
BISE – RESEARCH PAPER

Proposal for Components of Method Design
Theories

Increasing the Utility of Method Design Artefacts

DOI 10.1007/s12599-010-0120-x

The Authors

Dr. Philipp Offermann (�)
Dipl.-Inform. Sören Blom
Dr. Udo Bub
Laboratories
Deutsche Telekom AG
Ernst-Reuter-Platz 7
10587 Berlin
Germany
philipp.offermann@telekom.de
soeren.blom@telekom.de
udo.bub@telekom.de

Dipl.-Ing. Olga Levina
Fachgebiet Systemanalyse und EDV
Technische Universität Berlin
Franklinstr. 28/29
10587 Berlin
Germany
olga.levina@sysedv.tu-berlin.de

Received: 2009-12-01
Accepted: 2010-07-03
Accepted after three revisions by
Prof. Dr. Winter.
Published online: 2010-08-31

This article is also available in Ger-
man in print and via http://www.
wirtschaftsinformatik.de: Offermann
P, Blom S, Levina O, Bub U (2010)
Vorschlag für Komponenten von
Methodendesigntheorien. Steige-
rung der Nutzbarkeit von Methoden-
designartefakten. WIRTSCHAFTSIN-
FORMATIK. doi: 10.1007/s11576-010-
0239-x.

© Gabler Verlag 2010

1 Introduction

The design of information systems (IS)
artefacts is generally accepted as research
in IS (Gregor 2006; Hevner et al. 2004;
March and Smith 1995; Offermann et
al. 2009) and the German counterpart
“Wirtschaftsinformatik” (Gericke 2008;

Wilde and Hess 2007). However, it is still
unclear how design artefacts can be pre-
sented in a generalised form that pro-
vides a valuable contribution to the body
of knowledge. In the scientific discipline,
a body of knowledge together with con-
jectures, models and frameworks is en-
compassed by the word “theory” (Gregor
2006, p. 614). The trustworthiness of the-
ories can be assessed through certain cri-
teria, which differ depending on the epis-
temological point of view (Guba 1981).
The fundamental question for this arti-
cle is what the relationship is between de-
sign artefacts and their theories; and how
design knowledge can be represented as
theories in a way that facilitates evalua-
tion (Gregor and Jones 2007; Walls et al.
1992).

The answers to these questions are
relevant as in the current non-theory
state researchers are confronted with sev-
eral problems: Design artefacts are not
comparable, scientific progress cannot be
measured clearly (Aier and Fischer 2009a,
2009b), the purpose of design is not
made explicit, and it remains unclear how
the output can be and/or was evaluated.
Problems are not limited to research as
some problems also apply to industry:
it remains unclear under which circum-
stances a design artefact can be used and
which artefact yields the highest utility
for a given problem, reducing acceptance.

Gregor and Jones (2007), building on
Walls et al. (1992), proposed an anatomy
of design theory. They realised the pro-
posal of Walls et al. (2004, p. 56) to aug-
ment the structure of the original Walls
et al. (1992) publication while remain-
ing on the same level of abstraction. We
believe that a specialisation of the design
theory structure for each output type can
render the structure even more usable,
thereby further augmenting it. According
to March and Smith (1995) there are four
design theory output types: constructs,
models, methods and instantiations. We
have been and are still involved in several
research projects addressing method en-
gineering. From this background, in this

methodological discussion we propose
a refined design theory method struc-
ture. We do not focus on method en-
gineering as in how to create methods
or method theories, but instead suggest
building blocks that give specific guid-
ance on what to include and how to de-
scribe method design theories. By doing
so we hope to address some of the afore-
mentioned problems in a way that is ap-
plicable for researchers and practitioners.

The article is structured as follows.
First, the nature of design science re-
search output in general is discussed and
the specialisation in form of methods in-
troduced. Then, general components of
design theory as outlined by Gregor and
Jones (2007) are introduced. In Sect. 4,
a specialisation of the components for
methods and evaluation criteria are de-
rived and examples presented. In Sect. 5,
findings are discussed. Finally, a conclu-
sion is drawn.

2 Methods as Design Artefacts

Design science is about designing arte-
facts related to IS. However, there is a
discussion about what design science re-
search output actually is (Alter 2002;
Iivari 2002).

2.1 What is Design Science Research
Output?

Vaishnavi and Kuechler (2007) identify
the two perspectives on the design science
research output from March and Smith
(1995) and from Purao (2002). Hevner et
al. (2004, p. 77) follow March and Smith
(1995, p. 256) in that “IT artifacts are
broadly defined as constructs (vocabu-
lary and symbols), models (abstractions
and representations), methods (algo-
rithms and practises), and instantiations
(implemented and prototype systems)”.

