
Association for Information Systems
AIS Electronic Library (AISeL)

CONF-IRM 2010 Proceedings International Conference on Information Resources
Management (CONF-IRM)

5-2010

3P. A First Approach to a Domain Specific
Language for Constructing Code Generators
Julián Vargas
National University of Colombia, jdvargasa@unal.edu.co

Helga Duarte
National University of Colombia, hduarte@unal.edu.co

Follow this and additional works at: http://aisel.aisnet.org/confirm2010

This material is brought to you by the International Conference on Information Resources Management (CONF-IRM) at AIS Electronic Library
(AISeL). It has been accepted for inclusion in CONF-IRM 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For
more information, please contact elibrary@aisnet.org.

Recommended Citation
Vargas, Julián and Duarte, Helga, "3P. A First Approach to a Domain Specific Language for Constructing Code Generators" (2010).
CONF-IRM 2010 Proceedings. 15.
http://aisel.aisnet.org/confirm2010/15

CORE Metadata, citation and similar papers at core.ac.uk

Provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fconfirm2010%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2010?utm_source=aisel.aisnet.org%2Fconfirm2010%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2010%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/conf-irm?utm_source=aisel.aisnet.org%2Fconfirm2010%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2010?utm_source=aisel.aisnet.org%2Fconfirm2010%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/confirm2010/15?utm_source=aisel.aisnet.org%2Fconfirm2010%2F15&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

1

3P. A First Approach to a Domain Specific Language
for Constructing Code Generators

Julián Vargas1

National University of Colombia

jdvargasa@unal.edu.co

 Helga Duarte2

National University of Colombia

hduarte@unal.edu.co

Abstract
The present work defines the components and architecture of a Domain-specific Language

that takes advantage of patterns and common tasks performed by code generators based on

relational databases. This DSL (Domain-specific Language) allows developers to easily and

rapidly build and maintain custom code generators that meet their particular requirements

instead of building them from scratch using general purpose programming languages, which

is more expensive in terms of time. Current work includes the definition of the Code

Generation Domain constrained to the transformation of relational models into applications

source code, high level architecture and features models. The implementation of the DSL is a

future work.

Keywords
Code Generators, Code Templates, Domain-specific Language.

1. Introduction

Code generation for applications based on relational databases has been treated extensively

by a large number of tools that vary in complexity and sizes, from simple parsers as SAX

[53] to layer and class generators such as Angie [3]. The term also refers to the process

undertaken by the compilers that take as input the program source code of program and

translate it into operation codes of the processor [1]. In the present work Code Generation is

defined as to produce source code files for an application, based on information taken from a
relational model and customizable code templates.

A code generator is a software application that facilitates the construction of applications that

make use relational databases. The generator retrieves from the database, information about

entities and relationships, and merging this information with the custom code templates,

produces a set of files with the source code on which a software application is made of.

The code templates give the generator the capability to meet new requirements of the

developers because they allow changing the way the final code is generated.

1
 Student in Master in Systems and Computers Engineering, Faculty of Engineering, National

University of Colombia. Bogotá, Colombia
2
 Associate Professor, Faculty of Engineering, National University of Colombia. Bogotá, Colombia

2

1.1 Advantages of using code generator in the software development
process

According to [1] there are several key benefits offered by code generators to the developers:

• Quality: Code generation from templates creates a consistent code base instantly, and

when the templates are changed and the generator is run, the bug fixes or coding

improvements are applied consistently throughout the code base.

• Consistency: The code that is built by a code generator is consistent in the design for the

APIs and the use of variable naming. This results in a no-surprises interface that is easy to

understand and use.

• Design decisions that stand out: High-level business rules are lost in the minutiae of

implementation code. Code generators use abstract definition files to specify the design of

the code to be generated. These files are much shorter and more specific than the resulting

code.

1.2 Disadvantages of using code generators
When a code generator is needed in a software development process, the developers have to

face these disadvantages:

• Oriented to one platform: Generate code for a given platform, i.e. only web apps, only

windows apps, only databases, only documentation [12]-[39], [44].

• Integrated to one development environment: Integrated to one IDE (Integrated

Development Environment) improving the efficiency of the users of that IDE but it’s not

possible to integrate them to other IDEs [7], [41].

