be thought as a driver to reduce the impact of complexity on 
maintenance costs. However, complexity is a structural property of code, which is not quantitatively 
accounted for in traditional cost models. 

This paper introduces the concept of functional complexity, which weights the well-established 
McCabe's cyclomatic complexity metric to the number of interactive functional elements that an 
application provides to users. Such metric is used to analyze how Open Source development costs are
affected by complexity. Traditional cost models, like CoCoMo, do not take into account the impact of  
complexity in estimating costs by means of accurate indicators. In contrast, results show how a higher 
complexity is associated with a lower design quality of code, and, hence, higher maintenance costs. 
Consequently, results suggest that a reliable effort estimation should be based on a precise evaluation 
of software complexity. Analyses are based on quality, complexity, and maintenance effort data 
collected for 59 Open Source applications (corresponding to 906 versions) selected from the 
SourceForge.net repository.

Keywords: Open Source Software complexity, costs and quality.



1 INTRODUCTION

Authors in the software economics field concur that software maintenance accounts for the bulk of the 
costs over an application’s life cycle (Lientz and Swanson 1981, Banker et al. 1993 and Boehm et al. 
2004). The cost efficiency of maintenance interventions is affected by many factors: a fundamental 
cost driver is the complexity of code. Historically, many models of software cost estimation focused 
on the evaluation of development costs, without considering complexity metrics. In contrast, as 
suggested by a study on commercial software by Banker et al. (1993), high levels of software 
complexity account for approximately 25% of maintenance costs, which is equivalent to more than 
17% of total life-cycle costs.

This paper addresses this issue by analyzing the impact of software functional complexity on design 
cost and quality metrics in an Open Source context. Since complexity is an inherent property of a 
software system, independent of the quality of design, this paper posits that a higher level of 
complexity negatively affects design quality and, consequently, development and maintenance costs, 
even if Open Source software matches high average quality standards (O’Reilly 1999 and Paulson et 
al. 2004). The paper discusses how this relationship between complexity and costs cannot be estimated
with traditional cost models (such as CoCoMo), which do not account for complexity with objective 
measures.

The presentation is organized as follows. Section 2 presents an overview of the existing models for the 
evaluation of software quality, complexity, and costs. Section 3 presents the research hypotheses and 
testing method. Section 4 shows the statistical verification of research hypotheses, while Section 5 
presents research results and future work.

2 RELATED WORK

The estimation of software development costs and the analysis of software properties by means of 
metrics have always been important research subjects in the software engineering community. The 
first and most referenced software metric is the number of source lines of code, commonly called
SLOC, which is still broadly used (Park 1992). Despite, or even because of, the simplicity of this 
metric, it has been subjected to severe criticism (see Jones 1978, Rudolph 1983, Jones 1986, Canning 
1986, Low and Jeffery 1990, Tegarden et al. 1992, Ghezzi et al. 2003). However, it can be considered 
a baseline metric used for comparison with other measures as suggested by Basili and Hutchens 
(1983). Apart from measures focusing on software size, complexity and quality represent the main 
focus of the research on software metrics. The research by McCabe (1976) and Halstead (1977) are 
considered cornerstone contributions in the field of complexity metrics, and have been widely used 
also in industrial contexts (see Halstead et al. 1976, Fitzsimmons and Love 1978 and Christensen et al. 
1981).

The measurement of software quality is traditionally based upon complexity and design metrics. The 
first works proposed by Oviedo (1980) and Troy et al. (1981) based their evaluation on complexity 
metrics. More recently, the quality of software has been intended as a complex property, which can be 
studied from many perspectives. In particular, with the diffusion of the object oriented programming 
paradigm, the concept of quality has been tightly tied to the notion of coupling and cohesion (see
Emerson 1984a, Emerson 1984b, Longworth et al. 1986). More recently, some metrics suites have 
been proposed to evaluate the quality of design of an object oriented software, like those by 
Chidamber and Kemerer (1994) and Brito e Abreu (1995); these works have been subject to a lively 
debate and in-depth analysis, which have proved the use of the metrics as indicators of the fault-
proneness of software (see Basili et al. 1996, Rosenberg 1998, Chidamber et al. 1998, Briand et al. 
1999 and Gyimothy et al. 2005).



