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Abstract 
The present work defines the components and architecture of a Domain-specific Language 

that takes advantage of patterns and common tasks performed by code generators based on 

relational databases. This DSL (Domain-specific Language) allows developers to easily and 

rapidly build and maintain custom code generators that meet their particular requirements 

instead of building them from scratch using general purpose programming languages, which 

is more expensive in terms of time. Current work includes the definition of the Code 

Generation Domain constrained to the transformation of relational models into applications 

source code, high level architecture and features models. The implementation of the DSL is a 

future work. 
  

Keywords 
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1. Introduction 
 

Code generation for applications based on relational databases has been treated extensively 

by a large number of tools that vary in complexity and sizes, from simple parsers as SAX 

[53] to layer and class generators such as Angie [3]. The term also refers to the process 

undertaken by the compilers that take as input the program source code of program and 

translate it into operation codes of the processor [1]. In the present work Code Generation is 

defined as to produce source code files for an application, based on information taken from a 
relational model and customizable code templates. 
 

A code generator is a software application that facilitates the construction of applications that 

make use relational databases. The generator retrieves from the database, information about 

entities and relationships, and merging this information with the custom code templates, 

produces a set of files with the source code on which a software application is made of. 

The code templates give the generator the capability to meet new requirements of the 

developers because they allow changing the way the final code is generated.  
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1.1  Advantages of using code generator in the software development 
process 

According to [1] there are several key benefits offered by code generators to the developers:  

• Quality: Code generation from templates creates a consistent code base instantly, and 

when the templates are changed and the generator is run, the bug fixes or coding 

improvements are applied consistently throughout the code base.  

• Consistency: The code that is built by a code generator is consistent in the design for the 

APIs and the use of variable naming. This results in a no-surprises interface that is easy to 

understand and use.  

• Design decisions that stand out: High-level business rules are lost in the minutiae of 

implementation code. Code generators use abstract definition files to specify the design of 

the code to be generated. These files are much shorter and more specific than the resulting 

code.  

 
1.2 Disadvantages of using code generators 
When a code generator is needed in a software development process, the developers have to 

face these disadvantages:  

• Oriented to one platform: Generate code for a given platform, i.e. only web apps, only 

windows apps, only databases, only documentation [12]-[39], [44]. 

• Integrated to one development environment: Integrated to one IDE (Integrated 

Development Environment) improving the efficiency of the users of that IDE but it’s not 

possible to integrate them to other IDEs [7], [41].  

• Oriented to one technology: are the ones capable of generation code for a given 

technology, for example .Net but are not able to generate code for other technologies such 

as Java or PHP [9]-[22], [25]-[28], [32], [34], [35], [43], [44].   

• High cost: some of these tools are quite expensive [3], [17], [19], [25], [30], [32], [35], 

[40].  

 

On the other hand, if the decision to construct a custom code generator is made, one has to 

take into account that the building costs could be high in terms of time. Additionally the 

developer should perform maintenance tasks over the long term and adapt the product to new 

technologies and methodologies that come out in time [1]. This makes the custom code 

generator part of the problem rather than the solution. 

 

The rest of the document is organized in three parts as follows: in the next section the 

problem that we are working out is described. Then, a brief description of Domain Specific 

Languages that is our approach for building the solution, after this, a description of Expert 

Coder which is a project related with building code generators. Then we proceed to define the 

Code Generation Domain starting with the more abstracts elements and descending to the 

more detailed and technical descriptors. The last three sections present conclusions, future 

work and references, respectively. 

 

 

2. Problem description 
Code generators available on the market are heterogeneous and possess qualities that are not 

capable of being integrated into a single product due to their differences in platform, 

technology and licensing. 
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Code generators exist to reduce the time it takes to develop an application, but it takes time to 

build a custom generator and not having a tool to reduce the time needed to build, the code 

generator becomes part of the problem rather than the solution.   

 

According to the above, a Domain Specific Language is necessary to facilitate the 

construction of custom code generators in order to have a tool that can be used in any context 

of software development involving the use of relational databases. 

 

Domain-specific languages (DSL) offer a more complete solution to software engineering 

problems than general purpose programming languages can offer since they provide a 

notation tailored towards an application domain and are based on the relevant concepts and 

features of that domain. Such languages provide a natural vocabulary for concepts that are 

fundamental to the problem domain. A Domain-specific language (DSL) allows one to 

develop software for a particular application domain quickly and effectively, yielding 

programs that are easy to understand, reason, and maintain. The benefits of DSL derive from 

two basic principles of language design: abstraction and restriction. The choice of appropriate 

abstractions aids the phases of requirements, design, coding, and maintenance by providing 

high-level entities and relationships that the domain closely. Restriction of language 

expressiveness allows for greater automated analysis and hence supports verification, 

modification, and maintenance [55], [56], [57]. 