Our understanding of the design sci-
ence research output is based on Walls et
al. (1992). Generally, an artefact design
focuses both on some structure and on a

Business & Information Systems Engineering 5|2010 295

mailto:philipp.offermann@telekom.de
mailto:soeren.blom@telekom.de
mailto:udo.bub@telekom.de
mailto:olga.levina@sysedv.tu-berlin.de
http://www.wirtschaftsinformatik.de
http://www.wirtschaftsinformatik.de
http://dx.doi.org/10.1007/s11576-010-0239-x
http://dx.doi.org/10.1007/s11576-010-0239-x

BISE – RESEARCH PAPER

method to create something according to
the structure. When focusing on method
design, usually, the structure is taken as
state-of-the-art. When evaluating a newly
developed method, one would not at-
tempt to prove the requirements result-
ing from the structure. Rather, one would
show that the requirements are realised
by using the method, taking the utility of
the requirements for granted.

2.2 Method Design

We think that a design theory structure is
more useful to research and practise if it
is specialised for each aspect. In this pa-
per, we present such a specialisation for
methods.

According to Braun et al. (2005,
p. 1296), a “method constitutes the
basis for engineering-based procedure”.
They identify goal orientation, system-
atic approach, principles and repeata-
bility as the fundamental defining at-
tributes. They identify specification doc-
ument, meta model, role, technique,
activity/procedure model and tool as
constituting elements (Braun et al. 2005).
The Object Management Group (OMG)
has standardised a software & systems
process engineering meta-model (SPEM)
(OMG 2008).

“Method engineering is the engineer-
ing discipline to design, construct and
adapt methods, techniques and tools
for the development of information
systems” (Brinkkemper 1996, p. 276).
Method specification has been discussed
e.g. by Greiffenberg (2004) and Eber-
lein and Jiang (2007). As methods have
to be adapted to a context, most au-
thors propose situational method en-
gineering. There is usually a differ-
entiation between method adaptation
and method composition (Bucher et al.
2007). In adaptation, a generic method is
adapted to project specific needs (Karls-
son and Ågerfalk 2004; ter Hofstede
and Verhoef 1997). This process is also
called tailoring (Basili and Rombach
1987; Fitzgerald et al. 2000). In com-
position, method fragments, sometimes
called chunks, are composed according to
needs (Brinkkember et al. 1999; Plihon
and Rolland 1997; Ralyté et al. 2003).

After designing a new method it should
be evaluated (March and Smith 1995;
Offermann et al. 2009; Peffers et al.
2008). Several method evaluation tech-
niques have been proposed. (Kitchenham
et al. 1995; Siau and Rossi 1998; Song and
Osterweil 1992). Moody (2003) proposes

a method evaluation model, based on the
Technology Acceptance Model. Accord-
ing to Goldkuhl (2004), multi-grounding
should be used, combining different eval-
uation techniques.

3 Components of Design Theory

Before we refine the components of a
method design theory, we want to give
an overview of our understanding of the
term theory and what the current state
of discourse regarding design theory in IS
research is.

3.1 Theories in Information Systems

The term theory in IS research has been
discussed, amongst others, by Cushing
(1990), Davis et al. (1989), Walsham
(1995). We follow Gregor (2006, 2009),
who reviewed theory approaches in IS
research and the related disciplines and
offers the following theory definition:
“Theory is [. . .] a generalised body of
knowledge, with a set of connected state-
ments expressing general relationships
among constructs that refer to entities
of different types, both real-world and
theoretical” (Gregor 2009). This view is
based on Walls et al. (1992) who state that
the “purpose of a theory is prediction
and/or explanation of a phenomenon”
(Walls et al. 1992, p. 38), which in turn
draw from Dubin (1978). Both Walls et
al. (1992) and Gregor (2006) accept this
view of theory which is grounded in so-
cial sciences without discussing whether
it can be directly mapped to design sci-
ence. Furthermore, Gregor (2002, 2006)
identifies five types of theory in IS re-
search: analysis, explanation, prediction,
explanation and prediction, design and
action.

3.2 Design Theories

Information Systems design theories
(ISDT) are theories for design and ac-
tion (Gregor 2006; Jones et al. 2003).
Venable (2006) supports a broad view
on a design theory, stating that an ap-
propriate form of a design theory is a
so-called utility theory that “makes an
assertion that a particular type or class of
technology [. . .] has [. . .] utility [. . .] in
solving or improving a problematic situ-
ation”. There have been many proposals
on design theory components, e.g. Iivari
et al. (2000–2001), Markus et al. (2002).
Based on Gregor (2006, p. 620), Gregor

and Jones (2007) identified eight compo-
nents of a design theory for IS research,
which are the basis for our considerations
in this paper.

Any artefact is designed with an in-
tention of use in mind. The purpose and
scope component captures this intention.
The purpose describes “what the system
is for, the set of meta-requirements or
goals that specify the artefact” (Gregor
and Jones 2007, p. 322). The scope de-
fines the range of situations in which the
artefact can be used as intended in order
to achieve the stated goals. This compo-
nent allows categorising, comparison and
extension of the theory under analysis.

