
Association for Information Systems
AIS Electronic Library (AISeL)

CONF-IRM 2009 Proceedings International Conference on Information Resources
Management (CONF-IRM)

5-2009

A Framework For Transitioning Enterprise Web
Services From XML-RPC to REST
Sean Kennedy
Athlone Institute of Technology, skennedy@ait.ie

Owen Molloy
National University of Ireland, owen.molloy@nuigalway.ie

Follow this and additional works at: http://aisel.aisnet.org/confirm2009

This material is brought to you by the International Conference on Information Resources Management (CONF-IRM) at AIS Electronic Library
(AISeL). It has been accepted for inclusion in CONF-IRM 2009 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For
more information, please contact elibrary@aisnet.org.

Recommended Citation
Kennedy, Sean and Molloy, Owen, "A Framework For Transitioning Enterprise Web Services From XML-RPC to REST" (2009).
CONF-IRM 2009 Proceedings. 52.
http://aisel.aisnet.org/confirm2009/52

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fconfirm2009%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2009?utm_source=aisel.aisnet.org%2Fconfirm2009%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2009%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2009%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2009?utm_source=aisel.aisnet.org%2Fconfirm2009%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2009/52?utm_source=aisel.aisnet.org%2Fconfirm2009%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

51. A FRAMEWORK FOR TRANSITIONING

ENTERPRISE WEB SERVICES FROM XML-RPC TO

REST

Sean Kennedy

Athlone Institute of Technology, Athlone, Co. Westmeath, Ireland

skennedy@ait.ie

Owen Molloy

Dr. Owen Molloy, National University of Ireland, Galway, Ireland.

owen.molloy@nuigalway.ie

Abstract
Web Services are defined by the W3C as “a software system designed to support

interoperable machine to machine interaction over a network". There are however, several

alternatives as to how Web Services can be implemented: WS-* and Plain Old XML (POX)

are popular approaches that markup their RPC (Remote Procedure Call) based payloads with

eXtensible Markup Language (XML). Both approaches can use HyperText Transfer Protocol

(HTTP) for transferring their messages. Representational State Transfer (REST) is an

alternative approach that is gaining in popularity. This research-in-progress paper presents the

issues of XML-RPC based Web Services (XML verbosity and message opacity) and why a

RESTful approach solves these issues. We present results which show the improved

performance. We present a framework that outlines a translation from XML-RPC to RESTful

format for “read” style request messages. This framework is ideally suited to enable

enterprises to gradually transition from XML-RPC to RESTful Web Services.

Keywords

SOA, Web Services, WS-*, REST, POX, XML.

1. Introduction
Service Oriented Architecture (SOA) is an architectural approach to building application

systems whereby the focus is on loosely coupled sets of services which can be invoked over a

network. In an SOA, software services are exposed over a network via well defined service

contracts/interfaces. This abstracts the consumer of that service from knowing or caring how

that service is implemented i.e. it allows applications to share data and invoke each other

even if their operating systems and/or programming languages differ. This gives the

consumer the flexibility to pick and choose the required service independent of the

implementation (Graham et al. 2005). Web services is one approach to implementing an

SOA.

There are several alternatives to implementing Web services – WS-*, POX and REST. Both

the WS-* and POX encapsulate XML-RPC style Web service invocations in XML and only

use HTTP POST when invoking Web services over HTTP (discussed further in section 2.1).

Both approaches POST to a gateway URI where the XML must be parsed to figure out the

Web service name and parameters.

WS-* wraps the invocation in SOAP (an XML messaging protocol). SOAP has an envelope

which contains (optional) headers and a mandatory body section. SOAP achieves message

extensibility i.e. Quality of Service (QoS) via its headers. WS-* binds to any transport, with

HTTP the default.

POX is very similar to a SOAP message except that it contains no SOAP elements. Thus a

POX message is smaller is size to a SOAP message but POX has no QoS support whereas

SOAP has. POX typically runs over HTTP also.

