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ABSTRACT 

This research-in-progress presents a problem that eluded practitioners and researchers for a long period of time. While 

pressured to release new software to market very rapidly, software development companies find themselves often choosing 

between quality and timeliness. Since from an economical point of view the quality of a software product is determined by 

consumers’ perceptions, this research proposes a dichotomous stakeholder-centric framework designed to support software 

quality assessment processes. 
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INTRODUCTION 

Software engineering domain represents a relatively young area of research when compared to social or natural sciences. It 

comes as a logical consequence that a generally accepted perspective on the specifics of some areas of software engineering 

has not yet been reached. Software product quality represents one such area in which there are continuous research efforts to 

crystallize a convergent perspective. Over time, researchers have attempted to define software quality through the lens of 

numerous views: product-based view, manufacturing-based view, user-based view, or various other views (Wong 2002). It is 

important to note that only few software quality perspectives adopted by researchers include stakeholders’ perspectives on 

quality into the overall concept of software quality. A comprehensive model of stakeholders’ perspectives on software quality 

has not been developed. This research posits that one’s emotional formation, technology-related knowledge, and past 

experiences determine one’s software quality assessment strategy. This study proposes the investigation of this complex of 

factors generating a dichotomy of stakeholders’ perspectives and proposes a methodology for software quality assessment. 

The importance of software quality has been highlighted by Broy in 2004: “software quality is a crucial issue in a society that 

vitally depends on software systems” (Broy, Deißenböck and Pizka 2004). In spite of this fact, software products being 

released to market show a large number of weaknesses (Kuhn, Wallace and Gallo 2004; Arora, Caulkins and Telang 2005; 

Newsham, Palmer, Stamos and Burns 2007). Research associates this fact with an increasing complexity of software systems 

(Offutt 2002). Another explanation indicates that the tendency of releasing a less functional software product earlier (first to 

market) (Bayus 1997) is justified by the limited amount of resources required later for fixing it (Arora et al. 2005). Although 

it has been shown that loss of software quality has a negative impact on the market and on its users (Choudhary 2007), 

Banker and Slaughter validate the economical viability of a “first to market” approach (Banker and Slaughter 1997). The 

question this raises is; are there better development methodologies that software development organizations can employ in 

order to improve the perceived quality of their products and services while using the “first to market” strategy? 

THEORETICAL BACKGROUND 

As described by a wide range of researchers, quality is a measure of conformance. Software quality has been defined as either 

conformance to specifications, or conformance to users’ needs and expectations. Researchers traditionally defined software 

quality through characteristics of the software development processes (Nord and Tomayko 2006), through characteristics of 

the software product itself (Plosch, Gruber, Hentschel and Korner 2007), or through attributes emphasized by the users of the 

software product (Feigenbaum 1983; Ishikawa 1985). These last three perspectives form the basis for a large number of 

generally accepted software quality philosophies and quantitative models (Berander, Damm and Eriksson 2005). In spite of 

this, there is still a need for an articulated view delineating the role users play in assessing software quality. The perceptions 

of quality and individual assessment criteria the users have were never formalized into a quality assessment methodology.  

Presently, practitioners assess quality based on the two standards the International Organization for Standardization 

published. ISO/IEC 9126 ((ISO) 2001) has a four part structure that addresses the following areas: process quality (quality of 

the development process), internal quality (quality of the source code), external quality (quality delivered by the software 

product, quality of execution), and quality in use (to which extent the user needs are met in the user’s working environment). 

ISO 25000 includes requirements specification into the quality evaluation process (Zubrow 2004). 
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New perspectives on software as a product and on software development as a process bring to attention new factors that 

complement the ISO standards. According to Armour, software is more a storage medium than a product, while software 

development process is more a knowledge generation process than a product manufacturing process (Armour 2000b, a). 

Acknowledging Armour’s perspective, one has to accept that the general definition of software product quality provided by 

the ISO standards should be complemented with a human-centric view in which personal traits play a significant role. 

The theory of emotions (Frijda 1986) can inform the development of the software quality assessment methodology. The 

emotion process model (Frijda 1996, 2007) centers on the individual and describes the instantaneous emergence and 

transformation of emotion components. Individual behaviors are exhibited as a response to a set of individual emotions. 

Individual emotions are shaped by one’s personal reaction to the results of appraising a current condition or event. 