Constructs are the building block of any
theory. Gregor and Jones (2007, p. 325)
call them “the entities of interest in the
theory”, but do not describe the possi-
ble sources or range of the constructs.
Constructs can be “represented by words,
[. . .] but mathematical symbols or parts
of a diagram can also be used” (Gregor
and Jones 2007, p. 325).

Principles of form and function are de-
fined as “principles that define the struc-
ture, organisation, and functioning of the
design product or design method” (Gre-
gor and Jones 2007, p. 325). It is the “ab-
stract ‘blueprint’ or architecture” of the
artefact (Gregor and Jones 2007, p. 322).
When applied to a design method, the
“shape and features” (Gregor and Jones
2007, p. 326) of the method represent its
principles of form and function.

Gregor and Jones (2007) make the case
that any designed artefact is subject to
evolution over time and that the de-
signer might foresee a certain bandwidth
of change during designing it, which they
refer to as “artifact mutability”. It is as
“[t]he changes in state of the artifact an-
ticipated in the theory, that is, what de-
gree of artifact change is encompassed
by the theory” (Gregor and Jones 2007,
p. 322).

Testable propositions are statements
about the theory that can be proven or
falsified. The formulation of the proposi-
tions can be defined rather broadly (Gre-
gor and Jones 2007, p. 327).

Justificatory knowledge is related to the
“kernel theories” of Walls et al. (1992)
and “micro-theories” of Simon (1981).
It is knowledge that connects “goals,
shapes, processes and materials of the
design theory” (Gregor and Jones 2007,
p. 327). The authors state that natural,
social, as well as design science type of
theories are possible justificatory knowl-
edge (Gregor and Jones 2007, p. 327).

296 Business & Information Systems Engineering 5|2010

BISE – RESEARCH PAPER

Principles of implementation are seen by
Gregor and Jones (2007, p. 323) as an
optional component of a design theory.
They relate to the process and the means
by which the design is realised (Gregor
and Jones 2007, p. 328).

Expository instantiation contains a real-
istic implementation, i.e. a physical real-
isation of the design (Gregor and Jones
2007, p. 329). This optional component
is introduced to allow the exposition or
representation of a theory, as the artefact
itself already has some representational
power.

3.3 Criteria for Theory Evaluation

Criteria for evaluating theories depend
on the epistemology of the research
paradigm. For positivism, validity, relia-
bility, generalisability and objectivity are
used, for interpretivism credibility, de-
pendability, transferability and confirma-
bility are used respectively (Guba 1981;
Travis 1999). For design science research,
no consensus exists about which episte-
mology and ontology should be assumed.
The criterion of utility that a design yields
in application is considered relevant. It
can be clearly measured through a util-
ity metric, and would fit under a posi-
tivistic paradigm, whereas the act of de-
sign contains interpretative elements, es-
pecially the application in new or differ-
ent situations, akin to interpretivism. It is
beyond the scope of this paper to develop
a genuine epistomology and ontology of
design science research. For this paper
we see validity/credibility as the truth of
the utility statement of the design (i.e.
the correctness of the statement “apply-
ing the method to a situation in scope
will yield the claimed utility”). Objectiv-
ity/confirmability will be interpreted as
the degree to which others are able to
confirm the utility statement. Generalis-
ability will be the assumption that the
utility statement holds true for all pos-
sible instances within the scope, whereas
transferability is the assumption that in
out-of-scope situations that are neverthe-
less similar to those in the scope, the util-
ity statement would hold to a certain de-
gree.

4 Derivation of the Method
Design Theory Components

In order to perform a method-specific
specialisation of the design theory struc-
ture as proposed by Gregor and Jones

(2007), we consider each of the eight
components in turn and discuss what
constitutes a specialisation specific to
methods. We followed a hermeneuti-
cal approach to identify the refinements
(Winograd and Flores 1986). Based on
the individual pre-understanding regard-
ing design theories and methods, the au-
thors of this paper identified what would
qualify as a method-specific specialisa-
tion of the theory elements of Gregor
and Jones (2007). The different interpre-
tations were then discussed and unified
to outline their scientific role. To ground
the resulting view in the discipline, each
element was aligned with existing litera-
ture.

We then discuss how each element sup-
ports the criteria for theory evaluation.
Table 1 provides a summary of the re-
sults, including evaluation criteria de-
rived from the method-specific speciali-
sations in combination with the relevant
theory evaluation criteria. Finally, we il-
lustrate good specifications for each com-
ponent by citing examples fulfilling the
evaluation criteria. An overview of the
examples used is given in Table 2.

