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SIMILARITY ENHACEMENT IN TIME-AWARE 
RECOMMENDER SYSTEMS 

Anuar, Roee, Tel-Aviv University, roeeanua@post.tau.ac.il; Buckchin, Yossi, Tel Aviv 
University, bukchin@eng.tau.ac.il; Maimon, Oded, Tel Aviv University, 

maimon@eng.tau.ac.il; 

Abstract 
Time-aware recommender systems (TARS) are systems that take into account a time factor - the age of 
the user data. There are three approaches for using a time factor: (1) the user data may be given 
different weights by their age, (2) it may be treated as a step in a biological process and (3) it may be 
compared in different time frames to find a significant pattern. This research deals with the latter 
approach. 

When dividing the data into several time frames, matching users becomes more difficult - similarity 
between users that was once identified in the total time frame may disappear when trying to match 
between them in smaller time frames.  

The user matching problem is largely affected by the sparsity problem, which is well known in the 
recommender system literature. Sparsity occurs where the actual interactions between users and data 
items is much smaller in comparison to the entire collection of possible interactions. The sparsity 
grows as the data is split into several time frames for comparison. As sparsity grows, matching similar 
users in different time frames becomes harder, increasing the need for finding relevant neighboring 
users. 

 Our research suggests a flexible solution for dealing with the similarity limitation of current methods. 
To overcome the similarity problem, we suggest dividing items into multiple features. Using these 
features we extract several user interests, which can be compared among users. This comparison 
results in more user matches than in current TARS. 

 

Keywords: Recommender Systems, Sparsity, Similarity, Time, Patterns. 

 



1 INTRODUCTION 

The term "Recommender Systems" (RS) was introduced by Resnick and Varian (1997), describing an 
application of information filtering (see Figure 1), used to suggest data items to people that are likely 
to be interested in them. The new term was introduced as a substitute to “Collaborative Filtering” (CF) 
in order to signify the difference between collaboration, which refers to the method, and 
recommendation, which refers to the result of the process. According to Montaner et al. (2003), there 
are three main filtering technique approaches to issue a recommendation: (1) Personalized 
(Demography-Based), suggesting items that correspond with the user's profile, (2) Item driven 
(Content-Based), suggesting similar items to the items that the user was previously interested in, (3) 
Collaborative, suggesting items used by other users with similar interests as the current user .The three 
methods may be used together and form a hybrid recommender system. 

 

Figure 1. Recommender Systems domain 

 

Time-aware recommender systems, as explained later in this article, offer an extra perspective when 
analyzing the users’ behavior.  These rather new approaches, take the time factor into consideration 
when issuing a recommendation. In this paper we focus on a specific set of time-aware recommender 
systems, which use sequential patterns over time. 

The rest of the paper is organized as follows: Section 2 reviews several systems, and suggests a 
taxonomy of recommender systems, section 3 presents the methodology of extracting the interests, 
section 4 presents a comparison of user matching by similarity and section 5 summarizes the article. 

 

2 LITERATURE REVIEW 

Several literature reviews have been conducted during the last few years, concerning the development, 
techniques, implementation and classification of recommender systems. Some of these reviews 
suggest a taxonomy-based classification of existing recommender systems. Schafer et al. (2001) 
reviews existing e-commerce systems using recommendations, and makes the distinction between 
different RS based on several dimensions, including the input, approach and output of the RS. While 
Schafer et al. (2001) suggests a taxonomy solely for recommendations based on preference data 
(known interests), Montaner et al. (2003) includes in his taxonomy recommendations based on other 
data, including the user profile adaptation technique.  



Montaner's dimensions are more inclusive than Schafer's, but are not independent as well. Montaner 
adds an important dimension of recommender systems – the adaptation of the user's profile that 
enables dealing with drift in interests. 

