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DATA MINING CLUSTERING IN HEALTHCARE 

Bai Patel, New Jersey Institute of Technology, USA, bai.patel@njit.edu 
Lin Chang, Shenyang University of Technology, China, lin.chang@sut.edu.cn 

Abstract 

The accumulating amounts of data are making traditional analysis methods impractical. Novel tools 
employed in Data Mining (DM) provide a useful alternative framework that addresses this problem. This 
research suggests a technique to identify certain patient populations. Our model examines the patient 
population and clusters certain groups. Those subpopulations are then classified in terms of their 
appropriate medical treatment. As a result, we show the value of applying a DM model to more easily 
identify patients. 

Keywords: Data Mining, Healthcare, Information Theory. 

 



1 INTRODUCTION  

The exponential growth of information and technology in recent years necessitates a more thorough 
understanding of stored data and information. Information and data are being accumulated in pace never 
seen before and traditional methods of handling those huge amounts are just not sufficient. This is 
particularly true in the healthcare industry. A search for a resolution yielded many potential solutions. 
One popular approach that is frequently being used in industry and that was proven quite efficient in 
analyzing data is Data Mining (DM). Today, DM tolls are widely used to understand marketing patterns, 
customer behavior, examine patients’ data, and detect fraud. 

This research follows DM procedures and presents a model that transform data and information into 
knowledge in the healthcare industry. Several authors in the information systems field studied data, 
information and knowledge (Alavi and Leidner 2001). The dominant view in the field is that data is raw 
numbers and facts. Information is processed data, or “data endowed with relevance and purpose” 
(Drucker 1995). Information becomes knowledge when it adds insight, abstractive value, better 
understanding (Spiegler 2000). 

Spiegler (2000) described a model that relates data to information to knwoedge using various terms and 
concepts. The author stated that all are considered states in the transformation process of knowing. 
Tuomi (2000), on the other hand, presented a reverse model where knowledge served as the bases for 
information and data. The author claimed that knowledge was the result of cognitive processing initiated 
by an inflow of new stimulation and it can become information when it is articulated and presented in the 
form of text, words, or other representative forms. When incorporating both models together the result is 
a cycle that begins with the application of structured tacit (implicit, cognitive) knowledge; this, in turn, 
yields information; finally, if one adds a fixed representation and interpretation to the generated 
information, the outcome is data, that can be used as raw material to produce information knowledge 
again. 

We follow this taxonomy and aim to generate knowledge to improve decision making. Specifically, we 
produce knowledge related to diabetes. Diabetes is considered one of the most frequent diseases in the 
United States. Identifying diabetic patients is therefore very important. To that end, we follow the notions 
of Ben-Zvi (2009) and employ concepts from related fields, such as Operations Research. We mainly 
concentrate on the preprocessing steps of DM and examine different applications. 

The study is organized as follows: First, we review related literature. Then, we introduce the components 
of our model, propose several techniques for pre-processing activities and present the application with a 
patient database. Finally, we interpret the results and summarize the study. 
 

2 LITERATURE REVIEW 

This study applies and integrates various concepts from different fields. We now explore the different 
fields which are relevant to this study. We cover Data Mining and Operations Research models. 

DM is one of the emerging methods in the information systems field in the past decade. When looking 
for its formal definition, it can be associated with the process of extracting knowledge and insights from 
vast quantities of data in an efficient manner (Chung and Gray, 1999; Khan et al., 2006). However, DM 
is not just the application of specific algorithms for extracting structure from data or information, DM 
also includes data pre-processing procedures. It is associated with data cleaning, incorporating 
appropriate prior knowledge, and proper interpretation of the mining results (Ben-Zvi, 2009). Integrating 
those activities together is what can be regarded as the main core of extracting knowledge out of data, 
what makes DM so useful. 

When using DM, we mainly refer to applying statistical techniques to discover and present information in 
a form that are easily comprehensible (Fayyad, Piatetsky-Shapiro and Smyth 1996). DM can be applied 



to different tasks related to decision-making. Those tasks include decision support, forecasting, 
estimation, and uncovering and understanding relationships among data elements. Chan and Lewis 
(2002) state that DM may help organizations achieve business, operational, and scientific goals by 
revealing and analyzing hidden patterns in their data — existing data from operational systems that may 
consume many gigabytes or terabytes of storage and may be stored on a variety of operating system 
platforms. The authors also claim that the challenge many organizations face is detecting these patterns in 
a reasonable timeframe and at an acceptable cost. When examining the actual application that have used 
DM, one can get the impression that this is exactly where DM can play an important role, by presenting 
the researcher a cost-effective balance question. 