4.1 Purpose and Scope

4.1.1 Method-specific Refinement

Purpose statements about methods con-
tain three elements: The kind of out-
put that the application of a method in-
stance is supposed to produce (e.g. a
particular kind of software), properties
that the output bears (e.g. a certain de-
gree of maintainability) and statements
about the method itself (e.g. its effi-
ciency). The scope of a method can be de-
scribed from an “external” and “internal”
perspective. The external perspective is
concerned with the question of when and
where a method can be applied. Precon-
ditions to successful application include
the type of product to be produced, but
can also include properties of the organi-
sation and team. Aier and Fischer (2009a)
call this the “Anwendungsbereich” (ap-
plication area/range) of a method, which
consists of “project type” and “context”
as conceptualised by Bucher et al. (2007).

The “internal” perspective deals with
the scope of methods in terms of how
much a method covers compared to the
entirety that could be described by meth-
ods in principal. Cockburn (2007) pro-
poses that methods can be characterised
through “lifecycle coverage”, “role cover-
age”, and “activity coverage” (Cockburn

2007, p. 155). The lifecycle coverage de-
scribes which general phases this meth-
ods offers guidance for, the role cover-
age describes which roles are addressed
through the method and the activity cov-
erage lists the activities which are avail-
able for application in a project based
on the method. In addition to Cock-
burn’s structure, Iivari et al. (1998) dis-
cusses the term “approach” in distinction
to the term “methodology” (synonymous
to “method” in this paper). In Iivari et
al. (2000–2001), the idea is further de-
veloped and the layer “paradigm” added.
Each method belongs to an approach,
which in turn belongs to a paradigm.
A method contains techniques. For these,
Oei and Falkenberg (1994) discuss how
they can be compared based on their
meta-model.

We have argued that a well-defined
scope facilitates comparability between
theories. This requires that the to-be-
compared theories refer to the same spec-
trum of which they claim to cover a cer-
tain part. An agreeable common refer-
ence could be the Generalised Enterprise-
Reference Architecture and Methodolo-
gies life-cycle model (ISO 2000, pp. 16–
18). It defines seven phases from the
identification to decommissioning of an
artefact. For roles and activities we are
not aware of any standard that is as widely
accepted. For approaches in information
systems development, the work of Iivari
et al. (1998, 2000–2001) can be a starting
point.

4.1.2 Scientific Role

Defining purpose and scope supports
generalisability. The scope needs to be
clearly defined in order to be able to gen-
eralise the validity of the utility statement
from a limited number of supporting ev-
idence to other cases. The scope defines
the “population” of cases, in which apply-
ing the method is supposed to yield the
claimed utility. Especially when concern-
ing the external scope this can be a chal-
lenge as not all dimensions relevant to the
utility of a method may be known. How-
ever, the differentiation between an in-
stantiation of a method within the scope
and purpose and the transfer of a method
to a different scope and/or purpose is
crucial to know if the utility statement is
valid or has to be newly verified. At the
same time the sufficiently rich descrip-
tion of purpose and intended scope can
help to make the transfer to new settings
easier.

Business & Information Systems Engineering 5|2010 297

BISE – RESEARCH PAPER

Table 1 Summary of method design theory components

Component Method-specific elements Evaluation criteria

Purpose and
scope

� Project type
� Project context
� Lifecycle coverage
� Role coverage
� Activity coverage

� Given a problem, is the purpose described in a way to
tell if the method solves the problem?

� Is the product of the method clear?
� Given a problem context, is the scope described in a way

to tell if the context falls within the scope?
� Are all relevant dimensions specified within the scope?
� Are the covered lifecycle phases, roles and activities

specified?

Constructs � Method specific constructs (as defined by a
meta-model, such as SPEM)

� Output-specific constructs
� Concepts in the application context

Are terms and concepts presented to
� describe the method?
� describe the resulting structure?
� describe the application context?
� describe the purpose and scope?
� create the testable propositions?
Are the concepts introduced comprehensively in one
location and derived systematically?

Principles of
form and
function

� Description of the method (according to the
meta-model selected above)

� Is the method described extensively enough to be useful
and transferable?

� For each possible role, is it clear which activities have to
be done in what order?

Artefact
mutability

� Foreseeable changes (which part of the method, method
base or method instance, kind of change)

� Optional: support for change offered by method design
paradigm (i.e. situational, method rationale)

� Is the method described extensively enough to
understand the functioning of each component?

� Are conditions for changes described?
� Does it become clear, which parts change and what they

change into?
� Are method tailoring mechanisms defined?

Testable
propositions

� Utility statement about theory
� Optional: truth statements about match between

method design and requirements of method output

� Are testable propositions concerning the method utility
given?

� Are the propositions sufficiently well operationalised to
allow testing by other scientists?