To view a complete, yet independent taxonomy by dimension, we present a hierarchical view of the 
taxonomy (see Figure 2). The taxonomy is closer to Schafer et al's presentation, but includes more 
than preference data alone. The taxonomy nodes hold a reference to an example of a paper or site 
using the method indicated in the node. 

 

Figure 2. Recommender Systems taxonomy 

 

Taxonomy details: 
• Inputs – The data used for creating the recommendation. This data divides into two groups: 

o Implicit – In our perspective, implicit inputs include all the inputs that are not supplied 
directly by the user: 
� Stereotype – This is an assumption (classification) made on the user, being part of a 

defined group. 
� History – This method takes as input, the history of items that the user interacted with 
� Statistics – Statistics are used to decipher user's interests, based on his behavior. These 

statistics may sometimes indicate interests that even the user is not aware of.  
o Explicit – These inputs include all inputs that are supplied explicitly by the user: 
� Interests – An explicit list of interests that the user indicates in his profile.  
� Feedback – An explicit opinion given by the user in one of the following forms: 

• Rating – A score given by the user to the item. 
• Like/Dislike –A simple kind of rating and may be viewed as a 1/-1 rating for an item. 
• Comments – This feedback is the least used, since it requires a sentiment 

understanding of the written feedback (Pang et al.  2002). 
• Approach – Explains the general method used when computing the recommendation. It does not 

explain the exact technique used, since these techniques may be used in either approach. For an 
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extensive classification of techniques, refer to Hanani et al. (2001) and Canfora and Cerulo (2004). 
Systems that use both content-based and social-based approaches are called hybrid RS. 
o Content-Based – Relies on user-item matching, to identify the items that may interest the user: 
� Item-Based – In the content-based context, the item-based recommendation relies on the 

similarity between items. 
� Interest-Based – In the content-based context, the interests of the user are considered 

when finding similar users, instead of the items themselves.  
o Social Based – Relies on user-user matching, to identify users that share the same interests, 

and may imply on new interests to one another. 
� Item-Based – In the social-based context, the item-based recommendation relies on the 

similarity between users, based items they've all been interested in. 
� User-Based – In the social-based context, similarity between user profiles is used to obtain 

the recommendation.  
• Output – This dimension considers how the recommendation is given and when: 

o Type – The type of recommendation explains how the recommendation is delivered: 
� Stream – The user receives one item at a time, as in a stream of information.  
� Top X – The user is presented with the top X items that best match his taste. 
� Rating – An approximation of the rating that the user would have given the item is 

computed and presented. 
o Timing –When is the recommendation delivered to the user? 
� New Item Arrival – When a new item (or a group of items) is introduced into the 

collection, the recommender system decides if to recommend this item to a user or not. 
� With other Item – Recommended item is added to items that the user is observing. 
� On User Request – The user requests an immediate recommendation. 
� Specific Timing – A daily/weekly/monthly… recommendation. 

Next, we elaborate on the adaptability aspect from Montaner’s work and extend it to reflect time-
aware and unaware systems. 

2.1 Time-aware recommender systems 

 

Figure 3. Recommender Systems taxonomy 

 

Figure 3 presents the taxonomy breakdown for adaptability in recommender systems. 

The adaptability aspect in recommender systems may be summarized by these approaches: 
• Offline Update – In this approach, the adaptability is not an integral part of the system. The system 

may be updated in two ways: 



o Manual – Manual interference is introduced to the system, to change the recommendation. For 
example, users may be required to update their interests every once in a while. As the users 
updates their interests, new recommendations may be issued for them based on their new 
interests.  

o Recalculate – In this approach, the recommendation model is recalculated every given time, 
adding new and discarding old information. 