The DM methods being used today are taken from diverse fields as statistics, machine learning and 
artificial intelligence (Fayyad and Uthurusamy 2002; Hand et al. 2001; Khan et al. 2006). Most popular 
methods include regression, classification and clustering. Regression is a statistical method that makes 
prediction of a certain dependent variable according to the values of other independent variables. It is 
very useful in cases where the desired result is a concrete continuous value. Classification is learning 
function that maps (classifies) a data item into one of several predefined classes (Fayyad, Piatetsky-
Shapiro and Smyth 1996). With classification, the predicted output (the class) is categorical; a categorical 
variable has only a few possible values, such as yes–no, high–middle–low, etc. (Chan and Lewis 2002). 
Chan and Lewis (2002) state that regression and classification are related to one another. They claim that 
a regression problem can be turned into a classification problem by bracketing the predicted continuous 
variables into discrete categories, and a classification problem can be turned into a regression problem by 
establishing a score or probability for each category. The most frequently used techniques with those 
methods are decision tress, naïve-bayes, K-nearest neighbor and neural networks. 

When considering clustering, one refers to the task of segmenting a diverse group into a number of 
similar subgroups or clusters (Chan and Lewis 2002). Unlike what happens in classification, there are no 
predefined classes or groups. The clustering algorithms work according to similarities that can be found 
in the data itself, without any predefined rules. When comparing classification and clustering, one needs 
to realize that even the resulted groups in clustering are not necessarily well-defined, and it is up to the 
miner himself to label the final clusters, according to the clustered data (Spiegler and Maayan, 1985; 
Erlich et al., 2003). For a more comprehensive review on segmenting, the reader is referred to Cover and 
Thomas (2006). 

Today, DM is applied in panoply of successful applications in many industries and scientific disciplines 
(Melli et al. 2006); for example, financial institutes (Chen et al., 2000), insurance agencies (Apte et al., 
2002), marketing contexts (Berson et al., 1999; Davenport et al., 2001) and web mining (Scime, 2004). 
One important DM application is in healthcare. DM can potentially improve organizational processes and 
systems in hospitals, advance medical methods and therapies, provide better patient relationship 
management practices, and improve ways of working within the healthcare organization (Metaxiotis 
2006). You may use DM to make utilization analysis, perform pricing analysis, estimate outcome 
analysis, improve preventive care, detect questionable practices and develop improvement strategies 
(Chae et al. 2003; Chan and Lewis 2002). For concrete healthcare applications, the reader is referred to 
Rao et al. (2006), Apte et al. 2002 and Hsu et al. 2000). 

Furthermore, we also apply a concept of using production problems in data mining and use this example 
to leverage our technique. This production problem is extensively discussed in literature (e.g., Ben-Zvi 
and Grosfeld-Nir, 2010; Eden and Ronen, 1990; Grosfeld-Nir and Gerchak, 2004; Ronen and Spiegler, 
1991; Kalfus et al., 2004).  

Today’s reality mandates companies to try and find better and efficient way to produce their products. 
Since every time a manufacturer attempts to produce, the product might end up defective, one might 
invest more efforts in inspection processes, and thus, increase the chance of success. On the other hand, 
investing a lot of efforts in inspection may be costly for the long-term. Therefore, a manufacturer must 
come up with the right balance between efficient production and costly inspections.  

Our model follows the following scenario: a certain order needs to satisfied according to certain 
specifications (that is, the demand is considered “rigid”). Production is conducted on a single machine in 
batches. Each production process includes a fixed cost and a variable (per unit) cost. As the outcome is 



unobservable, after the production process ends the manufacturer needs to initiate an inspection process. 
Inspection also entails costs per unit inspected. Inspection is conducted on a one-to-one basis. Once 
enough conforming units to satisfy the demand are found in the batch, the entire process is over. There is 
no value to the remaining units. If after the inspection process terminates the demand is still not satisfied, 
the manufacturer needs to produce more units to satisfy the remaining demand. The process then 
continues until the entire demand is satisfied.  

This problem is referred to in literature as Multiple Lotsizing in Production to Order (MLPO). We note 
that the most important feature of this problem is its infinity capacity. Unlike other models of single-
attempt demand, where unfulfilled demand is being satisfied by some sort of penalty and then the 
problem terminates, in this scenario, endless production and inspection processes might be required. In 
addition, while there are several studies on single-attempt production models with random yields, MLPO 
models are more rare and there not a lot of publications dealing with rigid demand. However, we do 
recognize the importance of those models, and therefore, focus on the inspection process.  