 

Figure 1: The Emotion Process and Its Condition (Frijda 1996) 

In the context of software quality assessment, current condition is determined by an individuals’ exposure to a software 

artifact. Appraising refers to “the information processes that link perception of an event to emotional meaning” (Frijda and 

Mesquita 1998). During the appraisal process, one will consider the potential use of the software artifact as a means of 

addressing personal concerns. The intensity of emotions elicited during the appraisal process is correlated with the strength 

and the importance of the individual concerns addressed by the condition being appraised. Affect, arousal, and action 

readiness refer to an individual’s emotional processes generating the preconditions for a behavior. Regulation processes refer 

to the attenuation or enhancement of emotion because of anticipated effects. The two types of regulation processes, internal 

(from inner subject), and external (from the environment) have a significant influence on one’s quality assessment (Frijda 

1986; Frijda and Mesquita 1998). Internal regulation processes can be personal preferences, individual norms and standards, 

or pre-determined reactions formed as a consequence of previous experiences or acquired knowledge. One’s past experiences 

might have a unidirectional influence on one’s emotion processes. If the person has knowledge in a relevant area then the 

strength and direction of person’s emotions will be influenced by the match between the artifact’s expected and perceived 

behavior. External regulation processes include societal, organizational, or group norms and standards. An individual might 

be externally constrained to perceive an artifact as not being beneficial or efficient. Some people believe that Microsoft 

products are unreliable. A person sharing this belief can assign estimates of quality before confirming such assessment. 

Behavior includes intentional behavior that is motivated by action tendency. People with different experiences, knowledge, 

and understanding of software systems develop different sets of emotions and assess the quality of software differently. 

The expectation confirmation theory (Lin, Wu and Tsai 2005) has also relevance for the development of a software quality 

assessment methodology. This theory states that expectations and perceived performance, mediated through disconfirmation, 

lead to satisfaction. One’s expectations are determined by one’s past experiences with similar artifacts, knowledge in the 

area, and shared beliefs. One’s evaluation of perceived performance is largely guided by one’s expectations. When there is a 

mismatch between the expected and exhibited level of performance, disconfirmation is high and has a negative impact on 

one’s satisfaction with the artifact. Conversely, when there is a match, one’s satisfaction is enhanced and leads to the 

intention of using the software artifact. One’s background in the area of software use and development can have a significant 

impact on one’s expectations, which in turn leads to one’s satisfaction with a software artifact. Ultimately, one’s experience 

and knowledge determines both the decision to use an artifact or not, and the quality one associates with an artifact.  

 

Figure 2. a) The Expectation Confirmation Theory (source:(Lin et al. 2005)); b) TAM (source: (Davis 1989)) 

Another relevant theory is the technology acceptance model (TAM) (Davis 1989). The technology acceptance model posits 

that a person’s intention to use a software artifact is determined by the perceived usefulness and the perceived ease of use 
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(Venkatesh 2003). An individual’s perceptions of usefulness and ease of use are significantly determined by that individual’s 

past experiences and knowledge in areas relevant to the software system. A data mining expert might decide not to use a 

software tool based on two factors: first, the data mining expert possesses the knowledge required to manually perform the 

tasks at hand; second, the data mining expert recalls a negative experience from the past dealing with a similar software tool. 

Our data mining expert might decide against the use of a software artifact largely due to past experiences and available 

knowledge. 

A DICHOTOMOUS STAKEHOLDER-CENTRIC SOFTWARE EVALUATION FRAMEWORK 

A dichotomous classification of software stakeholder perspectives 

Peoples’ reactions to events and situations they face are based on personal traits. A person’s past experiences can also 

influence that person’s emotions associated with the appraisal of a current context. That person can have his or her decisions 

regarding aspects of technology influenced by the emotions generated as a direct result of the past experiences. Therefore, 

past experiences can become a determinant factor in choosing a specific course of action in a given situation. Another factor 

with a significant influence on one’s decision process is the knowledge relevant to the decision process that one possesses. If 

a web developer has to choose what web browser to install on a small organization’s network of computers, then he or she 

will use the knowledge acquired over time for deciding which web browser would provide most benefits while exposing 

organization’s computers to less amount of risk. This is not the case of a user with limited web development knowledge. This 

user will build his or her opinion largely on interface and functionality related aspects of the website, with interface-related 

details being predominant. Therefore, people with advanced technical knowledge and experiences tend to use more 

evaluation criteria when assessing the quality of a product or service. While the quality assessment approaches adopted by 

people with advanced technical knowledge and experiences and those lacking this background are different, they also overlap 

in few respects. Previous research focused on perceptions of quality instead of assessment approaches, and thus failed to find 

significant differences (Jung, Kim and Chung 2004). All software users, regardless of background, agree that ease of use is a 

desired property of software. In spite of this overlapping, the two perspectives build on distinct approaches and constitute the 

basis of our dichotomous classification of software stakeholders into technical and non-technical software stakeholders. 