 

Domain-specific Languages such as ColdFusion Markup Language [47], MediaWiki 

templates [48] and PowerShell [49], for instance, allow development of quick solutions 

applied to each of their contexts without the need to build everything from scratch, increasing 

user productivity.  

 

The DSL are designed to accurately describe a specific domain, such a task, a platform or a 

process. Instead of generic abstractions, they use concepts taken directly from the domain 

[54]. 

 

 

3. Definition of the code generation domain 
ExpertCoder is a toolkit for the .NET platform that supports the creation of code generators 

based on expert systems. It's not a generator of code generators, but rather a set of libraries 

useful to write generators. 

 

The purpose is to build a toolset that provides the code generator writer with the clarity that 

results from using templates for code generation and the flexibility provided by the power of 

the .NET platform, along with its huge class library. 

 

Besides, as it is based on the principles of expert systems, the resulting generators are easily 

extensible, modular, and their structure is more declarative than imperative. 

 

The idea is to create an expert system, to write a set of rules and then to specify the distinct 

precedence between them. These rules are evaluated by an execution engine, which 

determines, based on the precedence and every rule's activation state, which rule must be 

executed. 

 

The execution engine provides an environment, which provides three sources of information: 

• Parameters: these are stored in configuration files. 
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• Input model: the model to be converted. 

• Inferred knowledge: the expert system is able to modify its active memory. By using 

this you can implement an indirect interaction mechanism for rules. 

 

A typical generator is composed by two kinds of rules: navigation rules and production rules. 

Navigation rules are activated in presence of a given element type at the input, and proceeds 

to "navigate" that element's relationships, changing the current element from the input model. 

Production rules, are active in presence of an input element (and possibly certain kinds of 

elements at the output,) apply a developer-written algorithm in order to generate nodes at the 

output, using the information currently available at the input and in the active memory [58].  

 

3.1 Goals of the code generation domain 
The purpose of code generation is to reduce the time required to develop an application, as 

well as to reduce the repetitive tasks of writing code that can be automated by a code 

generator. 

 

The scope of this work requires two main elements for defining the domain, one is the code 

generation process and the other is the code generator itself.  

 

The code generation process involves the relational model taken from the database and the 

code templates defined by the user. 

 

The code generator is the tool that performs the code generation process. This tool requires 

interaction from the user and is compounded by user interfaces and parameter options. 

 

3.2 Concepts/Entities/Requirements 
The 1

st
 to the 44th references correspond to the bibliographical revision in the dominion of 

the code generators. Here some key patterns have been found in the way they treat the 

information retrieved from the database and in the way they produce the final code. Also, 

common functionalities such as a screen for prompting the connection string to the database 

and a synchronization option to reload the relational model in the case that it was changed, 

among others that will be described in more detail further in this document. 

 

3.2.1 Iterations 
The code generation process is performed mainly as a nested iteration since the relational 

model can be represented in a hierarchy [59], a code generator iterates over the properties of 

a given column, the columns of a given table, the tables of a given database, and the 

databases of a given set. In these iterations, the custom code templates are applied to the 

appropriate object to produce the final code. 

 

3.2.2 Rules 
Another key element of code generation process is a set of rules that are applied when a given 

condition is met. These conditions allow the code generator to apply templates or run special 

routines to cases where the standard model should not be applied. 

 

3.2.3 Domain vocabulary 
This section is dedicated to define the vocabulary that is going to be used for the definition of 

the rest of the DSL. 
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Relational model: As the name suggests, it is the raw relational model as is persisted in the 

database; this excludes any customization made by the user. 

Code template: A text file with the description of how the final code should be generated. 

Entity: The representation of an object inside the model, this can be a table inside the 

database or an artificial object defined by the user. 

Level: A set of objects present in a given position of the hierarchy. 

Code generator: A piece of software that by itself is able to transform pieces from the model 

into final source code or an output that can be consumed by other code generators. 

User: In this scope, a user is a software developer or programmer that uses code generators in 

his/her daily work developing software applications. 

 

3.3 High-Level requirements specification 
To achieve the goal of allowing users to create custom code generators, the language should 

meet these requirements: 

• Create user interface for prompting information that will be used in the code generation 

process. 

• Create code templates that will be applied to the model in the code generation process. 

• Allow the user to synchronize the actual model with the model persisted in the database 

in the case that new objects are created or some are deleted. 

• Allow the user to manipulate the model to add, delete, update or list objects. 

• Allow the user to use code generators as building blocks to construct a higher-level code 

generator. 

 

3.4 Domain specific software architecture 
Figure 1 shows the architecture proposed for the DSL. The following section explains each 

one of the parts that compose it. 