Justificatory
knowledge

� Design theories that this method is based on
� Theories about the application context
� Other aspects of interest

Are theories presented
� for key method features not covered by testable

propositions?
� to support the testable propositions?
� regarding the method product?
� regarding the method setting?

Principles of
implementa-
tion

� Tailoring/assembly advice
� Advice regarding introduction into real-life setting

� Is the tailoring/assembly advice comprehensive with
regard to the combinatorial possibility?

� Does the advice for introducing the method cover
different settings within the scope, or is at least clear for
which it applies?

Expository
instantiation

� (Fictional) example of an instantiated method
� Report on a real-life case study in which an instantiated

method has been enacted

� Does the example cover a case within the scope and is it
covering the main concepts of the method?

� Is the example specific enough to be illustrative but not
too idiosyncratic to be incomprehensible?

4.1.3 Examples

The AAMM provides a proactive, evolu-

tionary and demand-driven management

of IS architecture. The attributes spec-

ify the characteristics and advantages of

the method rather than the purpose. The

purpose is the management of IS archi-

tectures, but the output of the method

remains unclear. An example for an out-

put specification can be found for SOAM:

“The method [. . .] facilitates the design

of an SOA system that adheres to the

SOA design principles” (Offermann and

Bub 2009a). CADI presents a good scope

298 Business & Information Systems Engineering 5|2010

BISE – RESEARCH PAPER

Table 2 Overview of example methods used

Name of method Abbreviation Purpose and scope Reference

Method for application
architecture management

AAMM Management of application architecture
in companies

Hafner (2005),
Hafner and Winter (2005)

Service-oriented architecture
method

SOAM Design of SOA-systems incl. legacy
system integration for business
information system architects

Offermann and Bub (2009a, 2009b),
Offermann (2009)

Component-oriented
architecture design and
implementation

CADI Analysis and design for
component-oriented software systems
based on business requirement

Stojanović (2005)

Service Design Method SDM Support IT providers in the design and
description of their IT services

Abeck et al. (2005)

Methodology for Testing
Intrusion Detection Systems
(IDS)

IDSTM Strategies and procedures for testing
intrusion detection systems

Puketza et al. (1996)

statement: “Potential users [. . .] are all
the actors in the development process,
including business analysts, system ar-
chitects and software developers” (Sto-
janović 2005, p. 11).

4.2 Constructs

4.2.1 Method-Specific Refinement

Constructs can either be derived from
the method itself, the structure of the
output it produces or the context in
which a method enactment takes place.
“Method” itself is naturally a relevant
concept as much as the elements that
constitute methods in general. Several
method meta-models exist (cf. the dis-
cussion by Braun et al. 2005) and
in most cases it will be the most
comprehensive and yet pragmatic ap-
proach to model a method according
to one particular meta-model. Other
constructs might stem from the prod-
uct or the application context of the
method, e.g. the approaches from Iivari
et al. (1998, 2000–2001). Such constructs
might refer product classes (e.g. “mid-
dleware” or “service-oriented”) or meta-
requirements of the structure or the
method. Relevant constructs are likely to
be drawn from justificatory knowledge.

While our aim is not to offer a com-
prehensive and fixed ontology of possible
method constructs, we can further delin-
eate the possible concepts within a par-
ticular design theory by highlighting in-
terrelation between concepts and other
method elements. Firstly, the scope and
goals will include terms that need to
be introduced as constructs. The prin-
ciples of form and function that de-
scribe the method can introduce fur-

ther constructs and testable proposi-
tions about the theory are required to
be built using constructs. The result-
ing harmonised method description will
thus allow increased comparability, un-
derstanding and comprehension of the
developed method.

4.2.2 Scientific Role

The constructs do not directly support
a theory evaluation criterion. They form
the basis for the description of all other
components.

4.2.3 Examples

The AAMM extensively introduces con-
structs about the application context in
Sect. 6.1, stretching over 39 pages. They
are defined in a structured manner and
are consequently used and reference in
the method description. SOAM explicitly
introduces method specific constructs:
“Methods [. . .] describe a way to trans-
form an initial state into a target state.
[. . .] Activities explain what has to be
done. [. . .] Activities produce results, but
may also use existing results as inputs.
[. . .] Techniques support the generation
of results [. . .]. Finally, a meta-model for
the results can be specified for clarity and
consistency.” Constructs relating to the
resulting structure and the application
context are introduced in a Sect. titled
“Service-oriented architecture” in Offer-
mann and Bub (2009a).