• Online update – In this approach, the adaptability is an integral part of the system. 
o Time Unaware – although these systems consider new data as an integral part of their model, 

they do not treat old and new data differently. We have observed a single approach in general 
for this behavior: 
� Adding new information – In this approach, new data is added to the old one, thus adding 

data on the customer. There is no reference to the age of the data, and all data from all 
time periods is accounted in the same manner when issuing a recommendation. 

o Time Aware – In this approach, the age of the data is considered when issuing a 
recommendation. This approach includes three methods of adaptation: 
� Time Weight – A weight is attached to each sample to increase or decrease its influence 

on the recommendation. With time, older observations may receive less influence in 
issuing a new recommendation, until they are no longer used. The moving average is a 
specific implementation of this approach. Ding and Li (2005) and Ding et al. (2006) use 
this approach to ensure that newer items will receive more weight when issuing a 
recommendation. 

� Natural selection – Biological based algorithms are used to evolve, mutate and reproduce 
the best recommendation. Other, less productive recommendations disappear as time 
goes by. Both Cayzer and Aickelin (2002) and Acilar and Arslan (2009) suggest a 
collaborative filtering method based on artificial immune network, to group users. 

� Sequential – Recommendation is issued based on patterns in time. For example, Huang 
and Huang (2009) assign customers into groups, according to their purchase sequence. 

2.2 Sequential analysis 

In sequential analysis, the similarity between users is based on findings matching items in time 
patterns among them. 

Min and Han (2005) suggest a recommender system based on a time variant pattern. In their work, 
they map the change in user behavior, by measuring the distance between the clusters a user belonged 
to in different time points. Afterwards, they match similar users by matching the users’ ratings of 
items in different time points and predict the user’s ratings for other items. 

Cho et al. (2005) followed the customer purchase sequence over several time periods. In the first step 
each transaction is allocated into a product group to map the purchase behavior of customers. In the 
second phase, similar purchase patterns are grouped into clusters. In the third step, based on the 
change in the group number a user belonged to in each time period, new dynamic profiles are built. 
From these dynamic profiles, sequential rules are discovered. These rules are later used to predict the 
next group for a customer. Based on the predicted groups, a recommendation is issued. 

Huang and Huang (2009), assign customers into groups, according to their purchase sequence. To 
solve the sparsity problem created when trying to match specific sequences, they also use the 
hierarchical product taxonomy, and build the purchase sequence based on the product group instead of 
the product itself. After building the customer groups, sequential pattern mining is used to find the 
purchase sequence for each customer and each group. To issue a recommendation, they match a 
customer pattern versus all purchase patterns of groups, and find the most probable (supported) 
product categories that the user will buy from. Based on these groups, they find the most probable 
(frequently bought) items that the user will purchase and issue a recommendation. 



As seen above, all sequential recommender systems aggregate the items into item categories or 
clusters to solve the sparsity problem that arises when looking at user activities over different time 
frames. These single aggregations may lose valuable data about the specific item that the user was 
interested in, and as such have many limitations on the recommendation. 

2.3 Previous work 

The interest extraction approach presented here is based upon a method first used for rating scientific 
papers in the NHECD project (Maimon et al. 2009, Anuar et al. 2010). In short, the rating method 
used incoming citations and citation “strength” to calculate normalized rating scores for each paper in 
the NHECD corpus. Using the same data structures, we extend the rating capabilities so that using 
simple SQL statements, the user interests may be extracted. This work differs from our previous one 
(Anuar et al. 2010) in our direct reference to the user similarity problem that emerges when splitting 
the data into several time frames, instead of the sparsity problem. 

 

3 DEFINITIONS AND METHODS 

Let us consider a recommender system in which each user u, and each item i, have several attributes. 
The interactions between users and items are recorded by saving the user id, the item id, and the time 
of the interaction between them. In this context, the users do not rate their interaction with the items. 

To enhance the similarity, we suggest using the entire available data for users and items, instead of a 
single aggregation as mentioned earlier. Using all of the available features of items and users, our goal 
is to find the users’ interests. Comparing between interests instead of items will lead to enhanced 
similarity in different time frames. 