 

3.4.1 Database reader/writer and raw relational model 
The base information needed by a code generator resides in a relational database. This 

information, more precisely is the database catalog, can be represented using a hierarchy of 

objects, and a set of functions can be used to retrieve information from such structure (Figure 

2) [59] as well as some additional functions to manipulate the database, if the code generator 

requires it to create new objects such as stored procedures, functions, views, etc. 
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Figure 1: Architecture of the DSL. The language contains the building blocks that make up 

the code generators and code templates 

 
 

3.4.2 Model 
The model is an extension of the raw relational model; it is aimed at creating artificial objects 

that actually do not really exist in the database. This allows the user to create custom 

properties, flags, tags and any additional object in order to apply rules to accomplish 

particular code generation requirements or scenarios. 

 

3.4.3 Model manager 
Is a set of functions that allow adding, editing, deleting and listing, among others, information 

inside the model. 

 

3.4.4 Cursor 
The cursor is responsible for the iterations performed over the model in order to apply the 

custom code templates. This process starts over the higher level in the hierarchy and nests 

iterations over the children until the last level. This process also can be run directly over a 
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given set of objects, for instance, over all the columns without iterating first over databases 

and tables. 

 

 

  

Figure 2: Representation of the relational model as a hierarchy taken from [59] 

 

 

 

 
 

Do something with the database before iterating over the tables 

Do something with the database after iterating over the tables 

Do something with the table before iterating over the columns 

Do something with the table after iterating over the columns 

Do something with the column before iterating over the properties 

Do something with the column after iterating over the properties 

Do something with the property 

Do something before the iteration starts 

Do something when the iteration is done 
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Figure 3: Iteration process performed by code generators over the model 

 
 

3.4.5 Template/Model mapper 
Since the code templates are text files that define what to do with the information retrieved 

from the catalog, the Template/Model mapper is responsible for finding inside the Model, the 

appropriate information required for the templates. 

 

3.4.6 Base classes 
Here we present the main classes that are part of the core library of this DSL. These classes 

are defined taking into account the need of allowing customization to the model. 

 

Figure 4: Static class diagram of the core components over which the DSL is built 

 

 

The Figure 4 does not show the whole model due to space limitations but shows the 

interaction between the main components and the methods that run on the code generation 

process. 

• CustomProperty allows the creation of properties in runtime and attaches them to an 

object. This class allows the user to add custom data to the objects stored on the model. 

• BaseComponent is the base class from which the rest of the model related classes inherit. 

The internal composition of this class is a set of Custom properties. 

• View, Column, Table and DataBase are the representation of the raw relational model, 

they all inherit from BaseComponent and have static properties that are internally 

represented as DynamicProperty. 
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3.4.7 Code templates definition 
One of the most important parts of any of the code generators reviewed, is the set of code 

templates. Code templates are text files that mix pieces of the final code that shall be 

produced by the generator with the properties inside de model. These templates should be as 

clear as possible in order to facilitate code maintenance and rapid customization, and should 

also avoid unnecessary content. Following these guidelines, we have developed a declarative 

language for code templates based on the syntax of CSS (Cascading Style Sheets) [60]. The 

basic structure of a code template is: 

 
 

@Selector{ expression } 
 
#SelectorId{ expression } 
 
.Class{ expression } 

 

 

• @Selector: Specifies an element inside the model, this could be a Table, Column, 

Database or any user-defined element. 

• #SelectorId: Specifies the Id of any element inside de model, when this type of template 

is used, the expression is applied only to that element identified with #SelectorId. 

• .Class: The class is a grouping value shared for various elements inside the model. 

• Expression: A mixture of plain text, properties of an element and nested templates. The 

following example will be useful to clarify an expression. 

 

@Table{  
 Public Class $id{ 
  @Column{ Private $Type $id; } 
 } } 

 

This template is applied to every element of type Table inside the model, the inner expression 

defines that the text “Public Class “ should be written followed by the value of the property 

$id of the current Table, then, for each Column element that is directly related to the current 

Table, the text “Private“ is written followed by the values of the properties $Type and $id of 

the current Column. 
 

 

4. Proposed solution 
Based on the models described in section 3 and trying to address the problems that 

developers face when building code generators with general purpose programming 

languages, we are developing a cross-platform DSL aimed at simplifying the process of 

building custom code generators, reducing development time and improving the quality since 

the language already includes tested components and functionalities commonly used in code 

generation process.  

 

Extending the architecture shown in Figure 1, our final solution will offer to the developers 

the possibility of building custom code generators that run over different platforms and can 

be extended or integrated with others to reuse functionalities and meet particular needs. 
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Figure 5: Cross platform architecture of the DSL. 

 

Figure 5 shows how code generators can be integrated and even run on different platforms. 

This is because they are built with a standardized tool that works with different operating 

systems.  