Another alternative is REST. REST is an architectural style which defines constraints to

induce certain system properties e.g. scalability. Two of these constraints are: unique URI’s

and a Uniform Interface (discussed further in section 2.3) While REST does not mandate a

specific protocol, HTTP is an instantiation of REST principles. RESTful approaches use the

core HTTP verbs GET, PUT, POST and DELETE to retrieve, update, add and delete

resources respectively.

In this paper, we investigate normal Web service invocation i.e. with regard to SOAP we are

referring to SOAP messages without any QoS headers. This paper is based on HTTP being

the data transfer protocol.

Our hypothesis is, that when invoking XML-based read-type Web Services there is no need

to encapsulate the message in verbose XML constructs while at the same time abusing HTTP

POST.

Encapsulating the message in XML (be it POX or SOAP) increases the message footprint.

Given that an HTTP GET message has no entity (or message) body, we believe that a

framework to translate read-style SOAP/POX messages from HTTP POST with an XML

payload into HTTP GET will reduce the message size.

Little states in (Little 2008) that “Web services uses HTTP for a really good reason, and it's

so that you can tunnel through firewalls”. This is referred to “tunnelling” and is not how

HTTP was intended to be used. Using POST to carry all Web service invocations means that

Web intermediaries e.g. caches and proxies are unable to inspect the message (Costello

2002). Converting POST to a RESTful GET will make the message visible to Web

intermediaries. This would enable caches with their inherent efficiency.

Conditional-GET is attractive because if the resource has not changed on the server since the

clients’ last request (for the same resource), there is no message body sent back to the client.

Thus, our framework will have the following contribution (when compared to SOAP/POX

implementations):

 Reduced request message size (due to the lack of XML content)

 Reduced number of messages in the network and faster response times (due to native

HTTP caching)

 Reduced number of response messages (due to Conditional GET)

The server must accomplish the following:

a) Implement caching i.e. mark the relevant responses as cacheable i.e. stock quotes

would not be cacheable whereas TV guides may be

b) Implement Conditional GET i.e. determine if a message body should or should not be

sent back i.e. has the resource changed

c) Host a mapping tool which allows the user to state which of the XML-RPC methods

are to be transformed to HTTP GET

The remainder of this paper is organised as follows: Section 2 gives an overview of the

technologies, Section 3 is related work. Section 4 describes the framework. Section 5 presents

the test environment and discusses the results. Section 6 is the Discussion section. Lastly,

Section 7 outlines Future Work.

2. Web Services
As stated in the abstract, Web Services are defined by the W3C as “a software system

designed to support interoperable machine to machine interaction over a network". Both

SOAP and POX use XML-RPC encapsulated in XML as their paradigm for Web service

execution.

2.1. SOAP
Interaction with WS-* Web services is via SOAP messages. SOAP is simple, flexible and

extensible. As it is XML based, SOAP is programming-language, platform and hardware

independent. SOAP 1.2 came into being in June 2003 (Graham et al. 2005). SOAP 1.2

introduced the WebMethod property which allows you to change the HTTP method used.

However, as Tilkov states in (Tilkov 2004), “the Web Services (WS-*) approach tunnels

everything through POST...that’s not true for SOAP 1.2 in theory, although in practice

everybody still does it”. As well as that, the URI is still common to all services at that

endpoint in SOAP 1.2. This means that even though the HTTP verb may now be correct, how

can an intermediary determine what resource is being accessed when the resource is still

embedded in an XML envelope? It is important to note that because WS-* is “protocol

agnostic” it cannot exploit the advanced features of HTTP e.g. caching (Tilkov 2004).

2.1.1. SOAP Messaging Model

A SOAP message is an XML document which consists of a SOAP envelope which contains

optional headers and a mandatory body section. SOAP achieves extensibility via the optional

header section. SOAP headers enables WS-* to achieve QoS e.g. security, reliability and

transactionality. The message body surrounds the application specific content that represents

the central purpose of the message.

