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Abstract 
This paper identifies four problems with UML activity diagramming that have implications 

for teaching and practice. Solutions to each of the four problems are provided. The proposed 

solutions are borrowed from existing modeling paradigms, specifically structured systems 

analysis and design methods (SSAD). We did not see the need to reinvent solutions when 

adequate remedies exist. The proposed solutions help to improve the syntax, semantics, and 

consistency of activity diagramming in UML.     
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1. Introduction 
Unified Modeling Language (UML) 2.0 is the de-facto industry standard for object-oriented 

systems analysis and design. The language was developed in 1997 by three researchers who 

combined each of their modeling languages into a new language called (UML) (Arlow et al., 

2005). The youthfulness of UML has led to various problems and issues that are not well 

addressed. UML has been criticized for having several limitations including semantic 

inconsistencies, vagueness, ambiguities, and conflicting notation (Dobing et al., 2000; Price 

et al. 2000; Siau et al., 2001; Siau et al., 2005; Siau et al., 2006; Simons et al., 1999; Whittle, 

2000). These problems can be expected of new languages since it takes time to discover and 

address such problems. Consequently, we decided to address some of these problems that we 

have encountered during our years of teaching and working in industry.  

 

Students and analysts struggle to apply UML rules to particular problem situations. A 

primary inhibitor to applying the rules is the lack of understanding brought about by concepts 

that are vague, not explained or poorly addressed in the literature. Confusion arises out of 

specific modeling situations for which UML is unclear (Dobing et al., 2000; Price et al. 2000; 

Siau et al., 2001). This causes instructors to develop solutions to these situations with the 

hope of providing credible answers that make sense to students. It is common for professors 

to disagree on the best solution to a problem. If professors can’t agree, how can we expect 

students and practitioners to agree? Similarly, practitioners are forced to craft solutions that 

are expected to make sense to team members and stakeholders. Simultaneously, the solutions 

should possess conceptual cleanliness which is the ability to clearly and accurately represent 

the problem domain (Roman, 1985). Conceptual cleanliness is a fundamental requirement of 

any modeling technique (Avison et al., 1986; Checkland, 1981; DeMarco, 1979). However, 

the limitations of UML can sometimes interfere with this fundamental requirement. There are 

situations where team members and students disagree with a particular solution and we know 

that the work of practitioners is highly influenced by what they learned in college. Therefore, 

if academicians cannot agree on a common solution, how can we reasonably expect 
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practitioners and students to agree? There are times when it may be advantageous to have 

several solutions; however, divergent solutions can be a source for problems especially in the 

absence of clearly defined and generally acceptable rules. Consequently, leaving instructors, 

students, and practitioners to fend for themselves is a recipe for problems and project failure.  

 

Here are two examples of problems that may arise. First, every language including UML has 

rules of syntax and semantics that govern the correctness and use of the language. The 

absence of rules makes it difficult to judge the correctness of diagrammatic solutions. When 

individuals disagree on a particular solution, how do they resolve their differences when rules 

are vague or nonexistent? Differences can be readily resolved when there are clearly defined 

rules of syntax and semantics. Second, it is easier to teach, understand and use a language 

when clearly defined rules exist. It is also easier to objectively judge the correctness of a 

solution; the absence of rules makes it problematic to objectively compare different solutions. 

These problems pose significant challenges for instructors who are trying to be fair and 

objective in evaluating students’ work. The problem is compounded when we consider that 

each instructor, student, or practitioner may have divergent solutions to a problem. When 

these situations arise, how do we effectively resolve them and how much time and effort are 

wasted? I recalled a task team spending two weeks trying to figure out where a particular 

reference point was located on a printed circuit board. The rules of syntax governing its 

location were ambiguous. These are some reasons why we are motivated to find solutions to 

these problems by developing and refining rules of syntax and semantics to improve UML 

activity diagramming. To accomplish this we rely on our experience and knowledge of 

modeling techniques including SSAD (DeMarco, 1979; Ganes et al., 1979) and structured 

analysis design technique (SADT) (Ross et al., 1977).  