Benefits of using this solution are wide as developers are able to create and maintain their 

code generators easier than before since less code is needed to implement the same 

functionalities. Software vendors can spend more resources improving their code generators 

instead of building them from scratch. In the case that one client does not want to use a code 

generator available on the market, she is able to create a custom tool that meets particular 

needs in a code generation scope taking advantage of functionalities and components 

available in this solution. In all cases, efficiency improvement and time reduction are big 

gains where a code generator is an important part of any software development project. 

With the aim of giving a clearer overview of what we are currently doing, here we present a 

conceptual example of how a custom code generator would look like implemented with our 

solution proposed. These examples are part of the test cases that we will use to measure the 

accuracy of the DSL creating a code generator and running it over different platforms and 

with different database engines. 

Conceptual example 
In this section we present some high level conceptual examples of how this DSL should be 

used and how it should behave. 

 

Let us suppose that we have a database called StudentsDB. There are two tables as follows. 

• Student 

Mac Linux Windows 

Runtime 

DSL for Code Generators 

Code generator 2 Code generator 3 Code generator 1 
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o StudentId, Int 

o Name, varchar(100) 

o CountryId, Int 

• Country 

o CountryId, Int 

o Name, varchar(100) 

 

Both tables are related by CountryId column. 

 

When these tables are loaded into the Raw Model they are represented as specified in [59]. 

Then the Raw Model is extended in the Model.  Now we define the code templates as follows: 

 

@Table{  
 Public Class $id{ 
  @Column{  
                            Private $Type $id;  
                            Public $Type get$id (){ return $id;} 
   Public void set$id ($Type p$id){ $id = p$id;} 
                  } 
 }  
} 

 

When the Cursor passes through the Model, the output would be: 

 

   Public Class Student{ 
       Private int StudentId;  
       Public int getStudentId(){ return StudentId;} 
       Public void setStudentId (int pStudentId){ StudentId = pStudentId;} 
   
       Private string Name;  
       Public string getName(){ return Name;} 
       Public void setName (string pName){ Name = pName;} 
    
       Private int CountryId;  
       Public int getCountryId (){ return CountryId;} 
       Public void setCountryId (int p CountryId){ CountryId = pCountryId;} 
  }  
 
   Public Class Country{ 
       Private int CountryId;  
       Public int getCountryId (){ return CountryId;} 
       Public void setCountryId (int p CountryId){ CountryId = pCountryId;} 
   
       Private string Name;  
       Public string getName(){ return Name;} 
       Public void setName (string pName){ Name = pName;} 
  }  
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Notice that in the Raw Model the column “name” in both tables is of type varchar and not of 

type string. The user who builds the code generator according to his particular requirements 

should provide this type mapping. 

Now let us suppose that we need to change the way primary keys are generated. We want to 

change the getter and setter to GetID and SetID respectively, the rest of the columns stay the 

same. 

 

@Table{  
 Public Class $id{ 
  .PrimaryKey{  
                            Private $Type $id;  
                            Public $Type GetID (){ return $id;} 
   Public void SetID ($Type p$id){ $id = p$id;} 
                  } 
  @Column{  
                            Private $Type $id;  
                            Public $Type get$id (){ return $id;} 
   Public void set$id ($Type p$id){ $id = p$id;} 
                  } 
 }  
} 

 

This template uses two selectors, one for any element of class “PrimaryKey” which is 

provided by the Raw Model representation and one for every Column element inside the 

Model. 
 

 

5. Conclusions 
This work gives an overview of the Code Generation Domain constrained to applications 

based on relational databases. With this approach one can implement the models and 

components described above in different platforms and technologies to allow developers to 

easy build and maintain code generator that meet their particular code generation 

requirements.  This language includes most common patterns found in code generators and 

the architecture allows extending its components in order to enrich the base platform.  

 

The solution proposed in this work solves the problems derived from building custom code 

generators with general purpose programming languages. 

 

 

6. Future work  
The next phases of this work are the implementation and performance tests. Python and Ruby 

are the candidates as implementation tool since they are easy to learn by programmers, allow 

rapid program writing due to their meaningful and flexible structure and also provide an easy 

manner to introspect the code which is a plus in this domain. Performance tests after the 

implementation phase will be needed to evaluate the accuracy of the components defined in 

this work.  

 

In addition, bearing in mind that design-science research has become more popular and 

accepted as a research method in Information System, we want to frame this work inside the 
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premises of the design science approach (Hevner et al. (2004) [61]). For instance, in 

agreement with Järvinen P. (2005) [62], our work is framed in a case of study oriented at 

solving a specific problem, where the technological rules (of Domain Specific Language) are 

being developed and tested in close collaboration with the people in the interest area 

(designers, developers, programmers).  
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