• Oriented to one technology: are the ones capable of generation code for a given

technology, for example .Net but are not able to generate code for other technologies such

as Java or PHP [9]-[22], [25]-[28], [32], [34], [35], [43], [44].

• High cost: some of these tools are quite expensive [3], [17], [19], [25], [30], [32], [35],

[40].

On the other hand, if the decision to construct a custom code generator is made, one has to

take into account that the building costs could be high in terms of time. Additionally the

developer should perform maintenance tasks over the long term and adapt the product to new

technologies and methodologies that come out in time [1]. This makes the custom code

generator part of the problem rather than the solution.

The rest of the document is organized in three parts as follows: in the next section the

problem that we are working out is described. Then, a brief description of Domain Specific

Languages that is our approach for building the solution, after this, a description of Expert

Coder which is a project related with building code generators. Then we proceed to define the

Code Generation Domain starting with the more abstracts elements and descending to the

more detailed and technical descriptors. The last three sections present conclusions, future

work and references, respectively.

2. Problem description
Code generators available on the market are heterogeneous and possess qualities that are not

capable of being integrated into a single product due to their differences in platform,

technology and licensing.

3

Code generators exist to reduce the time it takes to develop an application, but it takes time to

build a custom generator and not having a tool to reduce the time needed to build, the code

generator becomes part of the problem rather than the solution.

According to the above, a Domain Specific Language is necessary to facilitate the

construction of custom code generators in order to have a tool that can be used in any context

of software development involving the use of relational databases.

Domain-specific languages (DSL) offer a more complete solution to software engineering

problems than general purpose programming languages can offer since they provide a

notation tailored towards an application domain and are based on the relevant concepts and

features of that domain. Such languages provide a natural vocabulary for concepts that are

fundamental to the problem domain. A Domain-specific language (DSL) allows one to

develop software for a particular application domain quickly and effectively, yielding

programs that are easy to understand, reason, and maintain. The benefits of DSL derive from

two basic principles of language design: abstraction and restriction. The choice of appropriate

abstractions aids the phases of requirements, design, coding, and maintenance by providing

high-level entities and relationships that the domain closely. Restriction of language

expressiveness allows for greater automated analysis and hence supports verification,

modification, and maintenance [55], [56], [57].

Domain-specific Languages such as ColdFusion Markup Language [47], MediaWiki

templates [48] and PowerShell [49], for instance, allow development of quick solutions

applied to each of their contexts without the need to build everything from scratch, increasing

user productivity.

The DSL are designed to accurately describe a specific domain, such a task, a platform or a

process. Instead of generic abstractions, they use concepts taken directly from the domain

[54].

3. Definition of the code generation domain
ExpertCoder is a toolkit for the .NET platform that supports the creation of code generators

based on expert systems. It's not a generator of code generators, but rather a set of libraries

useful to write generators.

The purpose is to build a toolset that provides the code generator writer with the clarity that

results from using templates for code generation and the flexibility provided by the power of

the .NET platform, along with its huge class library.

Besides, as it is based on the principles of expert systems, the resulting generators are easily

extensible, modular, and their structure is more declarative than imperative.

The idea is to create an expert system, to write a set of rules and then to specify the distinct

precedence between them. These rules are evaluated by an execution engine, which

determines, based on the precedence and every rule's activation state, which rule must be

executed.

The execution engine provides an environment, which provides three sources of information:

• Parameters: these are stored in configuration files.

4

• Input model: the model to be converted.

• Inferred knowledge: the expert system is able to modify its active memory. By using

this you can implement an indirect interaction mechanism for rules.

A typical generator is composed by two kinds of rules: navigation rules and production rules.

Navigation rules are activated in presence of a given element type at the input, and proceeds

to "navigate" that element's relationships, changing the current element from the input model.

Production rules, are active in presence of an input element (and possibly certain kinds of

elements at the output,) apply a developer-written algorithm in order to generate nodes at the

output, using the information currently available at the input and in the active memory [58].

3.1 Goals of the code generation domain
The purpose of code generation is to reduce the time required to develop an application, as

well as to reduce the repetitive tasks of writing code that can be automated by a code

generator.