 

In this paper we address four UML activity modeling problems that relate to teaching and 

practice. While other UML problems unrelated to activity modeling exist, they are not the 

focus of this research. Due to the length of this paper we decided to focus our research on 

four activity modeling problems that we are aware of. This does not mean that others 

problems, unknown to us, may not exist. The contribution of this research is to improve 

syntax and semantics rules of UML activity modeling. The rest of the paper is organized as 

follows: Section 2.0 is a literature review; Section 3.0 discusses the problems and their 

modeling implications for learning and using the language; and Section 4.0 provides some 

possible solutions to the problems. The paper ends with a discussion in Section 5.0. 

 

2. Literature Review 
Systems analysis and design is part of the systems development life cycle process that 

governs the development of information systems (IS) projects. Traditional systems 

development can be traced back to SSAD (DeMarco, 1979; Ganes et al., 1979; Ross et al., 

1977; Yourdon et. al, 1978) and is still practiced today (Marakas, 2006; Whitten et al., 

2008;). Pioneers like Yourdon and Constantine (1978), Checkland (1981), Bubenko (1986), 

Avison and Wood-Harper (1986), and Avison and Fitzgerald (1988) have made significant 

contributions to the systems development life cycle process. Object-oriented programming 

languages (OOPL) such as Simula and Smalltalk were a precursor to object-oriented systems 

analysis and design. The semantic gap that existed between OOPL and traditional 

development methods paved the way for object-oriented systems analysis and design 

methods. In the late eighties and early nineties, several object-oriented analysis and design 

methods were developed. They include object-modeling technique (OMT) for software 

modeling and design (Rumbaugh et al., 1991), Booch Method (Booch, 1994), and Yourdon 

Method (Coad and Yourdon, 1991). These methods took a different view of systems 
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development based on the concept of an object which is the encapsulation of operations and 

data. In 1995 Rational Software™, now part of IBM, commissioned Rumbaugh, Booch, and 

Jacobson to create UML. While UML is built on the concept of the object it has been heavily 

influenced by traditional systems analysis and design methods.     

 

3. Problems and Solutions 
Problem 1: The Decision Problem 
The decision node is a primary construct used in activity diagramming and is represented by 

a diamond. The diamond connects a controlling activity to subordinate decision activities. A 

fundamental rule of UML requires all activities to have at least one input and one output 

(Arlow et al., 2005; Dennis et al., 2009; Jacobson, et al., 1999; Rumbaugh et al., 2005). This 

rule goes back to dataflow diagramming (DeMarco, 1979; Ganes et al., 1979) and the reason 

for it is simple: inputs are required to perform business activities which are transforming 

mechanisms. Activities produce outputs which may serve as inputs to other business 

activities. In figure 1, the activities have no inputs or outputs so they cannot perform their 

processing function. Also, the controlling activity cannot communicate with its subordinates 

since there is no flow of information between them.  Figure 1 is syntactically and 

semantically incorrect.  

 

The background to this problem is that leading text books (Arlow et al., 2005; Brown, 2002; 

Dennis et al., 2005; Dennis et al., 2009; Jacobson, 2000; O’Docherty, 2005; Rumbaugh et al., 

2005) violate this input/output rule (see figure 1). The violation of this rule has had a negative 

influence on students because they often leave off the inputs and outputs. From my 

experience, this is by far the most common problem with respect to the creation of activity 

diagrams by students. When UML syntax is violated it creates interpretation problems for 

readers, in particular the students who are learning the language. It also creates interpretation 

and development problems for practitioners.    

 

 

 
 

Figure 1 
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There are several possible solutions to the decision problem but each solution comes with 

additional issues or limitations. Due to the page limitations of this paper we will forgo 

discussion of the various solutions and present the one we consider best.  