The dichotomy of approaches to quality proposed in this study can be further detailed and justified if we group common 

quality factors into 7 sets of criteria: (1) general measures of quality, (2) complementary services and components, (3) 

individual preferences, (4) subjective measures, (5) front-end specific measures, (6) back-end specific measures, and (7) 

features. These sets are described in the next paragraphs. First 2 sets include general quality factors commonly shared by all 

software users. Next 2 sets include factors which are more specific to non-technical users. Last 3 sets include factors only a 

technical user would completely understand. They are commonly used by technical users in their assessment of quality. 

The common elements of the two approaches are captured in the general measures of quality and in the complementary 

services and components. The later includes characteristics of documentation availability and completeness, maintenance 

support, and customer service support. While the two approaches might differ in the way they analyze documentation, the 

difference is normally not significant. General measures of quality include measures that are generally accepted by all 

software stakeholders as indicators of quality. Such measures are performance (e.g. speed), efficiency (e.g. level of computer 

resources utilization), accuracy (e.g. degree of answer correctness), functionality (e.g. customization, solution finding 

algorithm, user-system interaction dynamics), reliability (e.g. error ratio in a given context and over a determined period of 

time), robustness (e.g. ability to recover from unexpected situations or improper functionality parameters), complexity (e.g.  

user perceived level of complicatedness), and other similar generally accepted measures of quality.  

Subjective measures of quality, which are part of the non-technical software stakeholder approach, might include attachment 

(e.g. affection towards specific characteristics of a software artifact), or familiarity (e.g. knowledgeability of a software 

system’s functionality and use due to previous experiences with similar artifacts). Last of the four sets of criteria a regular 

software stakeholder uses for assessing quality is represented by individual preferences. They are split up into functionality-

related and presentation-related preferences. Functionality-related individual preferences might refer to one’s liking of drop-

down menus as opposed to pop-up options, or selection lists, or wizard-type selection when facing multiple options. 

Presentation preferences are centered on various aesthetic elements (e.g. graphical elements used to highlight frames in a 

multi-frame interface, or similar non-functional graphical elements), choice of colors or their combination in a color scheme, 

or structure and organization of the graphical user interface (e.g. grouping of similar elements of a GUI in the same area of 

the interface, or consistent look and feel). Software systems can include a user customization feature which might address 

some of the functionality-related and presentation-related preferences. 

Technical software stakeholder perspective includes the two sets of quality measures shared with the regular software 

stakeholder perspective and three additional sets of measures. First of the additional sets refers to the features the software 
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system provides. Here one can assess the customization level of the software system (e.g. the extent to which the software 

system is able to offer customization options), completeness (e.g. the extent to which the software system properly addresses 

the complete set of user needs and expectations), flexibility (e.g. ability to adapt to various types of functionality 

requirements and sets of inputs), modularity (e.g. the organization of the software system into a structure of inter-dependent 

and communicating modules), and other software features similar in nature. Last two additional sets relate to front-end and 

back-end elements of a software system. Front-end measures of quality are related to the user interface. A person with 

advanced knowledge related to standards of GUI design can use Miller’s law as a way of confirming or disconfirming a 

software system’s quality. This is not the case for a regular user lacking such knowledge. Back-end measures of quality 

address characteristics relating to source code (e.g. indentation, comments, clarity, structure and organization, choice of 

programming language, size), architecture (e.g. organization of functional units of code, choice of database support), database 

design and data communication (e.g. structure and organization of data in a database, data communication architecture and 

protocols), software development life-cycle (e.g. development processes and methodologies employed). 

A dichotomous software evaluation framework 

In ISO 25000, the “product quality measurement reference model” is presented in order to explain the steps along a product’s 

lifecycle at which specific quality measures can be performed (software development process, internal quality, external 

quality, quality in use). Requirements specification is implicitly considered to be part of the process quality step in the ISO 

25000 quality model. Given that software products meet the specifics of knowledge mediums and since the software 

development activity matches the unique characteristics of a knowledge creation process, as indicated by Armour, I propose 

the explicit representation of requirements specification in the measurement reference model.  