4.3 Principles of Form and Function

4.3.1 Method-Specific Refinement

As discussed in Sect. 3, the principles
of form and function are the abstract

blueprint or architecture of the artefact.
If the artefact is a system, the notion of
“architecture” is clearly defined either as
“enterprise architecture” (e.g. Aier 2007)
or “software architecture” (e.g. Bass et
al. 2003) and this definition allows for a
well-understood separation between ar-
chitecture and the detailed design of
method outputs. For methods, we are
not aware of such a clear distinction,
but consider situational method engi-
neering to offer a parallel. Here, a general
method is described which then can ei-
ther be adapted or composed to the spe-
cific need. The general method represents
the superset of individual solutions, sim-
ilar to the differentiation between archi-
tecture and detailed design. Regardless,
the principles of form and function re-
quire that each element (e.g. roles, activ-
ities, phases) of the method is described
as defined by the meta-model that was
chosen to define the internal constructs,
together with all relations between ele-
ments. Justificatory knowledge should be
referenced wherever possible.

4.3.2 Scientific Role

The principles of form and function are
the “sine qua non” of utility. Without an
appropriate description, the method can
not be applied in any setting. The prin-
ciples of implementation are supporting
the manifestation of utility, but if the
original method is insufficient or insuf-
ficiently described, advice on its imple-
mentation cannot remedy the flaws. The
principles of form and function are also a
supporting factor of the method’s validity
for the same reasons, as the utility claim
can only be tested if one is reproducing
the method appropriately.

Business & Information Systems Engineering 5|2010 299

BISE – RESEARCH PAPER

4.3.3 Examples

Comprehensive method descriptions of-
ten stretch over many pages. The AAMM
needs 148 and SOAM 50 pages. While
the appropriate length depends on the
internal scope of the method, e.g. life-
cycle phases covered, thick method de-
scriptions tend to be rather long. This
poses problems for researchers as sci-
entific publications are often limited in
length.

The SDM is structured along the
roles involved in the process. “(1) [The
method is] initiated by the service man-
ager [. . .]. The service manager’s main
focus is [. . .] (3) The service module
manager fills the templates [. . .] (4) The
service module catalogue owner collects
[. . .] (5) The service manager accesses the
finished [. . .] catalogue [. . .]. (6) As the
final activity [. . .] by the service catalogue
owner [. . .]” (Abeck et al. 2005).

4.4 Artefact Mutability

4.4.1 Method-Specific Refinement

For methods, artefact change can either
happen on the level of method design
(i.e. the artefact described in a design the-
ory) or on an instance of a method (the
“method in action”), used by a particu-
lar group of people in a particular com-
pany. With these conceptual differentia-
tions in mind, we can ask what artefact
mutability means for methods. Mutabil-
ity of the first kind implies that the de-
signer can foresee changes of the method
itself. If a situative method engineering
approach is followed this could manifest
in method chunks that could be added
or altered for new usage scenarios. Mu-
tability of the second kind would imply
that possible changes in the instantiation
of the method are foreseen in the original
method design and are described there.
We argue that both types of mutability
fall under the “artefact mutability” as in-
troduced by Gregor and Jones (2007).

Situational method engineering of-
fers a conceptual blueprint for combin-
ing both levels: Experience from earlier
projects can be included in the method
base over time as each individual instance
is adapted “just-in-time” from the then-
current method base; it always reflects all
changes to the method base up to that
point. The practise of altering a method
instance while using it is sometimes re-
ferred to as “dynamic method tailoring”
(Karlsson 2008) or “evolutionary method

engineering” (Rossi et al. 2004; Rossi et
al. 2000). The latter suggest documenting
the “method rationale”, which they un-
derstand to be the design decisions that
lead to a particular method instance.

We propose that the author of a
method design theory should describe
which elements of the proposed method
might change in which ways, and on
which level this occurs (method or in-
stance). The author might additionally
refer to a method paradigm that supports
incorporation of change in general in or-
der to illustrate how the change will be
performed.

4.4.2 Scientific Role

Specifying artefact mutability supports
generalisability. Adaptations of the prin-
ciples of form and function should be
discussed to enable the user to perform
an adaptation to the peculiarities of a sit-
uation. Understanding how and which
changes the method designers could en-
vision is also possibly helpful for trans-
ferability, as intentions for change are ex-
pressed.

4.4.3 Examples

SOAM specifies some phases and activ-
ities as being optional. However, it is
not clear when to exclude which activity
and how to tailor the method to certain
project situations such as a Greenfield or
a workflow-only approach.

The IDSTM states that it might be sim-
plified for a limited scope: “The proce-
dures are designed for testing an IDS
that monitors a network of computers,
although some of the procedures can be
directly applied to an IDS that only mon-
itors a single computer.” (Puketza et al.
1996, p. 724). While the scope limitation
is clear, the adaptation is not. The specific
procedures applicable still would have to
be determined.

4.5 Testable Propositions

4.5.1 Method-Specific Refinement

For comprehensive guidance regarding
testable propositions, we believe that
three points have to be discussed:
� What the statements are about (the

method itself or the results produced?),
� what is asserted by the statement, “util-

ity” or “truth” (the latter in terms of
the design fulfilling requirements), and

� how complete the collection of testable
propositions must be.