2.1.2. Document style SOAP

When structuring a SOAP message, Document-style is now best practice. Document style

SOAP uses XML Schema data types and the messages are actual XML instance documents.

2.2. Plain Old XML (POX)
This approach is similar to WS-* in that it is based on XML. It is a more lightweight

approach as it relies on fewer protocols and messages have no SOAP content i.e. POX has no

SOAP envelope, SOAP headers or SOAP body content. This means that POX messages are

smaller. However, POX does not support QoS.

2.3. REST
REST is an architectural style for building distributed hypermedia systems (systems linked by

hyperlinks). In REST, one accesses “resources”. Resources are abstract concepts e.g. you

may ask for a “web page” resource/concept and what is returned is a concrete manifestation

of that concept called a representation e.g. a HTML page. The representation places the client

into a state. If the client traverses a link from that web page to another web page, the client is

transferred into another state. Hence the term Representational State Transfer. There are

several cornerstones to REST:

2.3.1. Uniquely Addressable Resources

A Uniform Resource Indicator (URI) allows one to describe the location of some resource

anywhere in the world from anywhere in the world. One of the key features of REST is that

every resource must have a unique URI. These URIs are logical and not physical.

2.3.2. Uniform Interface

The Uniform Interface refers to what is the same for all resources that you interact with. It is

implemented via the following four sub-constraints (Fielding 2000):

 Resources must be able to identify themselves (URI).

 Manipulation of resources via a small set of methods e.g. HTTP GET, PUT,

POST and DELETE.

 Self-descriptive messages (because a resource can have multiple representation types

e.g. XML and HTML, the message must state which type it is so that clients can

interpret it).

 Hypermedia as the engine of application state (resource representations contain

hyperlinks to enable client transitions between application state).

In a RESTful architecture, everything is modeled in terms of resources which are accessed

using URIs, and the four HTTP operations of GET, POST, PUT and DELETE.

2.3.3. Protocol Design

REST mandates that the protocol used must support the properties of layering, statelessness

and caching.

In the context of the Web, HTTP has all these characteristics. While REST does not mandate

the use of HTTP, it is the de facto protocol in REST.

3. Related Work
There have been efforts to improve the efficiency of XML data transfer in various scenarios.

The main contribution of our effort is that rather than using XML compression technologies

as in (Johnsrud Lars et al. 2008) we are applying RESTful techniques to reduce both the

message size and also to reduce the number of messages sent. The environment for (Johnsrud

Lars et al. 2008) is a mobile network where the research has a military focus. This meant that

the SOAP based Web service request could not be compressed as the intermediaries, for

security reasons, wanted to inspect the headers. They compressed the reply message only. In

our framework, rather than tunnelling using POST we use HTTP properly i.e. GET where

appropriate. Consequently, the target (origin) server will not receive every request, only the

requests that are not served by intermediate caches. As well as that, the server will not send

back a full reply in all instances (only when the resource has changed). Thus the overall

number of messages on the network is reduced.

As far back as 2003 people have realised the caching issue with XML Web Services: “XML

Web services present new challenges ..., as well as their lack of involvement in the caching

process” (Microsoft Research 2003). This research implemented a client-side SOAP cache to

mimic continued access to Web services from mobile devices during disconnections. This

cache was implemented as a data store. Their findings are interesting: “The diverse nature of

Web services poses a major problem in identifying the semantics of the operations exposed by

the Web service”. Also, “the applications ran just fine while disconnected as long as... the

cache manager could identify similar requests”.

Our proposal to use REST principles (HTTP GET and unique URIs) solves these issues. In

fact, Microsoft state that “Web-browser caches, map URIs to HTML pages and need worry

about only one operation – namely, the HTTP GET operation”. The Uniform Interface

constraint of REST has major advantages over the specific interface approach of RPC-XML

(SOAP/POX) in the areas of visibility into system interactions. (Vinoski, S (a) 2008). So

rather than attempting to implement another SOAP caching mechanism, we are proposing to

leverage the Web’s proven caching architecture.