The ISO 25000 standard labels quality measures that are perceived by a software system’s users as “quality in use.” One’s 

perception of quality is not limited strictly to characteristic directly derived from the software system itself. Often, one 

considers the availability of maintenance options or support as an indication of quality, despite these not being integral part of 

the software system. As a consequence of this, I propose to specifically mention the significance of complementary services 

and components by adding them as an additional component to the product quality model. The two enhancements proposed 

are included in the product quality model presented in Figure 3. The ability of those people having an advanced technical 

background to look “deeper” into the characteristics of a software system enables them to exhibit a clearly distinct approach 

to software quality assessment. This approach cannot be duplicated by the common users of software. People with advanced 

technical backgrounds commonly include all six areas of the product quality model into their assessment of quality. In 

contrast to the advanced user of software, common users will include only three areas in their software quality evaluation: 

complementary services and components, quality in use, and (less often) external quality. Different areas have different 

weights on the individual overall assessment of quality. Therefore, the influence of these six areas on an overall quality score 

should be weighted in order to more accurately represent people’s real perceptions of quality. 

 

Figure 3. A Dichotomous Software Evaluation Framework (adapted from ((ISO) 2001; Zubrow 2004)) 
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In this research-in-progress paper I propose a framework for computing “stakeholder quality scores” corresponding to 

technical and to non-technical perspectives on quality. In this framework I propose a number of weights corresponding to the 

importance of each quality area in the perception of quality for each perspective. Subsequent studies should attempt to refine 

the proposed weights based on the results of empirical studies involving large populations of technical and non-technical 

users of software systems. Technical users of software distribute the assessment of quality over all six areas of the software 

development lifecycle. In contrast to the technical users, the non-technical users of software distribute their assessment of 

quality over only three areas of the product lifecycle. As a consequence of this, the non-technical perspective on quality can 

be labeled as “wide” while the technical perspective on quality can be labeled as “deep.” The dichotomous software 

evaluation framework is presented in Figure 3. 

EVALUATION 

The evaluation of the proposed framework has to be rigorously demonstrated through well-executed evaluation methods 

(Hevner, March and Park 2004). The dependent variables are represented in this research-in-progress by the software quality 

assessment scores. A comprehensive empirical study can compute the quality scores corresponding to the two perspectives 

described in the dichotomous classification of software stakeholders. It can also propose a method of combining the two 

scores into one overall quality score. A number of the independent variables in this study will need to be operationalized 

according to the established literature. Other independent variables, such as source code or development life-cycle will 

require the development of an appropriate measuring process. 

An experiment can be conducted for the evaluation and validation of the proposed framework. The subjects will be selected 

based on their responses to a selection survey that will gather information on their technical background and knowledge. 

Additional selection of subjects will be performed at the beginning by conducting a workshop designed to test subjects’ 

technical knowledge and abilities. Next, the subjects will be asked to assess the quality of a number of software artifacts. The 

main experiment will require the subjects to use the provided software artifacts in order to perform a series of small tasks. 

Next, the subjects will be asked to assess the quality of the provided software artifacts again. A questionnaire will be 

administered to determine the criteria used by subjects for assessing software quality, and their relative importance.   

Hevner proposed in 2004 seven guidelines for design science research. This study is evaluated against those seven guidelines 

as follows. Design as an artifact – The proposed dichotomous stakeholder-centric software evaluation framework includes a 

software quality assessment methodology. They correspond to Hevner’s definition of an artifact (Hevner et al. 2004). 

Problem relevance – Modern societies are increasingly dependent on computer systems. In this context, the quality of 

software systems becomes increasingly important to the efficient and reliable functioning of institutions, organizations, and 

individuals (Broy et al. 2004). Design evaluation – The evaluation of the proposed artifact will be conducted against the 

established metrics for software quality. The results will be compared against other results on software quality from the 

academic literature in the field of software quality. Research contribution – The dichotomous stakeholder-centric software 

evaluation framework is the main contribution to research. It represents a “solution to heretofore unsolved problem” (Hevner 

et al. 2004). The framework provides researchers with a better understanding of consumers’ perspectives on software quality. 

Software development organizations could design development methodologies that focus on the areas perceived by 

consumers as essential to defining product quality. Research rigor – The design of the proposed framework follows principles 

established in the academic literature. The evaluation of the framework is based on established metrics and accepted 

operationalizations of the variables included. Design as a search process – Vaishnavi and Kuechler proposed a general design 

cycle which emphasized the importance of an iterative circumscription process (Kuhn et al. 2004). This research follows 

these guidelines. Communication of research – The results of this study will be communicated with researchers in the fields 

of information systems and computer science through conferences and journals. 

CONCLUSION 

The study offers a dichotomous classification of software stakeholders that provides a new way of approaching the topic of 

software quality assessment. The results of this research have the potential of changing the way software development 

organizations design and manage software projects. The contributions to both research and practice are significant and 

provide opportunities for new and interesting research projects.  
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