A possible framework for statements
about the method itself can be found in
Moody (2003), who describes a method
evaluation model, based on the Technol-
ogy Acceptance Model (Davis 1989).

Regarding “utility” vs. “truth”, Venable
(2006) argues that design theories are
solely concerned with assessing “utility”.
Such statements are broad in scope, as
they relate a complete class of solutions
to a complete class of problems. The sec-
ond view is offered by Walls et al. (1992)
who state that a “design process hypothe-
sis” must be able to verify that the arte-
fact produced by a process is consis-
tent with the defined meta-requirements.
The statements would refer to individ-
ual elements of solution and problem and
therefore be more fine-grained than the
utility statements of Venable. We argue
that both types of propositions are use-
ful, but that at least one utility statement
must be made. The utility statement is
the basis for considering the design the-
ory: if the suggested solution does not
solve the problem it was designed for or
if it is not better than known approaches,
the contribution is not significant.

Finally, it needs to be discussed
whether the author of the theory can and
should provide all possible propositions.
Gregor and Jones (2007) see testable
propositions as a required part of design
theories, which justifies the assumption
that they believe in an author’s capa-
bility to provide sufficiently complete
and meaningful propositions. It is easily
imaginable, though, that an author does
not see all possibly interesting proposi-
tions. The credibility of a theory might
still depend on unstated propositions
and it would be inconsequent to require
that the author’s propositions are the
only “binding” ones. Because of this, we
believe that the author’s propositions
should be viewed as an attempt to im-
prove credibility for the most relevant
claims and for those that are least estab-
lished for an existing body of knowledge.

4.5.2 Scientific Role

The testable propositions support the va-
lidity of the method. The validity mainly
concerns the utility statement; a method
is valid if it is useful in respect to
the purpose. To be objective/confirmable,
the hypotheses also have to be opera-
tionalised in a way reproducible by a

300 Business & Information Systems Engineering 5|2010

BISE – RESEARCH PAPER

different researcher. Some additional hy-
pothesis might be of qualitative nature,
requiring credibility rather than validity.

4.5.3 Examples

For SOAM, it should be expected that
the method is better than other meth-
ods of the same application domain, or at
the least equivalent. While this might be
desirable, the hypothesis is very generic
as “better” cannot easily be measured. It
is detailed that “Using a questionnaire,
‘perceived ease of use’, ‘perceived useful-
ness’ and ‘intention to use’ can be evalu-
ated” (Offermann and Bub 2009a). These
constructs are then detailed by specific
questions in a questionnaire. Still, the
testable hypotheses are quite broad. It
might be helpful to also provide testable
hypotheses for smaller parts of the meth-
ods, such as activities or techniques. Also,
these smaller parts might have a stronger
grounding in justificatory knowledge.

4.6 Justificatory Knowledge

4.6.1 Method-Specific Refinement

The different aspects of the design the-
ory, i.e. the method itself, the product
and the application context all provide
possible anchors for theory. The selec-
tion of appropriate theories is highly sit-
uation specific and can not be canonised.
The general discussion in Gregor and
Jones (2007) regarding admissible kinds
of knowledge applies.

4.6.2 Scientific Role

Justificatory knowledge supports trans-
ferability and validity. By presenting a
justification for the method design, these
justifications can be re-evaluated when
transferring the method to a differ-
ent purpose and/or scope. Justificatory
knowledge supporting testable hypothe-
ses supports their validity.

4.6.3 Examples

The AAMM discusses the following ap-
proaches: Enterprise Architecture Man-
agement by IBM; The Open Group
Architecture Framework (TOGAF) by
‘The Open Group’; Management of
IT-Architectures following Dern; IT-
Architecture Engineering following
Krüger and Seelmann-Eggebert. How-
ever, this knowledge is used rather to

differentiate the new method than to jus-
tify parts of the new method. SOAM, on
the other hand, explains what existing
methods the activity is based on for each
activity.

4.7 Principles of Implementation

4.7.1 Method-Specific Refinement

Implementing a method means to bring
a generic method design into action for a
specific situation. This encompasses two
aspects:
� The adaptation of a general method for

a particular situation, and
� the introduction of the adapted

method into the organisation that is
supposed to work using the method.

The first item closely relates to method
adaptation in situative method engineer-
ing. Advice on the process of how and
where a method can be altered can be
considered to fall under “principles of
implementation”. The second item sub-
sumes a variety of aspects, from teach-
ing potential method users as well as im-
plementing tool-support or altering or-
ganisational policies. Both items can be
optionally provided for method design
theories. In the case of situative method
engineering, guidance on adaptation is
mandatory.

4.7.2 Scientific Role

Principles of implementation concern-
ing implementation within the scope will
support the utility claim, while a discus-
sion about adaptation and implementa-
tion outside the scope will support trans-
ferability.