Several models and techniques for cost estimation have been proposed (e.g., Basili et al. 1996a, Zhao 
et al. 2003, Boehm et al. 2004, Kemerer 1987 and Briand et al. 1999). The literature makes a 
distinction between the initial development cost and the cost of subsequent maintenance interventions. 
The latter has been empirically found to account for about 75% of the total development cost of an 
application over the entire application’s life cycle (Lientz and Swanson 1981, Banker et al. 1993 and 
Boehm et al. 2004). The first and most widely used cost model is the Constructive Cost Model 
(CoCoMo), defined by Boehm in the early ’80s (Boehm 1981). CoCoMo provides a framework to 
calculate initial development costs based on an estimate of the time and effort (man months) required 
to develop a target number of lines of code (SLOC). The functional characteristics of an application 
are taken into account by means of context-dependent parameters. The model has continuously 
evolved over time: Ada CoCoMo (released in 1987) and CoCoMo 2.0 (released in 1995) represent the 
main developments of the original CoCoMo (see Boehm et al. 1995). The latter takes into account 
requirements, in addition to SLOC. Requirements are measured in function points (FPs), i.e. the 
number of elementary operations performed by a software application (IFPUG 1999, Garmus and 
Herron 2001 and Ahn et al. 2003). 

3 RESEARCH METHOD

This section presents our research approach. Section 3.1 discusses the research hypotheses, Section 3.2 
presents the set of metrics that has been used for empirical analyses, Section 3.3 describes the data 
sample, while Section 3.4 reports data analyses and research results.

3.1 Research hypotheses

Software cost models are largely used both in industrial and academic contexts as a reference for 
estimating development and maintenance effort. These models, such as CoCoMo, are essentially size-
based, since the fundamental parameter they rely on for effort estimation is the size of the software 
that has to be developed or maintained (see Section 2). Other factors, such as project complexity, 
platform-dependent characteristics or project reusability and reliability are taken into account only in a 
qualitative way. For example, in CoCoMo II the assessment of project complexity is performed
through a subjective evaluation of the level of complexity, which has to be ranked on a six-degree 
scale, from very low to extra high. This lack of objective measures is a serious threat to the accuracy 
of the cost estimates provided by the models, since the same level of complexity might be perceived as 
more or less critical by different individuals (for example, depending on personal skills, experience,
and even domain knowledge). Consequently, cost estimations related to software projects of
comparable size could be similar even thought their complexity levels are actually different. However, 
as pointed out by Banker et al. (1993) and Banker and Slaughter (1996), complexity is a factor that 
actually influences software development and maintenance costs: the greater the complexity, the 
higher the unit development and maintenance costs. From these considerations follows the first 
research hypothesis:

H1: Traditional cost models fail to account for complexity. In contrast, complexity has a significant 
and non-negligible impact on costs.

As noted by Chan et al. (1996) and Kataoka et al. (2002), software quality can be improved through 
periodic refactoring interventions. Since the evidence from literature indicates that quality affects 
development and maintenance costs (Banker et al. 1993, Banker and Slaughter 1996), one might think 
that by restoring quality, refactorings can also reduce the complexity level and, hence, costs. However, 
as noted by Raymond (2004), each application has an inherent level of complexity that is determined 
by its requirements. A complex problem usually involves a complex solution. The inherent complexity 
of an application cannot be indefinitely reduced, since there is a threshold above which it is not 
possible to trade away features for simplicity. That is, the implementation of the functional 



requirements of an application implies a minimum level of inherent complexity which cannot be 
eliminated by refactoring. This is summarized by the second research hypothesis:

H2: In an Open Source context, complexity and refactoring frequency are unrelated variables.
Complexity is an inherent characteristic whose impact on costs cannot be mitigated by investing on 
quality.