The scope of this work requires two main elements for defining the domain, one is the code

generation process and the other is the code generator itself.

The code generation process involves the relational model taken from the database and the

code templates defined by the user.

The code generator is the tool that performs the code generation process. This tool requires

interaction from the user and is compounded by user interfaces and parameter options.

3.2 Concepts/Entities/Requirements
The 1

st
 to the 44th references correspond to the bibliographical revision in the dominion of

the code generators. Here some key patterns have been found in the way they treat the

information retrieved from the database and in the way they produce the final code. Also,

common functionalities such as a screen for prompting the connection string to the database

and a synchronization option to reload the relational model in the case that it was changed,

among others that will be described in more detail further in this document.

3.2.1 Iterations
The code generation process is performed mainly as a nested iteration since the relational

model can be represented in a hierarchy [59], a code generator iterates over the properties of

a given column, the columns of a given table, the tables of a given database, and the

databases of a given set. In these iterations, the custom code templates are applied to the

appropriate object to produce the final code.

3.2.2 Rules
Another key element of code generation process is a set of rules that are applied when a given

condition is met. These conditions allow the code generator to apply templates or run special

routines to cases where the standard model should not be applied.

3.2.3 Domain vocabulary
This section is dedicated to define the vocabulary that is going to be used for the definition of

the rest of the DSL.

5

Relational model: As the name suggests, it is the raw relational model as is persisted in the

database; this excludes any customization made by the user.

Code template: A text file with the description of how the final code should be generated.

Entity: The representation of an object inside the model, this can be a table inside the

database or an artificial object defined by the user.

Level: A set of objects present in a given position of the hierarchy.

Code generator: A piece of software that by itself is able to transform pieces from the model

into final source code or an output that can be consumed by other code generators.

User: In this scope, a user is a software developer or programmer that uses code generators in

his/her daily work developing software applications.

3.3 High-Level requirements specification
To achieve the goal of allowing users to create custom code generators, the language should

meet these requirements:

• Create user interface for prompting information that will be used in the code generation

process.

• Create code templates that will be applied to the model in the code generation process.

• Allow the user to synchronize the actual model with the model persisted in the database

in the case that new objects are created or some are deleted.

• Allow the user to manipulate the model to add, delete, update or list objects.

• Allow the user to use code generators as building blocks to construct a higher-level code

generator.

3.4 Domain specific software architecture
Figure 1 shows the architecture proposed for the DSL. The following section explains each

one of the parts that compose it.

3.4.1 Database reader/writer and raw relational model
The base information needed by a code generator resides in a relational database. This

information, more precisely is the database catalog, can be represented using a hierarchy of

objects, and a set of functions can be used to retrieve information from such structure (Figure

2) [59] as well as some additional functions to manipulate the database, if the code generator

requires it to create new objects such as stored procedures, functions, views, etc.

6

Figure 1: Architecture of the DSL. The language contains the building blocks that make up

the code generators and code templates

3.4.2 Model
The model is an extension of the raw relational model; it is aimed at creating artificial objects

that actually do not really exist in the database. This allows the user to create custom

properties, flags, tags and any additional object in order to apply rules to accomplish

particular code generation requirements or scenarios.

3.4.3 Model manager
Is a set of functions that allow adding, editing, deleting and listing, among others, information

inside the model.

3.4.4 Cursor
The cursor is responsible for the iterations performed over the model in order to apply the

custom code templates. This process starts over the higher level in the hierarchy and nests

iterations over the children until the last level. This process also can be run directly over a

Relational Database
B

a
se

 cla
se

s

DSL

Database Reader/Writer Raw Relational

Model

Cursor

Model manager

Model

Code generator runtime

Template /Model mapper

My custom code generator and templates.

7

given set of objects, for instance, over all the columns without iterating first over databases

and tables.

Figure 2: Representation of the relational model as a hierarchy taken from [59]

Do something with the database before iterating over the tables

Do something with the database after iterating over the tables

Do something with the table before iterating over the columns

Do something with the table after iterating over the columns

Do something with the column before iterating over the properties

Do something with the column after iterating over the properties

Do something with the property

Do something before the iteration starts

Do something when the iteration is done

8

Figure 3: Iteration process performed by code generators over the model

3.4.5 Template/Model mapper
Since the code templates are text files that define what to do with the information retrieved

from the catalog, the Template/Model mapper is responsible for finding inside the Model, the

appropriate information required for the templates.