 

Solution 1 
The recommended solution shown in figure 2 is a compromise because it is syntactically and 

semantically correct and reduces clutter. This is accomplished by using double-headed arrows 

to connect each object node to an activity, suggesting a two-way flow of information. The 

semantically correct use of double-headed arrows would indicate the passing of information 

between controlling activities and subordinates (DeMarco, 1979; Ganes et al., 1979). 

Syntactically this will help to enforce the rule that all activities require input and output.  

 

 
 

Figure 2 

 

 

Problem 2: The Actor Problem 
UML rules do not require actors to be shown on activity diagrams. Actors are shown for the 

first time on the use case diagram. An activity diagram is similar to a dataflow diagram in its 

attempt to represent business processes and activities. There are several reasons why the 

absence of actors from activity diagrams is poor practice. First, actors provide input to 

business activities and receive output from them; they serve as triggers for activating business 

processes such as withdrawing money from an ATM machine or placing an order. Second, 

knowing the association between actors and activities is important for defining the project 

scope, a critical success factor for projects (Clifford et al., 2006; Shtub et al., 2004). Project 

scope influences the choice of actors and stakeholders, the required resources, and the length 

of the project. A poorly defined project scope negatively impacts projects that sometime end 
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in failure. Third, actors make it easy to identify stakeholders when questions or ambiguities 

about aspects of the system arise. Since business modeling requires interviewing users, it is 

important to identify them early in the process.  

 

The background to this problem is that activity diagrams were not part of UML when it was 

first conceived because its importance was underestimated. It was not until UML 2.0 that the 

originators of the language recognized the importance of activity diagrams and decided to 

add them. Because of this historical fact UML continues to emphasize use case diagrams as 

the most important diagram because they served as the basis for developing other diagrams 

(Dennis et al. 2009). Consequently, use case diagrams are still used as the basis for defining 

the project scope (Dennis et al., 2009, O’Docherty, 2005) a left over idea from when the 

language was first created. This explains why use case diagrams have system boundaries and 

activity diagrams do not. This is inconsistent with other business modeling techniques such as 

dataflow diagrams (DFD) and activity modeling in IDEF0 (Ross et al., 1977). These 

techniques correctly addressed the issue of scope in the first diagram called the context 

diagram (DeMarco, 1979; Ganes et al., 1979; Kendall and Kendall, 2008; Yourdon et. al, 

1978). Consequently, the context diagram in DFD is equivalent to the activity diagram in 

UML. Since use case diagrams are no longer the first diagram, the emphasis on defining 

scope should be moved to the activity diagram. It makes sense to define the project scope at 

the outset to avoid problems related to the deployment of resources and the development of 

diagrams that follow. Why waste resources to model business activities that are not part of 

the problem. In fact, it is the activity modeling process that guides the decision about which 

activities to include in the problem domain.  

 

Hence it makes sense that activity diagrams should have a system boundary to represent the 

project scope, and the actors that interact with the system should be shown outside the 

boundary. In practice, a one-to-one mapping between activities and use cases exists. Activity 

diagrams serve as a checking mechanism for use case diagrams and vice versa (Selonen et al., 

2003). For example, if activities on an activity diagram are to be computer supported they 

will be shown on the use case diagram. Activity diagrams have object nodes that eventually 

show up as classes on class diagrams. Therefore, activity diagrams are an excellent source for 

identifying classes (Arlow et al., 2005) that represent data to be stored by the organization. 

There is also a connection between the objects on the activity diagram and the objects on the 

scenario and communication diagram. Hence, a strong case can be made for the activity 

diagram becoming the foundation for UML modeling because it has more direct connections 

to the later diagrams than the use case. The current emphasis on use case diagrams as the 

foundation for the creation of UML diagrams is misplaced. It is an unfortunate consequent of 

the historical nature of UML development. 