We concentrate on inspection as its importance has dramatically increased in the past 10 to 15 years. A 
policy of “zero defectives” has been adopted by many manufacturing enterprises. The results have shown 
that this policy leads many times to somewhat expensive quality assurance inspection procedures, which 
make the production procedure more costly. 

We refer to a serial multistage production system and assume the system is facing a certain demand and 
the cost of producing one unit on machine k is . Production is imperfect and each input unit has a 
success probability θk to be successfully processed on machine k (Bernoulli distribution). In Figure 1 we 
illustrate an example of such production system. Now, if one has the option of sequencing the processing 
machines, then it can be shown that it is optimal (cost wise) to arrange the machines so that the ratio 
between the production cost and the success probability, θk, is increasing. 

 

3 THE MODEL 

The model we develop is binary, and therefore, it can be applied to only discrete attributes. Therefore, for 
continuous data we follow the algorithm suggested by Fayyad and Irani (1993) and restrict the 
possibilities to at least two-way, or binary, interval split for any continuous attribute. 

We conduct an interval split (if at all) at the point where the information value is smallest. Once the first 
interval split is determined, the splitting process is repeated in the upper and lower parts of the range, and 
so on recursively. We use a significance level of 5% as a reasonable threshold as a stopping criteria. 

To appropriately process the data, we utilize the MLPO production scenario. We sequence the data items 
(entries) according to their allocated weights and their amount of mutual information with respect to the 
dependent variable. Using (4), each attribute is allocated a likelihood ratio statistic Lj,k (j=1,2,…,d; 
k=1,2,…,pj). To be consistent with the production system parameters, we transform the likelihood ratio 
statistic into a chi-square probability, denoted by θj,k (j=1,2,…,d; k=1,2,…,pj). Note that in the MLPO 
problem βk represent costs (which are sequenced in increasing order) while in our model βj,k represent 
importance (how important the specific data item is). Therefore, to be consistent with the mathematical 
result, we perform the simple transformation of 1-βj,k in the MLPO ratio numerator to arrange the data 
entries by the increasing ratio. 

The result of this assessment constitutes a clustering of the data into a number of groups that have 
significantly different weights. We can define each group by the weight it was assigned, which can, in 
turn, represent the combinations of values of the independent variables. This clustering may be used to 
predict the likelihood of the dependent variable’s event occurrences.  

Next, we employ the Vector space model (VSM) is a classic technique of information retrieval that 
transforms textual data into an algebraic vector. Let n	  be the number of documents in a corpus, and let m	  
be the total number of different words after preprocessing (such as, removing stop words and numbers, 
stripping non-word tokens, extracting stem etc.), VSM is also called the dictionary or bag of words. 



Every unique term (word) from the collection of analyzed documents forms a separate dimension in the 
VSM. In its simplest form a model of a document d is a vector of length m whose i-th entry indicates 
whether or not the i-th word of the dictionary occurs in d. Note that documents are considered as vectors 
in the m -dimensional space of all dictionary entries. 

The main advantage of our technique over methods utilizing term frequency distribution only is that 
phrases are usually more informative than unorganized set of keywords, and can be directly used to label 
the discovered clusters, which in other clustering algorithms becomes a problem. This method treats 
documents as a set of phrases (sentences) not just as a set of words. The sentence has a specific, semantic 
meaning (words in the sentence are ordered). Suffix tree model considers a document as a sequence of 
words, not characters. A revised definition of suffix tree is follow: 

The same classic is used to describe the suffix tree clustering document model, but the leaf nodes have 
been revised by adding document frequency term. 

The internal nodes of the suffix tree are drawn as circles, labelled with characters a through f for further 
reference. Each internal node represents a phrase and a base cluster. Each leaf node is drawn as rectangle 
and designates a suffix of a document. It keeps the frequencies information that different documents 
traversing. The first number in each rectangle indicates the string from which document that suffix 
originated; the second number represents the position in that string where the suffix starts; the third 
number represents the traversed times of the relevant document. 

Each internal node represents an overlap phrase shared by at least two suffixes. The more internal nodes 
shared by two documents, the more similar the documents tend to be. 
 

4 THE CLUSTERING APPLICATION 

When considering the healthcare industry, we may find several interesting and challenging applications 
for DM. Following our analytical formulation, we now present a real-life application for identifying 
diabetic patients in a small US town. The main objective of this application is to recognize what causes 
diabetics. We were able to obtain a patient database and conduct an analysis seeking to identify which 
patients have high probability of being diabetic. Thus, we may gain some insights on the disease and its 
causes.  