However, a level of unnecessary complexity (cf. Raymond 2004) might be introduced if designers and 
programmers do not pay attention to good design and programming rules and practices, or simply do
not follow the simplest way to implement a required set of features. Consequently, the level of 
complexity could be uselessly high, with a negative effect on development and maintenance costs. 
Open Source software is generally considered to meet high quality standards (cf. Fitzgerald 2004). The 
common perception is that the looser governance approach of open projects removes the pressure of 
deadlines and encourages the individual motivation of developers towards the production of a unique 
artefact (cf. Howison & Crowston 2005). As a consequence, we hypothesize that Open Source 
software is not affected by unnecessary complexity, and that its quality level is high. These
considerations lead to our third research hypothesis:

H3: In an Open Source context, the average level of design quality is high with respect to literature
benchmarks.

The literature indicates that applications with higher levels of complexity are harder to design and 
manage. Managing complexity involves an effort that may lead designers to focus on problem solving 
rather than code and design polishing. This leads to a negative effect of complexity on quality, as 
stated by our fourth research hypothesis:

H4: In an Open Source context, applications with greater complexity have a lower level of design 
quality.

3.2 Metrics of complexity and quality

The evaluation of software properties has been carried out through the measurement of a set of 18 
metrics intended to asses various characteristics at different levels of granularity. Table 2 reports a 
detailed description of the complete metric set. Applications have been described from a general point 
of view through a set of “classic” metrics, intended to provide information about the size of the 
application (source lines of code, number of methods and number of interactive GUI functionalities). 
The inherent complexity of each application has been measured by introducing the concept of 
functional complexity, which is defined as follows. Given a system S of cyclomatic complexity CCS, 
composed by its set of object classes O = {O1, ..., On} and given for each object class Oi its set of 
methods Mi = {Mi

1, ..., Mi
n}, we define the average functional complexity FC(S) for system S as:
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where FUN(S) is the number of functionalities of system S. The intuitive meaning of this metric is to 
assess how complex is an application given the number of interactive functionalities it provides to the 
users. To support the evaluation of applications’ design properties, two of the most referenced suites 
of object-oriented design metrics have been included in the metrics set: in particular, the MOOD 
metric set (Brito e Abreu, 1995) for evaluations at system level, and the Chidamber and Kemerer 
metrics suite (Chidamber and Kemerer, 1994) for measurements at class level. 

Maintenance effort has been estimated by measuring the days elapsed between the release of 
subsequent versions, weighted by the number of active developers of each project. Considering the i-th 
version vk

i of application k, the maintenance effort for the subsequent version j is:

ME(j) = [date(vk
j) – date(vk

i)] · ak · EAF,



where ak is the number of active developers of application k (for the purposes of this study, ak has been 
set equal to the number of project administrators as indicated on each project home page on 
SourceForge.net). EAF is an effort adjustment factor which has been estimated with an empirical 
survey of 940 active developers of the SourceForge.net community: 87 contributors have responded to 
the survey, allowing the estimation of the effort adjustment factor for about 50% of the projects in our 
sample. Average values have been used for the rest of the projects. The survey was aimed at assessing
the fraction of time that each developer spends in development activities related to the Open Source 
project he or she is involved in. The adjustment factor allows us to address the fact that Open source 
developers may not work full time and that they might be involved in more than one project at a time. 
Table 1 presents some statistics from the survey. Confidence intervals (C.I.) at a significance level of 
α = 0.05 have been computed to verify the statistical significance of the surveyed mean values.

Variable n Avg St.Dev. C.I.
Hr/Week (Admin) 29 8.09 9.65 ±4.24
Hr/Week (Devel) 56 8.62 12.55 ±3.86

Table 1 Development effort of Open Source developers.