 

Solution 2 
The solution shown in figure 3 is to include actors on activity diagrams to establish the 

connection between them and the activities they use. When activities become use cases, the 

connection between them would be established, thus allowing for some degree of 

completeness and consistency checking between the two diagrams. It makes more sense to 

identify actors on the activity diagram instead of waiting until the development of the use 

case diagram. Identifying actors is critical to defining the project scope and that should start 

with activity diagrams. Scope is usually defined by a system boundary that separates the 

problem domain or system of interest from its environment; therefore we have included a 

system boundary in our solution. Everything outside of the boundary is external to the 

problem domain or system of interest. The boundary also serves to limit the scope of the later 
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diagrams that make up the system. To successfully model a business process it should be well 

bounded and clearly understood, the result of proper scoping. Successful modeling 

techniques like DFD’s and SADT have defined the project scope on the first diagram called 

the context (DeMarco, 1979; Ganes et al., 1979; Ross et al., 1977). Identifying actors early in 

the process reduces development time and duplication of effort because the same actors show 

up on use case, sequence, and communication diagrams.   

 

 

 
 

Figure 3 

 

Problem 3: Object Flows Pointing to End Nodes 
Object flows in UML are used to designate the movement of information and data between 

activities. The object flow symbol is a dotted line with an arrow indicating the direction of 

information flow. The actual information is represented by object nodes which are forms, 

reports, letters, memos, policy documents, best practices, emails, and files that people use to 

store and disseminate information for decision making. A business process is a related set of 

activities and the termination of the business process is represented by an end node which 

resembles a bulls-eye symbol (Bennett et al., 2001, Rumbaugh et al., 2005, p.158). There are 

examples in the literature where object flows are connected to end nodes (Dennis et al, 2005; 

Dennis et al., 2009, p. 161,).  

 

The background for this problem is that such connections not only violate the rule that object 

flows should be connected to activities and object nodes (Rumbaugh et al., 2005), but it does 

not reflect reality. Information cannot be sent to end nodes because they do not exist in 

reality. End nodes are conceptual ideas used to designate the end of a business process. In 

organizations data and information are sent to people, and activities. Object flows connected 

to end nodes may suggest missing activities or actors that may or may not be outside the 

scope of the problem domain. Every business process ends with one or more activities that 
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terminate the process. A process or activity by definition has a beginning and end (DeMarco, 

1979; Rumbaugh et al., 2005). It is possible that a business process may not always end with 

the same activity, because different paths through a process may exist (Dennis et al., 2009). 

Nonetheless, a business process often ends with an activity that is connected by a control 

flow to an end node. In cases where several activities may terminate a business process, each 

activity should be connected to the end node using a control flow. Because there are so few 

examples of activity diagrams with object nodes it was extremely difficult to ascertain if this 

is a pervasive problem of UML. The incorrect and correct solutions are shown below in 

figure 3.0. 

 

Solution 3 
The solution shown in figure 4 is to remove the object flows that connect object 1 and 2 to 

the end node. Then connect activity 1 and activity 2 to the end node using control flows. This 

solution adheres to the rules of modeling and UML that require any activity or process to 

possess the necessary inputs and outputs (DeMarco, 1979; Ganes et al., 1979, Rumbaugh et 

al., 2005). A fundamental rule of information processing is that an activity cannot function 

without input and when it processes the input it produces output (DeMarco, 1979). This 

solution is consistent with how companies function.      

 
 

Figure 4 

 

 

Problem 4: Lack of Activity Inputs and Outputs 
Activities in UML should have inputs and outputs (Rumbaugh et. al, 2005). In UML inputs 

and outputs are represented by object nodes and their direction of flow is indicated by flow 
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nodes. This is an old rule that dates back to structured methods and systems thinking 

(Checkland, 1981; DeMarco, 1979; Ganes et al. 1979). The rule states that an activity or 

process should have at least one input and at least one output (DeMarco, 1979). The idea is 

that an activity must have the necessary and sufficient inputs to produce the required outputs. 