In (Briggs 2006), Briggs outlines a framework similar in appearance to ours (a RESTful back

end with a SOAP front end). However, we differ in two important aspects. The first is that

POX is not considered at all, only SOAP. The second is that the approach is the complete

opposite to our approach. Briggs suggests wrapping RESTful services with SOAP to enable

access to those who require it. Thus, new clients would be SOAP based and existing SOAP

clients left untouched. Our approach is to transition all clients to RESTful format i.e. remove

SOAP/POX. Exiting clients will use the mapping tool until convenient to migrate. New

clients would be coded RESTfully.

4. Framework
Figure 1 outlines the framework architecture. The framework consists of a mapping from

XML-RPC to REST. Both SOAP and POX surround an RPC-style method-call with XML

metadata. As stated previously, with regard to SOAP, we will target the messages which have

no QoS elements i.e. no SOAP headers. Both SOAP and POX tunnel using HTTP POST.

This makes the message opaque to intermediaries.

4.1. Mapping Server
The client executes an application on the mapping server passing it is XML-RPC document.

The application checks to see if the XML-RPC request is a read-only request i.e. does the

XML-RPC service name exist in the mapping database table. If the service does not exist in

the mapping table then the Web service invocation proceeds as normal i.e. an XML document

is POSTed to a gateway URI. If it does exist in the mapping table i.e. the Web service is a

read-only request, then the XML document intended for a gateway URI i.e. a common

endpoint, is translated into a RESTful Conditional GET message with a unique URI. The new

message will have no XML content, just a HTTP verb, URI and certain required HTTP

headers. For example, the Conditional GET will require the “If-modified-since” header

(Vinoski, S (b) 2008). There is a close relationship between the data (method and parameters)

encoded in XML and the resource structure in the RESTful URI.

Figure 1 Framework Architecture

4.2. Cache server
A cache server will be inserted between the client and the target server. This will allow

performance comparisons to be carried out between SOAP/POX and our framework where

multiple equivalent requests are made. Note that it is the target/origin server that marks its

responses as cacheable and for how long. However, intermediaries such as caches can inspect

the new message to see if they have a fresh up-to-date copy and if so, return it without the

need to forward on the request to the target server.

4.3. Conditional GET
As small scale systems may not have caching intermediaries, cacheability may not be of

interest within the bounds of the enterprise. There are two approaches that we will outline

here (Vinoski, S (b) 2008).

Date and Time: When a client issues a GET to a resource, the server inserts the date and time

of the most recent change to the resource in the “Last-modified” header. The next time that

client wants to GET that same resource, it sends along the value from the “Last-modified”

header it received last time in the new requests “If-modified-since” header. The server uses

this header to see if the resource has changed since the date and time specified by the client.

Mapping Server

2. Mapping from opaque, verbose XML

to visible, cacheable, conditional GET

Existing SOAP/POX Client

Target/Origin Server
a. RESTful Web Services
b. Conditional GET check
c. Mark appropriate responses

as cacheable

Cache Server

1. XML-RPC call 3. HTTP GET

5. Cache copy

6. Server response

4. HTTP GET

5. HTTP GET

7. Server response

Mapping db

XML-RPC to HTTP GET Tool

New RESTful Client

If the resource has not changed then the server returns a HTTP status code of 304 which

means “not modified” along with an empty message body signifying that the client can

continue to use the previous representation it received.

Entity Tags: The entity tag approach uses a resource hash to detect changes rather than date

and time because the date and time mechanism leaves open a one second window where

changes cannot be detected. The server returns the hash value as a string in the Etag header.

Clients send this has value back to the server for subsequent requests in the “If-none-match”

header. The server re-hashes the resource, compares it to the “If-none-match” header and if

they are the same return status 304 along with an empty message body as before. One has to

ensure that Etags computing costs are not prohibitive i.e. retrieving the whole resource

representation (possibly involving several database queries) just to find out that it has not

changed may not be very efficient. It might be just as quick to send back the whole

representation in the first place.