3.4.6 Base classes
Here we present the main classes that are part of the core library of this DSL. These classes

are defined taking into account the need of allowing customization to the model.

Figure 4: Static class diagram of the core components over which the DSL is built

The Figure 4 does not show the whole model due to space limitations but shows the

interaction between the main components and the methods that run on the code generation

process.

• CustomProperty allows the creation of properties in runtime and attaches them to an

object. This class allows the user to add custom data to the objects stored on the model.

• BaseComponent is the base class from which the rest of the model related classes inherit.

The internal composition of this class is a set of Custom properties.

• View, Column, Table and DataBase are the representation of the raw relational model,

they all inherit from BaseComponent and have static properties that are internally

represented as DynamicProperty.

9

3.4.7 Code templates definition
One of the most important parts of any of the code generators reviewed, is the set of code

templates. Code templates are text files that mix pieces of the final code that shall be

produced by the generator with the properties inside de model. These templates should be as

clear as possible in order to facilitate code maintenance and rapid customization, and should

also avoid unnecessary content. Following these guidelines, we have developed a declarative

language for code templates based on the syntax of CSS (Cascading Style Sheets) [60]. The

basic structure of a code template is:

@Selector{ expression }

#SelectorId{ expression }

.Class{ expression }

• @Selector: Specifies an element inside the model, this could be a Table, Column,

Database or any user-defined element.

• #SelectorId: Specifies the Id of any element inside de model, when this type of template

is used, the expression is applied only to that element identified with #SelectorId.

• .Class: The class is a grouping value shared for various elements inside the model.

• Expression: A mixture of plain text, properties of an element and nested templates. The

following example will be useful to clarify an expression.

@Table{
 Public Class $id{
 @Column{ Private $Type $id; }
 } }

This template is applied to every element of type Table inside the model, the inner expression

defines that the text “Public Class “ should be written followed by the value of the property

$id of the current Table, then, for each Column element that is directly related to the current

Table, the text “Private“ is written followed by the values of the properties $Type and $id of

the current Column.

4. Proposed solution
Based on the models described in section 3 and trying to address the problems that

developers face when building code generators with general purpose programming

languages, we are developing a cross-platform DSL aimed at simplifying the process of

building custom code generators, reducing development time and improving the quality since

the language already includes tested components and functionalities commonly used in code

generation process.

Extending the architecture shown in Figure 1, our final solution will offer to the developers

the possibility of building custom code generators that run over different platforms and can

be extended or integrated with others to reuse functionalities and meet particular needs.

10

Figure 5: Cross platform architecture of the DSL.

Figure 5 shows how code generators can be integrated and even run on different platforms.

This is because they are built with a standardized tool that works with different operating

systems.

Benefits of using this solution are wide as developers are able to create and maintain their

code generators easier than before since less code is needed to implement the same

functionalities. Software vendors can spend more resources improving their code generators

instead of building them from scratch. In the case that one client does not want to use a code

generator available on the market, she is able to create a custom tool that meets particular

needs in a code generation scope taking advantage of functionalities and components

available in this solution. In all cases, efficiency improvement and time reduction are big

gains where a code generator is an important part of any software development project.

With the aim of giving a clearer overview of what we are currently doing, here we present a

conceptual example of how a custom code generator would look like implemented with our

solution proposed. These examples are part of the test cases that we will use to measure the

accuracy of the DSL creating a code generator and running it over different platforms and

with different database engines.

Conceptual example
In this section we present some high level conceptual examples of how this DSL should be

used and how it should behave.

Let us suppose that we have a database called StudentsDB. There are two tables as follows.

• Student

Mac Linux Windows

Runtime

DSL for Code Generators

Code generator 2 Code generator 3 Code generator 1

11

o StudentId, Int

o Name, varchar(100)

o CountryId, Int

• Country

o CountryId, Int

o Name, varchar(100)

Both tables are related by CountryId column.

When these tables are loaded into the Raw Model they are represented as specified in [59].