Maintenance costs have been estimated using the CoCoMo model (Boehm 1981, Boehm 2000) in its 
basic form. Model parameters have been weighted for the evaluation of organic projects, which are 
defined as relatively small, simple software projects in which small teams with good application 
experience work to a set of less than rigid requirements. This seems to be an appropriate description of 
the projects selected for this study. The expression of the cost model used for the study is:

MC = a · KSLOCb,

where MC is the estimated maintenance cost (expressed in man months), KSLOC is the size of the 
application to be developed and a and b are parameters whose values are a = 2.40 and b = 1.05.

Metric Description
SLOC (Source lines of Code) Physical non white and non comment lines of code
CC (Cyclomatic Complexity) Decision points in the program flow
FUN (Functionalities) Interactive GUI elements
M (Methods) Methods of the application
ME (Maintenance Effort) Empirical estimate
MC (Maintenance Cost) CoCoMo estimate
WMC Weighted method complexity for a class
DIT Max path length from a class to root of inheritance tree
RFC Potentially executable methods in response to a received message
NOC Immediate subclasses of a class
CBO Distinct classes used by a given class (excludes inheritance relationships)
LCOM Average % of methods accessing different attributes in a class
COF Average number of coupling relationships
AHF Percentage of hidden attributes
MHF Percentage of hidden methods
AIF Percentage of inherited attributes
MIF Percentage of inherited methods
PF Actual polymorphic situations

Table 2 Metric set for software evaluation

3.3 Data Sample

The data set used for this study has been directly measured on the source code of a sample of Open 
Source community applications taken from the SourceForge.net repository. The data sample has been 



selected to preserve the heterogeneity of the classification domains of SourceForge.net, by considering
a significant subset of applications. Since mining on line repositories such as SourceForge.net can lead 
to controversial results because of the varying quality of available data (Howison and Crowston 2004), 
applications have been selected according to the following criteria:
• Project Maturity: beta status or higher. Less mature applications have been excluded because of 

their instability and low significance.
• Version History: at least 5 versions released.
• Domain: selected applications are uniformly distributed across the SourceForge.net domain 

hierarchy.

The initial set of applications has been automatically cleaned by removing all the applications that 
were not consistent with our quality requirements, leading to dataset DS1.

3.4 Data Analyses

The goal of our analyses is to investigate how design quality metrics of Open Source software are 
affected by the complexity of source code. This goal is achieved by analyzing the temporal variations 
of the data describing our application sample. Dataset DS1 has been manually preprocessed to identify 
and correct systematic errors, such as invalid or non significant application versions downloaded and 
incorrectly included as part of the sample. Preprocessing has been focused on time-dependent 
variables, such as the number of source lines of code (SLOC), functionalities (F), methods (M) and 
related variations (∆SLOC, ∆F and ∆M).

First, variables have been analyzed visually to identify outliers. Results have been used as a starting 
point for more accurate analyses. Time series typically have a structure, such as auto-regression or
trend, that should be identifiable. Autoregressive linear analysis was performed to check for auto-
regression. A first order AR(1) model has been solved for each application in the sample by 
considering unit maintenance costs in addition to the time-dependent variables described above. The 
analysis of the average deviation computed by means of the AR(1) models led to the identification of 
5 applications which showed high deviation values for all the variables. The last step has been the 
analysis of trend curves, which has been performed by analyzing data series fitting with linear, 
quadratic, and logistic growth curves for the variables F (functionalities), M (methods) and SLOC
(source lines of code) of each application.

These preprocessing analyses led to the identification of a subset of 18 applications (about 20% of the 
sample size) characterized by potential anomalies. For each one of these applications, a manual 
inspection of data was performed to identify the cause of inconsistencies. This refinement step lead to 
the identification of the following error classes, reported together with distribution percentages in DS2:
• Repeated versions (13.3%): Application archives contained the same version, stored with different 

file formats (such as .zip or .tar.gz).
• Unrelated data archives (20.0%): Application archives contained patches or plugins, that should 

not be considered as versions.
• Damaged data archives (2.7%): Application archives could not be analyzed because of 

compression errors.
• Unavailable libraries (8.0%): Application used libraries which could not be retrieved.
• Static analyzer problems (56.0%): Internal problems of the static analysis library engine with 

respect to the application source code.