As the date and time approach is more efficient, it is the approach we are going to take.

4.4. Target Server
The server side consists of RESTful implementations of the relevant Web services. To cater

for new RESTful clients, other HTTP verbs must be supported, namely PUT, POST and

DELETE. GET is required to support both new RESTful clients and existing SOAP/POX

based clients (which will be transformed). A Java servlet will be written to listen on a

particular root. The servlet will then parse the remainder of the URI and invoke the relevant

RESTful Web service. As the Web service is now RESTful we are no longer restricted to

XML as the response type but can return any Internet Assigned Number Authority (IANA)

Multipurpose Internet Mail Extensions (MIME) types. New clients will be written

RESTfully.

5. Testing
5.1. Test Environment
A test environment has been developed on an Apple MacBook Pro laptop with a 2.4GHz

Intel Core 2 Duo processor and 4GB of memory. The IDE is NetBeans v6.5 which has

integrated JAX-RS (Java API for Restful Web Services). Apache Tomcat v6.0.18 is the

servlet container. As Tomcat does not come with a Web service engine, we downloaded and

installed Apache Axis2 v1.4.1. A network analyser monitor was inserted between the client

and server so as to monitor the messages going between them. The Web services were kept

very simple as we were more interested in the message sizes and how long it took for the

relevant processing logic to be called than in the processing logic itself. Each Web service

was a pseudo-retrieval of a bank balance for customer id 12345678. Each Web service, for

consistency, returned a single XML element (a balance of 123.45, without any database

queries).

A client Java application was set up which called three methods: REST(), POX() and SOAP()

respectively. These methods called a RESTful, POX-based and SOAP-based Web service

respectively. In order to call the RESTful Web service we downloaded and installed Apache

httpclient v4.0.

5.2. Message Sizes
Figures 2 details the RESTful, POX and SOAP based Web service request and reply message

sizes. As regards the request message, we can see that the POX and (especially) SOAP

messages are significantly larger than the RESTful message. Their character counts are 190,

392 and 515 respectively (counting spaces).

With regard to the response messages: the RESTful, POX and SOAP responses are 249, 167

and a bloated 406 characters respectively. The difference between REST and POX sizes is

due to the Conditional GET and Caching headers (totalling 88 characters).

Message Sizes

0

100

200

300

400

500

600

REST POX SOAP

Web Service Type

N
u

m
b

e
r

o
f

C
h

a
ra

c
te

rs

Request

Reply

Figure 2 Message Sizes

5.3. Timings
Timings were taken before and after 10 calls to each Web service to determine how long each

one took. These timings were typical of previous tests. Figure 3 details our findings. As can be

seen, REST and POX are similar while SOAP is twice as slow as REST/POX.

6. Discussion
Web services are heavily based on XML. However XML is verbose and the more XML

protocols you use the more bloated the message becomes. This is why SOAP messages are

larger than POX messages. In fact, Bray stated in (Bray 2008) that “REST does what [the

SOAP stack] was trying to do in a much more viable, elegant, cheap, affordable way except

that we've got no tooling around it yet”.

Some organisations are moving away from SOAP and using POX stating poor SOAP

performance and no need for QoS as reasons for this (Allied Irish Bank 2007). Couple this

with Heinemeir Hansson’s (Heinemeir Hansson, D. 2007) quote “a renaissance of HTTP

appreciation is building under the banner of REST” and we believe that providing enterprises

with a mapping framework to enable them to ease the transition from existing SOAP/POX

implementations to RESTful HTTP is valuable.

Response Times

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10

Execution Number

M
il
li
s
e

c
s

REST

POX

SOAP

Figure 3 Response Times

The advantages of our framework are as follows:

1. The request message footprint is significantly reduced. This is an important consideration

in environments where bandwidth is low and communication latency/costs are high e.g.

mobile Web services (Johnsrud Lars et al. 2008). We believe that the increased message

response size (when comparing REST to POX), which is due to the presence of the caching

and conditional GET headers, is worth the overhead.