3.1 General definitions 

To solve the problem, we use a relational DB approach using the following definitions: 

SVIA� ⊆ �IA�: VIA��, VIA�� … , VIA���
�∀t = 1. . N is a subset of N possible attributes of item i, where 

IA� is an attribute t of items in the system and VIA�� is the w′th possible value of the item attribute t. 
For example: SVIA���= {Name: Gold Particles Toxicology; Keyword: Toxicology, Nano-particles; 
Author: John Smith, Jane White; Referenced Articles: 1713, 19054, 7242}, this is the representation of 
an article written by John Smith and Jane white, in the topic of gold particles toxicology, it references 
paper 1713, paper 19054 and paper 724. A DB representation of this example is described on Table 1. 

 
INDEX ATTRIBUTE VALUE 
124 Name Gold Particles Toxicology 
124 Keyword Toxicology 
124 Keyword Nano-particles 
124 Author John Smith 
124 Author Jane White 
124 Referenced Articles 1713 
124 Referenced Articles 19054 
124 Referenced Articles 7242 

Table 1. Item attribute values set in DB representation 
 
An interaction record is added at the time the user interacted with an item:  
SVNA� ⊆   {u; i; T}∀t = 1. . Q is the interaction j for user u with item i at a specific time T.  

Example:  {131; 124;17/12/2009} = The interaction of user 131 with item 124 on 17/12/2009. 



3.2 Extracting the users’ interests  

To extract the user interests in a specific time period T	, we will first find the common behavior of all 
users. We first perform a Cartesian product (DB inner join) of the item and the interactions in this time 
periods, resulting in CB
(T	)  - the interaction breakdown. This breakdown is defined as: 

 CB
(T	) = {SVNA� ⋈ SVIA� ∀T in T	} 

Using the interaction breakdown, we may count he number of times, each attribute was observed in 
each attribute value. This results in an aggregation of the interaction breakdown, ��������. The 
attribute value summation is done for each item attribute and item attribute-value: 

�������� =�,��  ℊ�����(�) (��
(��))  

To calculate the final common behavior, we divide the aggregated table ��������, by the number of 
interaction in T	. This will result in the common behavior - ������: 

������ =
��������

ℊ�����(�) (�	
��  ∀� � ��)  
 

Repeating the same steps above for the interactions of a specific user, we receive ������� - the user � 
behavior in ��. Subtracting the common behavior from the user behavior, we receive the user interest 
behavior ��������: 

�������� = ������� − ��(��) 

3.3 Interest extraction example 

Given the item set and interaction set seen in Figure 4, we’ll follow an example to extract the user 
interests. 

 

Figure 4. Table Representation of Model 
 
The first step is to join the interactions and items and recieve an interaction breakdown, as seen in 
Figure 5(a).  

 

Figure 5. Interaction breakdown, Attribute value summation & Common behavior 
 

(a) 

(b) 



Next we use the interaction breakdown and aggregate the data by item attribute and item attribute-
value, resulting in the attribute value summation (see “occurrences” column in Figure 5(b)). 

Next we divide the summation over the number of occurrences, for each observed item attribute value. 
(see “normalized” column in Figure 5(b)). 

We repeat the same steps to build user 1’s behavior and calculate his interest behavior. First we select 
only the interactions of user 1, and by joining them with the item attributes, we receive the interaction 
breakdown for user 1 (see Figure 6. User 1 Interaction Breakdown & Interests Behavior. Next we 
repeat the summation over all item attribute values, for user 1 interaction breakdown alone (see 
“occurrences” column in Figure 6. User 1 Interaction Breakdown & Interests Behavior. The user 
behavior is calculated by dividing the item attribute value summation by the number of interactions of 
user 1 (see “normalized” column in Figure 6. User 1 Interaction Breakdown & Interests Behavior. 
Subtracting the common behavior from the user behavior results in the user interest behavior, as seen 
in Figure 6. User 1 Interaction Breakdown & Interests Behavior. 