Then the Raw Model is extended in the Model. Now we define the code templates as follows:

@Table{
 Public Class $id{
 @Column{
 Private $Type $id;
 Public $Type get$id (){ return $id;}
 Public void set$id ($Type p$id){ $id = p$id;}
 }
 }
}

When the Cursor passes through the Model, the output would be:

 Public Class Student{
 Private int StudentId;
 Public int getStudentId(){ return StudentId;}
 Public void setStudentId (int pStudentId){ StudentId = pStudentId;}

 Private string Name;
 Public string getName(){ return Name;}
 Public void setName (string pName){ Name = pName;}

 Private int CountryId;
 Public int getCountryId (){ return CountryId;}
 Public void setCountryId (int p CountryId){ CountryId = pCountryId;}
 }

 Public Class Country{
 Private int CountryId;
 Public int getCountryId (){ return CountryId;}
 Public void setCountryId (int p CountryId){ CountryId = pCountryId;}

 Private string Name;
 Public string getName(){ return Name;}
 Public void setName (string pName){ Name = pName;}
 }

12

Notice that in the Raw Model the column “name” in both tables is of type varchar and not of

type string. The user who builds the code generator according to his particular requirements

should provide this type mapping.

Now let us suppose that we need to change the way primary keys are generated. We want to

change the getter and setter to GetID and SetID respectively, the rest of the columns stay the

same.

@Table{
 Public Class $id{
 .PrimaryKey{
 Private $Type $id;
 Public $Type GetID (){ return $id;}
 Public void SetID ($Type p$id){ $id = p$id;}
 }
 @Column{
 Private $Type $id;
 Public $Type get$id (){ return $id;}
 Public void set$id ($Type p$id){ $id = p$id;}
 }
 }
}

This template uses two selectors, one for any element of class “PrimaryKey” which is

provided by the Raw Model representation and one for every Column element inside the

Model.

5. Conclusions
This work gives an overview of the Code Generation Domain constrained to applications

based on relational databases. With this approach one can implement the models and

components described above in different platforms and technologies to allow developers to

easy build and maintain code generator that meet their particular code generation

requirements. This language includes most common patterns found in code generators and

the architecture allows extending its components in order to enrich the base platform.

The solution proposed in this work solves the problems derived from building custom code

generators with general purpose programming languages.

6. Future work
The next phases of this work are the implementation and performance tests. Python and Ruby

are the candidates as implementation tool since they are easy to learn by programmers, allow

rapid program writing due to their meaningful and flexible structure and also provide an easy

manner to introspect the code which is a plus in this domain. Performance tests after the

implementation phase will be needed to evaluate the accuracy of the components defined in

this work.

In addition, bearing in mind that design-science research has become more popular and

accepted as a research method in Information System, we want to frame this work inside the

13

premises of the design science approach (Hevner et al. (2004) [61]). For instance, in

agreement with Järvinen P. (2005) [62], our work is framed in a case of study oriented at

solving a specific problem, where the technological rules (of Domain Specific Language) are

being developed and tested in close collaboration with the people in the interest area

(designers, developers, programmers).

 Acknowledgements
The authors acknowledge the anonymous reporters who, by their comments, contributed to

the improvement of the text.

References
[1] Herrington, Jack (2003) Code Generation in Action. Greenwich, USA: Manning

Publications Co.

[2] Krzysztof, Czarnecki (1998) Generative Programming, Principles and Techniques of
Software Engineering Based on Automated Configuration and Fragment-Based
Component Models. Department of Computer Science and Automation. Technical

University of Ilmenau.

[3] Delta Software Technology Schmallenberg, Germany, ANGIE. Available from:

http://www.d-s-t-g.com/angie [Accessed 12 Oct 2007]

[4] NCodeGen. Available from: http://ncodegen.sf.net [Accessed 12 Oct 2007]

[5] MDef. Available from: http://mdef.sourceforge.net [Accessed 12 Oct 2007]

[6] Eva-lsx Generator Available from: http://www.elxala.de [Accessed 12 Oct 2007]

[7] Smith Eric, CodeSmith. Available from: http://www.ericjsmith.net/codesmith/

[Accessed 12 Oct 2007]