2. The new message is a transparent HTTP GET. This is important as SOAP/POX

implementations currently have to find alternative ways to cache their messages (Microsoft

Research 2003). As Vinoski states in (Vinoski, S (c) 2008) “the uniform-interface constraint

(of REST) helps enable visibility into client-server interactions, making it easier for

developers to apply critical distributed systems concepts such as proxying, caching,

intermediation and monitoring”.

3. Organisations considering RESTful Web Services may already have SOAP/POX

implementations in place. While the server would migrate from SOAP/POX to REST

immediately, a wholesale replacement of the clients can be avoided by adopting the

framework. Servers can migrate from SOAP/POX to REST without breaking any clients i.e.

no re-compilation of the clients is required as the interface is still the same from the clients

perspective. These clients can migrate when convenient. New clients can talk directly to the

RESTful Web Services immediately.

7. Future Work
The framework needs to be fully implemented with more realistic Web services as in

(Johnsrud Lars et al. 2008) where a Phonebook Web service interacts with a backend

datastore. Once implemented, the framework would support Lo-REST (Pautasso et al. 2008)

(i.e. HTTP GET and POST only). We intend the architecture to support Hi-REST (Pautasso et

al. 2008) (HTTP GET, PUT, POST and DELETE). This would involve further mappings

such that all of the XML-RPC interface-specific Web services would then be transformed to

RESTful HTTP (not just the read-only Web services).

References
Allied Irish Bank, private conversation IT architects, 2007.

Bray, T., SUN and co-inventor of XML, in an interview at O’Reilly Open Source

Convention, 2008

Briggs, J. Playing Together Nicely: Getting REST and SOAP to Share Each Other’s Toys,

2006, http://www.onjava.com/pub/a/onjava/2006/02/15/jython-soap-interface-to-

rest.html.

Costello, Roger L. REST (Representational State Transfer), 2002

http://www.xfront.com/files/tutorials.html.

Fielding, R. Architectural Styles and the Design of Network-Based Software Architectures,

doctoral dissertation, Dept. of Computer Scirnce, Univ. of Calif, Irvine, USA, 2000.

Graham S. et al, Building Web Services with Java, Sams Publishing. Indianapolis, USA 2
nd

edition. 2005

Heinemeir Hansson, D., Foreword in RESTful Web Services by Richardson L and Ruby S, O’

Reilly, 2007

Johnsrud Lars et al. Efficient Web Services in Mobile Networks, European Conference on

Web Services, Dublin, 2008.

Little, M., Red Hat Director of Standards and Technical Development Manager,

interview at Qcon, London, 2008

http://www.infoq.com/interviews/mark-little-qcon08.

Microsoft Research. Caching XML Web Services for Mobility, Queue magazine, May 2003.

Pautasso, C. & Zimmermann O. & Leymann F. RESTful Web Services vs. “Big” Web

Services: Making the Right Architectural Decision, Proceedings of International WWW

Conference, Beijing, China, 2008.

Tilkov, S., innoQ consultant and member of JAX-RS (JSR-311) expert group, Software

Engineering Radio interview, 2008

http://www.se-radio.net/podcast/2008-05/episode-98-stefan-tilkov-rest.

Vinoski, S (a). Serendipitous Reuse, IEEE Internet Computing magazine, Jan-Feb, pp 84-87,

2008.

Vinoski, S (b). RESTful Web Services Development Checklist, IEEE Internet Computing

magazine, Nov-Dec, pp 94-96, 2008

Vinoski, S (c). Demystifying RESTful Data Coupling, IEEE Internet Computing magazine,

Mar-Apr, pp 87-90, 2008.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	5-2009

	A Framework For Transitioning Enterprise Web Services From XML-RPC to REST
	Sean Kennedy
	Owen Molloy
	Recommended Citation

	Format Guide for ITA Authors