 

 

 

 

 

 

Figure 6. User 1 Interaction Breakdown & Interests Behavior 

As seen from the figure, after considering the behavior of the entire population, user 1 shows an 
interest in articles with the “Taxonomy” keyword and articles with “David Norton” as author. The 
values in the UIB will always vary from -1 and 1. A value of -1 suggests no interest in the specific 
attribute value, and a value of 1 suggests a total interest in it. In this example we do not look into the 
interactions between interests. Using the UIB, we can find similar users by matching similar interests 
by each item attribute. In this example we may find similar users by their interests in specific 
keywords, or by specific authors. 

4 EXPERIMENTAL RESULTS 

Regularly in recommender systems, the similarity is calculated by using cosine similarity between the 
users (Adomavicius et al. 2005). The cosine similarity measure is used to compare between two user 
vectors, resulting in a similarity score between -1 and 1.  We use cosine similarity on two approaches 
(1) between movies each user have seen, and (2) between each user’s extracted interests. Our 
similarity enhancement algorithm was tested on the MovieLens dataset. In our context, the matrix 
considered is the matrix of movies, seen by each user in the repository. Since each user viewed only a 
small fraction of the movies, this matrix is sparsely populated.  

On our first comparison, we used the full available data (as a one time frame) to compare between the 
approaches. First, we used our algorithm to extract the UIB based on the available genres for each 
movie. Next, we measure the cosine similarity for each two different users. Next, for each user we 
calculate the similarity for every other customer. Next, for each user and similarity threshold, we count 
how many similar users may be found. By incrementally decreasing the distance threshold, we find the 
number of neighbouring users as a function of the similarity threshold them. We repeat the same 
process for the user-movie instead of the user-interest vectors.  

Figure 7 presents the results of the average number of users that fall within different levels of cosine 
similarity threshold. As seen from the figure, for the two approaches, the number of similar users 
grows as we decrease the threshold. However, when the similarity threshold is relatively high, the 

(a) 
(b) (c) 



number of similar users is larger when comparing by interest than by movies. When the similarity 
threshold drops to 0.2 and below, the number of similar user is larger when comparing by movies than 
by interests. This suggests that users clustered by interests are located in tighter groups. 

 

 

Figure 7 Average number of neighbours by distance, in one time frame. 

On our second comparison, we used only one half of the data. This data includes all the interactions 
between users and movies that occurred before the median interaction occurred, resulting in a smaller 
time frame. We repeated the same test as explained above. Figure 8 presents the results when 
comparing between users in a smaller time frame. 

As seen from both tests, using the interest vectors to find similar users, results in finding more 
neighbouring users than when using the movie vector. This implies that when trying to find 
neighbouring users, using the user-interest matrix will lead to more results than using the user-movie 
matrix. 

 

Figure 8 Average number of neighbours by distance, in a half time frame. 

 

  

Similarity threshold 

Similarity threshold 



5 CONCLUSIONS AND FURTHER RESEARCH 

This paper aims at two goals. First, we survey and organize TARS into a taxonomy. Moreover, our 
taxonomy of RS presents independent dimensions of RS properties and is the only visual breakdown 
we have encountered in the literature. Second, we suggest a new approach for finding similar users, 
based on user interests. The extraction of interests offers a strong tool when dealing with sparse data 
for finding user similarities. 

As seen from the experimental results, the usage of user interests results in more user matches than 
traditional similarity matching. By reviewing the number of neighbouring users by a similarity 
threshold (as seen from figure 7), it seems that when using the interest vector, there are tighter clusters 
of users.  

Although we show that more user matches may be found, it is not guaranteed that matching more 
users will yield better recommendations. To solve this problem, our future research will focus on two 
topics: (1) Usage of the user behavior vector as an estimator of the probability for a user to like a 
specific feature, and (2) Measurement of recommendation in a scale of entropy. Using an entropy 
measure, we may find the certainty of our recommendation, and compare it to traditional measures as 
RMSE. 
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