Dennis et al. (2008) identify two types of activities: black holes and miracle activities. Black 

holes accept input but never produce output while miracle activities produce output but have 

no input.  It is common to find inputs existing in the minds of users, such as a product, 

discount or employee code used by a cashier at a point-of-sale register. This is why 

interviewing users is so valuable in the analysis and requirements process. It is surprising to 

find the input/output rule frequently violated in UML textbooks (Dennis et al 2008 and 2005; 

O’Docherty, 2005; Rumbaugh, et al., 2005; Satzinger et al., 2005). This violation is 

disappointing for educators who see the need to stress the importance of object nodes in the 

construction of activity and other UML diagrams. An object cannot exist without a class 

(Rumbaugh, et al., 2005) so the objects on the activity diagrams are the inspiration for 

identifying classes. The absence of classes impacts the construction of sequence and 

communication diagrams. Lastly, inputs and outputs enhance the understanding and 

completeness of activity diagrams, and aids consistency checking between various diagrams.  

 

I can only surmise the reasons for this persistent violation. From my experience inputs and 

outputs are the most challenging aspects of developing activity diagrams. Students can 

readily identify activities but find it very challenging to identity inputs and outputs because 

they are often less visible and require more effort to identify. Identifying objects is a tedious 

and meticulous undertaking. In conceptual modeling inputs and outputs are expressed in 

logical terms and this is a challenge for many people because we are conditioned to identify 

objects in physical terms. It is easier to identify a physical output than a logical one. For 

example, many students struggle to identity the output produced by an activity that verifies a 

customer order. Most students would have the customer order as input and the customer order 

as output. This would suggest that the activity (i.e., the processing function) is non-value 

added. The correct output should be labeled “verified customer order,” indicating that the 

order has been verified, a value add activity. It takes a few iterations before students get the 

hang of this idea. The solution, shown in figure 5, is for academicians, authors, practitioners, 

and students to make a concerted effort to include all inputs and outputs, thus enforcing the 

rules of UML. This will go a long way to better educate our students while enhancing the 

quality of UML diagrams that are syntactically and semantically correct.  

 

4. Conclusions/Discussion   
In the paper we identified four problems related to UML activity modeling. The problems 

relate to areas of activity modeling that are vague. Each problem has implications for 

teaching and practice. Teaching and practice require formal rules that guide professors, 

practitioners, and students to a common acceptable solution. In the absence of rules, solutions 

are arbitrary and subject to multiple interpretations. Graphical languages like UML were 

invented to overcome multiple interpretations often associated with spoken languages. In 

practice, formal rules improve interpretation and increase the likelihood that practitioners can 

agree on a common solution. Practitioners and students struggle with how best to deal with 

these issues and their solutions leave much to be desired as they vary within and across 

companies; hence this is another reason for rules and standards that deal with specific issues. 

We identified each problem and its implications for teaching and practice and provided 

solutions. Most solutions were borrowed from SSAD methods. We did not see the need to 

invent new rules and constructs when existing and familiar ones exist. The proposed solutions 

should improve the semantics and syntax of activity diagramming and UML in general.    
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We believe the suggested solutions would work well in teaching and practice. We have used 

them to teach our students and they have benefited tremendously. The first benefit is that 

students get into the habit of applying the rules consistently because when they don’t we 

penalize them. Consequently, I have seen constant improvement in the quality of activity 

diagrams. It is difficult to disagree that diagrams with object nodes are more complete and 

informative. A second benefit is that solutions which subscribe to the rules of UML enhances 

the quality of diagrams, the body of knowledge on UML, and improves industry practice. 

Lastly, we have removed the ambiguity of applying UML activity diagramming rules that are 

vague or have been ignored in the literature. Future research could investigate if the proposed 

solutions produce better quality diagrams among students than the status quo. We could also 

investigate if the suggested improvements work well in industry, if they are of better quality 

and more informative than diagrams that ignore our solutions.  
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