[8] NVelocity. Available from: http://nvelocity.sourceforge.net/ [Accessed 12 Oct 2007]

[9] Velocity. Available from: http://jakarta.apache.org/velocity/ [Accessed 12 Oct 2007]

[10] X-Code .NET. Available from: http://www.arithex.com/xcc.html [Accessed 12 Oct

2007]

[11] e-GEN. Available from: http://www.gentastic.com/ [Accessed 12 Oct 2007]

[12] nAlliance Corporation P.O. Box 7051 Romeoville, IL 60446, nGeneration. Available

from: http://www.nDevelopment.net [Accessed 12 Oct 2007]

[13] MyGeneration. Available from: http://www.MyGenerationSoftware.com [Accessed 12

Oct 2007]

[14] Lattice Business Software Intl, Inc., Lattice.SPGen. Available from:

http://www.latticesoft.com [Accessed 12 Oct 2007]

[15] Propel. Available from: http://propel.phpdb.org [Accessed 12 Oct 2007]

[16] EazyCode. Available from: http://www.eazycode.com [Accessed 14 Oct 2007]

[17] Solutions Design, LLBLGen Pro. Available from: http://www.llblgen.com [Accessed

14 Oct 2007]

[18] Oxygen Code Generator. Available from:

http://www.techinceptions.com/codegenerator.html [Accessed 14 Oct 2007]

[19] Deklarit. Available from: http://www.deklarit.com/ [Accessed 14 Oct 2007]

[20] MetaStorage. Available from: http://www.meta-language.net/metastorage.html

[Accessed 14 Oct 2007]

14

[21] Iron Speed Designer. Available from: http://www.ironspeed.com/download [Accessed

14 Oct 2007]

[22] VBeXpress.NET. Available from: http://www.vbexpress.com/index.asp [Accessed 14

Oct 2007]

[23] XCoder. Available from: http://sourceforge.net/projects/xcoder/ [Accessed 14 Oct

2007]

[24] Finalist IT Group Finalist IT Group b.v. P.O. Box 1354 3000 BJ Rotterdam The

Netherlands, JAG. Available from: http://jag.sourceforge.net [Accessed 14 Oct 2007]

[25] RFG Software Ltd, CG Pro. Available from:

http://www.rfgsoftware.com/RFG.aspx?ID=12 [Accessed 18 Oct 2007]

[26] JCodeBox. Available from: http://www.jcodebox.com/dwn_eval_frm.asp [Accessed 18

Oct 2007]

[27] Clarion/PHP templates. Available from: http://www.softvelocity.com/php/php.htm

[Accessed 18 Oct 2007]

[28] realMethods Framework. Available from: http://www.realmethods.com [Accessed 18

Oct 2007]

[29] BrightSword Designer Professional Edition. Available from:

http://www.brightsword.com [Accessed 18 Oct 2007]

[30] Razor Source, Inc. P.O Box 34594 Indianapolis, IN 46234, Source Cutter 2.0. Available

from: http://www.RazorSource.com [Accessed 18 Oct 2007]

[31] Automated Architecture, Inc Reston VA 20190, Blue Ink. Available from:

http://www.blueink.biz [Accessed 18 Oct 2007]

[32] Leeonsoft Company, Dreamsource. Available from: http://www.leeonsoft.com

[Accessed 18 Oct 2007]

[33] EPFL - LTI, WebLang. Available from: http://ltiwww.epfl.ch/WebLang [Accessed 18

Oct 2007]

[34] TurnObjects Louisville, KY, TurnObjects. Available from:

http://www.turnobjects.com/Overview/Default.aspx [Accessed 18 Oct 2007]

[35] Vgo Software Manchester, CT, USA, Rev. Available from:

http://www.vgosoftware.com/products/rev/index.php [Accessed 18 Oct 2007]

[36] CodeCharge. Available from: http://www.codecharge.com/ [Accessed 18 Oct 2007]

[37] Fenix ASP.NET generator. Available from: http://net.radventure.nl/Fenix/Index.aspx

[Accessed 18 Oct 2007]

[38] Genexus. Available from: http://www.genexus.com/main/hgenexus.aspx [Accessed 18

Oct 2007]