The final data sample, DS2, is composed by 59 applications, corresponding to 906 versions. Table 3
presents the summary statistics of the DS2 dataset.



Variable Average Median Min Max St.Dev.
Active Developers 1.53 1 1 9 1.25
versions 15.35 8 2 226 13.49
Mean Size (SLOC) 13311 6910 905 61184 14173

Table 3 Descriptive statistics for DS2.

Source code has been analyzed with a tool developed ad-hoc. The tool provides data on all the metrics 
described in Section 3.2, performing static analyses of Java source code. The static analysis engine is 
based on the Spoon compiler (Pawlak 2005), which provides the user a representation of the Java 
abstract syntax tree in a metamodel that can be used for program processing. The perspective adopted 
by the tool is explicitly evolutionary: given an application, metrics measurements are carried out on 
each version, by computing not only the values but also the variations between subsequent versions.

4 EXPERIMENTAL RESULTS

This section presents the empirical findings of the study, by describing how research hypotheses have 
been verified by means of statistical tests.

Hypothesis H1 is verified by showing that CoCoMo estimates of maintenance effort (MC) do not 
show significant differences in applications with high functional complexity with respect to 
applications with low levels of complexity, while our empirical estimates (ME) highlight such 
differences. To achieve this, the first step is to split the data sample into two clusters on the basis of 
functional complexity values. The two clusters, namely FCLO and FCHI , have been created by dividing 
applications with functional complexity below (FCLO) and above (FCHI) the median value. Table 4
presents the summary statistics and properties of the two clusters.

Variable Cluster FCLO Cluster FCHI

Cardinality 29 30
Versions 18.48 12.33
SF.net Ranking 10410.74 10192.79
Downloads 51918.48 114856.13
Months 25.79 31.03
Months/Version 2.95 3.58
Refactoring Freq. 0.22 0.24
SLOC 11312.97 15244.37
F 112.06 52.65
M 862.40 1350.73
CC 2.50 3.04
Maintenance Effort (ME) 439.38 556.47
CoCoMo Cost Estimate (MC) 0.014 0.015

Table 4 Cluster properties.

Hypothesis H1 is verified if the following two conditions hold:
• C1: The average CoCoMo maintenance effort estimate MCHI of applications in cluster FCHI is not 

significantly different from the average MCLO of applications in cluster FCLO;
• C2: The average empirical maintenance effort estimate MEHI of applications in cluster FCHI is 

greater than the average MELO of applications in cluster FCLO.

A one-way ANOVA test has been set up on the following null and alternative hypotheses:



h0: E[MCLO] = E[MCHI] h0: E[MELO] = E[MEHI]
C1:

h1: E[MCLO] ≠ E[MCHI]
C2:

h1: E[MELO] ≠ E[MEHI]

Table 5 presents the results of the tests. As shown in Table 5, the null hypothesis of condition C1 
cannot be rejected (significance level is .653), while the null hypothesis of condition C2 must be 
rejected. Thus, hypothesis H1 is verified, since no significant differences can be found between 
CoCoMo estimates (C1), while empirical estimates reveal a significant difference of maintenance 
effort between the two clusters of applications (C2). 

Condition Variable n Average H0 F Sig. (2-tail)
E[MCLO] 29 0.014

C1
E[MCHI] 30 0.015

cannot reject 0.204 .653

E[MELO] 527 439.38
C2

E[MEHI] 370 556.47
reject 16.958 .000

Table 5 One-way ANOVA test for H1.