 
Group No. of Patients 

1 12 
2 56 
3 789 
4 123 
5 564 
6 662 
7 218 
8 23 
9 87 

10 878 
Total 3,412 

Table 1.  The Resulted Groups (Clusters) of the Data Mining Procedures. 

 

For this study we used a database of 3,412 with several relevant attributes. We note that most attributes 
are defined as numeric and therefore may take any possible numeric number. This, of course, makes the 
original database impractical for the needs of this study and the model we developed. However, 
following the described transformation of the data, with the appropriate pre-processing operations, we 



applied the DM procedures detailed above to obtain a database we can analyze. As a result, the patient 
population was divided into distinct groups (clusters) defined in Table 1. 

It seems that the following characteristics were important to distinguish between the groups: age, race, 
family disease history, patients with family history of diabetes and body weight. 

The next step was to validate the DM procedure. We used the dataset and followed the procedures 
conducted with the patient list to cluster the validation dataset into the seven groups. The results are 
presented in Table 2. The results show that the actual distribution of diabetic patients does not deviate 
significantly from the prediction made based on the DM results. 

 
Diabetic Patients Patient Group No. of Patients Actual Predicted 

1 12 10 16 
2 56 56 47 
3 789 12 8 
4 123 89 98 
5 564 54 65 
6 662 94 95 
7 218 125 102 
8 23 2 1 
9 87 58 50 

10 878 169 171 

Table 2.  Predicted and Actual Number of Diabetic Patients. 

 

Next, we aim to evaluate the results of our DM algorithm and to compare them with the traditional 
analysis methods. However, no established criteria can be found in literature for deciding which methods 
to use in which circumstances. We tested the benchmark methods using the dataset of the previous 
section and compared the results obtained by the various methods. We measured whether the different 
methods were able to make the correct predictions (diabetic and non-diabetic patients). 

Our findings show that using a clustering method with a single linkage technique and a Euclidean 
Distance as a criterion produces the best result. This method was able to identify 80% of the diabetic 
cases. The second best method was our suggested clustering technique with 77% of correct predictions. 
The other methods also produced relatively good results: Classification was able to predict 75% of 
diabetic cases. Regression was the worst method with only 71% accuracy. We believe that this lack of 
accuracy was due to the fact that we are dealing with a discrete variable (the diabetic variable) and 
regression usually produces good results with continuous numeric variables. 

In the next section we discuss the interpretation and outcomes of our application. 

 

5 DISCUSSION AND CONCLUSIONS 

Our method provides many useful insights: 

First, our method is making use of concepts from other close field, like Operations Research and 
Inventory Management. The use of Information Theory is particularly interesting as this theory relates 
also to the Information Systems field. When incorporating those concepts together we were able to show 
that our method is relatively good compared to other traditional methods. Therefore, one outcome is 
establishing our method as a valid method for DM. 

Second, we used to the DM procedure to gain knowledge about diabetes. We conclude that the following 
variables can serve as good indicators for identifying potential diabetic patients: family history, body 



weight and age. This may become a powerful predictive tool for any organization seeking to perform a 
more precise and informed patient selection process to identify diabetic patients. Although we do not 
attempt to generalize the results to the entire population in the United States, we believe that our findings 
represent the different population distribution and the causes of diabetics we found in this study are valid. 
Obviously, each organization (e.g., hospitals) will have its own set of variables that determines the causes 
of diabetics (according to its own measures). However, we expect that the nature of the significant 
variables is similar across institutions with similar patient populations. 

This study showed the benefits of using DM in the healthcare domain. We made a theoretical 
contribution, as we exhibit a formal presentation of the DM process, while integrating several concepts 
from other disciplines. We believe that the results that we shoed in this study can help decision makers in 
determining a health policy related to diabetes. However, although the presented method was proven to 
be quite good, it also has its limitations. First, we were not able to cluster the population into different 
risk-related populations. This was due to the low probability of being a diabetic patient – 7.5% for the 
entire patient population. Second, we were not able to subcategorize the different variables that we found 
critical for identifying diabetic patients. For example, we cannot state that people over 40 have a larger 
probability of catching the disease or that people who are considered fat are in a high risk group. We 
leave those determinations for future inquiry. In addition, the data we used was taken from relational 
datasets. The applicability of our model to other types of databases is yet to be studied. 
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