[39] CompileX. Available from: http://www.compilex.com/ [Accessed 18 Oct 2007]

[40] GENNIT Code Generation, GENNIT. Available from: http://gennit.com [Accessed 19

Oct 2007]

[41] Nolics.net. Available from: http://www.nolics.net/download_nolicsnet2005.aspx#latest

[Accessed 19 Oct 2007]

[42] THINKUI SOFTWARE INC, ThinkUI SQL Client. Available from:

http://www.thinkui.com [Accessed 19 Oct 2007]

[43] Pattern By Example. Available from: http://pbe.d-s-t-g.com/ [Accessed 19 Oct 2007]

15

[44] phpCodeGenie 3.0. Available from: http://phpcodegenie.sourceforge.net/ [Accessed 19

Oct 2007]

[45] Using Domain Specific Languages. Available from:

http://martinfowler.com/dslwip/UsingDsls.html [Accessed 19 Oct 2007]

[46] Linguo Yu (2006) “Prototyping, Domain Specific Language, and Testing”. Indiana

University South Bend, South Bend, IN 46615 USA.

[47] About ColdFusion MX, Adobe. Available from:

http://livedocs.adobe.com/coldfusion/6.1/htmldocs/introb6.htm#wp1116971 [Accessed

19 Oct 2007]

[48] MedisWiki templates, MedisWiki.org. Available from:

http://www.mediawiki.org/wiki/MediaWiki [Accessed 19 Oct 2007]

[49] Windows PowerShell, Microsoft Corp. Available from:

http://www.microsoft.com/windowsserver2003/technologies/management/powershell/de

fault.mspx [Accessed 19 Oct 2007]

[50] Python Programming Language. Available from: http://www.python.org/ [Accessed 19

Oct 2007]

[51] Ruby Documentation. Available from: http://www.ruby-lang.org/en/documentation/

[Accessed 19 Oct 2007]

[52] Haskell. Available from: http://haskell.org/haskellwiki/Haskell [Accessed 19 Oct 2007]

[53] About SAX. Available from: http://www.saxproject.org/ [Accessed 19 Oct 2007]

[54] Jack Greenfield (2006) “Bare Naked Languages or What Not to Model”. The
Architecture Journal, 9, pp. 2-9.

[55] David Atkins et al (2001) “Mawl: a Domain-specific Language for Form-based

Services”. Software Production Research Department. Bell Laboratories, Lucent
Technologies. Room 2A-314, 263 Shuman Blvd., Naperville, IL 60566.

[56] Arie van Deursen and Paul Klint (1998) “Domain-Specific Language Design Requires

Feature Descriptions”. CWI. ACM Computing Classification System: D.2.2, D.2.9,
D.2.11, D.2.13. P.O. Box 94079, 1090 GB Amsterdam, The Netherlands.

[57] Paul Hudak (2008) “Modular Domain Specific Languages and Tools”. Department of
Computer Science, Yale University. New Haven, CT 06520.

[58] Expert Coder. Available en http://expertcoder.sourceforge.net/ [Accessed 19 Oct 2007]

[59] Julian Vargas and Helga Duarte (2009) “An Approach to a Query Functional Language

for Relational Models Represented in Hierarchic Structures”. Tendencias en Ingeniería
de Software e Inteligencia Artificial, 3, Escuela de Sistemas de la Universidad Nacional
de Colombia, Medellín, Colombia. pp 37-42.

[60] CSS Syntax, w3schools. Available from:

http://www.w3schools.com/Css/css_syntax.asp [Accessed 1 Nov 2007]

[61] Hevner A.R., March, S.T., Park, J., and Ram, S. (2004). Design science in information

systems research. MIS Quarterly, 28 (1), 75-105

[62] Järvinen P. (2005) Action research as an approach in design science. Department of

Domputer Sciences. University of Tampere, Finland. Presented in THE EURAM

(European Academy of Management) Conference, Munich, May 4-7, 2005, in track 28:

Design, Collaboration and Relevance in Management Research.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	5-2010

	3P. A First Approach to a Domain Specific Language for Constructing Code Generators
	Julián Vargas
	Helga Duarte
	Recommended Citation

	Microsoft Word - 236950-text.native.1297460510.docx