Hypothesis H2 has been verified by testing various types of correlations between refactoring 
frequency and functional complexity. Refactoring frequency has been operationalized according to 
Capra et al. (2006). Data series of refactoring frequency and functional complexity values have been 
studied by means of a regression analysis. The evaluation has been performed through the analysis of 
the R2 coefficient of determination for each kind of relation, which states the goodness-of-fit of a given 
expression to a set of data points. As shown in Table 6, none of the considered relations can be 
assumed to persist between refactoring frequency and functional complexity values, since R2 values 
are too low for all the considered cases. Figure 1 presents a scatter plot of refactoring frequency and 
corresponding entropy values. These results support H2, confirming that in an Open Source context 
the functional complexity of a system is not correlated with the frequency of refactoring interventions.

Relation R2 Equation
Linear .0017 y = -0.8x + 2.9 
Quadratic .0020 y = -2.0x2 + 0.5x + 2.8
Cubic .0247 y = 60.3x3 – 64.5x2 + 17.2x + 1.7
Exp .0024 y = 2.6e-0.2x

Log .8 · 10-7 y = -0.003ln(x) + 2.8
Power .0003 y = 2.4x-0.01

Table 6 Regression analyses for H2.

Figure 1 Scatter plot for H2.Black points are applications belonging to cluster FCLO, while 
grey points are applications belonging to cluster FCHI.



Hypothesis H3 is verified by comparing the values of design quality metrics of the applications in the 
data sample to literature benchmarks. A whole body of literature focuses on validating software metric 
suites, by providing theoretical and mathematical proofs of validity for each proposed metric (see, for 
example, Basili 1996b, Harrison et al. 1998 and Gyimothy et al. 2005). However, a few works provide 
reference empirical values. We refer to the work by Laing and Coleman (2001), which presents the 
results of a quality assessment project at SATC (NASA). They report the metrics of Chidamber and 
Kemerer Suite (Chidamber and Kemerer 1994), which have been evaluated for three different software 
systems. Since for each system an aggregated quality index is available from SATC full-scale code 
analysis, related metrics values can be considered as significant benchmarks. Table 7 provides a 
comprehensive view of metrics values for data sample DS2 and for the three reference systems 
analyzed by Laing and Coleman (2001), which we identify by means of the corresponding aggregate 
quality index (Low, Medium or High). As can be noted from the table, the average values of four out 
of six metrics (namely, LCOM, RFC, NOC and WMC) are higher than benchmark values, while only 
two metrics out of six (namely, CBO and DIT) are lower than benchmark values. As a consequence, 
the overall quality level of data sample DS2 can be assumed as good, at least with respect to the SATC 
quality levels.

Sample Benchmark (Low) Benchmark (Med.) Benchmark (High)
Avg Min Max Avg Min Max Avg Min Max Avg Min Max

CBO 2.48 0.29 5 2.48 0 11 2.09 0 16 1.25 0 22
LCOM 37.89 0.38 619 447.65 0 3804 113.94 0 3281 78.34 0 5444
RFC 12.74 0.88 52 80.39 0 381 28.60 0 457 43.84 0 827
NOC 0.19 0.00 1 0.07 0 2 0.39 0 116 0.35 0 21
DIT 0.24 0 1 0.37 0 2 1.02 0 6 0.97 0 4
WMC 18.59 4.55 134 45.70 0 596 23.97 0 492 11.10 0 381

Table 7 Benchmarks for H3.

Hypothesis H4 is verified by comparing the values of design quality metrics of the two application 
clusters FCLO and FCHI, in order to test whether applications in cluster FCLO show a better design 
quality level with respect to the applications of cluster FCHI. Before comparing the average cluster 
values for each metric, a t-test has been performed in order to verify the statistical significance of the 
difference between the average values themselves. Table 8 presents the results of the t-test. The 
hypothesis stating that metrics averages are different between the two application clusters can be 
proved for all metrics with a significance value lower than .001. The only exception is metric MHF, 
showing a difference between the two cluster average values that cannot be considered statistically 
significant, since the significance value is .237 (higher than .05). 

 
95% Conf. Int.

Metric T df Sig. (2-tailed) Mean diff. Std. Err. diff
Low High

NOC -9,93 611 1,24E-21 -0,523 0,053 -0,627 -0,420
CBO -11,93 517 3,94E-29 -0,163 0,014 -0,190 -0,136
RFC -11,40 832 4,51E-28 -0,881 0,077 -1,033 -0,729
LCOM -14,44 592 9,93E-41 -0,132 0,009 -0,149 -0,114
DIT -12,81 637 1,43E-33 -4,005 0,313 -4,619 -3,391
WMC -8,09 424 6,16E-15 -8,292 1,024 -10,306 -6,278
AHF -9,88 878 6,51E-22 -0,118 0,012 -0,142 -0,095
MHF -9,42 642 7,79E-20 -0,080 0,009 -0,097 -0,064
AIF -3,26 532 1,21E-03 -0,012 0,004 -0,019 -0,005
MIF -1,18 901 2,37E-01 -0,009 0,008 -0,024 0,006
COF -3,89 657 1,13E-04 -0,047 0,012 -0,071 -0,023
PF -6,12 652 1,65E-09 -0,073 0,012 -0,096 -0,049

Table 8 t-test results for H4.



Table 9 presents the comparison between the average cluster values of each design quality metric. The 
percent difference between clusters FCLO and FCHI, is also reported. As it can be noted, seven out of 
twelve metrics (namely, CBO, DIT, LCOM, NOC, RFC, WMC and COF) show a better design quality 
level in cluster FCLO, thus confirming hypothesis H4.

Metric FCLO FCHI % Increase Comparison
CBO 2,026 2,576 27% ** better
DIT 0,185 0,303 64% ** better
LCOM 29,252 57,322 96% ** better
NOC 0,152 0,240 58% ** better
RFC 10,725 14,656 37% ** better
WMC 16,267 24,038 48% ** better
AHF 0,661 0,743 12% ** worse
AIF 0,078 0,128 63% ** worse
COF 0,036 0,053 50% ** better
MHF 0,245 0,222 -10% n.s.
MIF 0,171 0,238 39% ** worse
PF 0,143 0,169 18% ** worse
** denotes significance at 0.01 level (2-tailed).

Table 9 Comparison of cluster average design quality metrics.

5 DISCUSSION AND CONCLUSIONS

Results indicate that complexity is an inherent property of source code, and can be hardly influenced 
by interventions oriented at restoring quality, such as refactorings. This is motivated by the fact that 
software’s inherent complexity is strictly tied to the fulfilment of functional requirements, and cannot 
be reduced or simplified beyond a certain threshold. Moreover, results suggest that traditional cost 
models such as CoCoMo fail in accounting for the impact of complexity on development and 
maintenance costs. Complexity should be accounted for, since it generally implies lower design 
quality as posited and proved by hypothesis H4. Hence, a reliable cost estimation must be based on 
cost models that do not neglect complexity. These considerations are strengthened by the fact that the 
empirical evidence on maintenance effort indicates that the average effort for applications with higher 
levels of functional complexity is 27% higher with respect to the average effort  for applications with 
lower complexity levels. It is worth noting that the effect of complexity is not accounted for by
CoCoMo estimates, which do not show any effort difference between the two clusters. Although these 
considerations are based on a preliminary empirical analysis, some valuable results have been 
obtained. Given that complexity considerably affects other design quality metrics (and, hence, 
development and maintenance costs) even in a fine software quality context like Open Source, a 
precise evaluation of complexity should not be neglected, since its impact is likely to be substantial.

5.1 Future work

Future work is focused on defining the causal relationships among quality metrics by means of 
regression analyses. This will allow us to better describe which are the driving quality dimensions 
affecting maintenance costs. Another issue our future work will address is the enlargement of the 
application sample, in order to provide a better data base for improving the statistical significance of 
hypotheses testing.
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