4.7.3 Examples

The IDSTM offers the following prin-
ciple of implementation: “Often, in the
course of testing an IDS, it may be neces-
sary to repeat a particular test. For exam-
ple, a test can be repeated to determine
why (or why not) the IDS failed the test.
Repeating the execution of a sequential
test script is accomplished by simply run-
ning the script again with the same in-
put.” (Puketza et al. 1996, p. 722).

4.8 Expository Instantiation

4.8.1 Method-Specific Refinement

The expository instantiation is a “real-
life”, exemplar application of the design

theory. For methods, instantiation can, in
principle, mean two things:
� The derivation of a specific method de-

scription for a particular context and
situation, and

� a report on the execution of such a de-
rived specific method in the context
and situation it was made for.

Gregor and Jones (2007) seem to hint at
the second option. We argue that both
types of instantiation can be illustrative
for the design, whereas the second type
is more informative and therefore prefer-
able.

4.8.2 Scientific Role

Expository instantiations support gen-
eralisability, transferability and validity.
An exemplar application is useful when
creating a new instance of the method
(within the scope, or transferred to a new
scope), as an example often is easier to
understand than a theoretical descrip-
tion, and can illustrate the intentions of
the method designer beyond descriptive
elements of the method. If the example
is a real-life application of the method, it
can serve as a data point for the validity of
the utility and even if it is fictional, it can
support other researchers in understand-
ing what the method designer would con-
sider a fair and appropriate example for
an evaluation scenario.

4.8.3 Examples

The AAMM is derived through the gen-
eralisation of instances. The resulting
method itself is not instantiated again.
SOAM, on the other hand, “was used in
four companies: Vattenfall Europe, Bosch
und Siemens Hausgeräte (B/S/H), Pre-
vent DEV and Ideal Lebensversicherung”
(Offermann and Bub 2009b). Presenting
the implementation in different compa-
nies is very helpful as each company has
different requirements; implicitly, princi-
ples of implementation are presented.

5 Discussion

In the previous section we have intro-
duced a model for structuring method
design theories and have shown for ex-
emplary method publications how to
evaluate whether they contain the infor-
mation necessary for a method design
theory. We have borrowed the structure
of design theories from a more general

Business & Information Systems Engineering 5|2010 301

BISE – RESEARCH PAPER

Abstract
Philipp Offermann, Sören Blom,
Olga Levina, Udo Bub

Proposal for Components
of Method Design Theories

Increasing the Utility of Method Design
Artefacts

Gregor and Jones have proposed com-
ponents for design theories, building
on theory concepts from behavioural
sciences and prior publications. Their
design theory structure addresses IT
artefacts in general, not specific to any
type, such as constructs, models, meth-
ods or instantiations. Their work is an
important contribution to the academic
discussion of design theories. The au-
thors are building on this and believe
that specialised design theory struc-
tures for different types of artefacts fur-
ther increases utility, usability and ac-
ceptance of the components for both
academia and practise. They have anal-
ysed each of the components pub-
lished by Gregor and Jones and pro-
posed refinements specific to method
design artefacts wherever applicable.
For each component, they derive eval-
uation criteria and present examples
of method publications fulfilling the
criteria. They argue that by present-
ing method design theories according
to this structure the contribution of
method design artefacts to the body of
knowledge will increase.

Keywords: Methods, Method engi-
neering, Method construction, Theory,
Design theory, Methodology

paper from Gregor and Jones (2007). Ac-
cordingly, the selection of components
that are part of the theory are only as
complete and appropriate as one con-
siders those in the original paper to be.
We then refined each component in turn
towards becoming more method spe-
cific. The outcome of this refinement is
grounded in literature; that is, we did
not suggest refined concepts that are un-
known in method design. Finally, we
identified the role of each component
in supporting theory evaluation criteria.
We feel that this aspect is important to
clarify how a design theory differs from
merely a design, but have also admit-
ted that this discussion requires further
thought. Clarifying whether design sci-
ence has a unique epistemological view
(which is our opinion), would allow for a
better justification of the points made in
this paper. We will dedicate future work
to this task.

Additionally, we looked at examples of
academically published method designs
to see whether parts of our proposals
can be found in practise and if so, to il-
lustrate the evaluation criteria. While we
have found individual aspects in different
method publications, we have not found
one that covers all or almost all aspects.
One very practical issue that we have
identified as a possible cause is limitation
of space. A complete method descrip-
tion, i.e. principles of form and func-
tion, can be very long in itself. It might
be more feasible to prepare a practitioner
publication containing only the designed
method, and to publish the method de-
sign theory separately. In the light that
some design theory components cannot
be filled in the beginning or even at all,
a life-time approach may be taken. Theo-
ries would be proposed “bare bones” and
then elements would be added as the the-
ory becomes better understood and sup-
porting knowledge is created around it.

6 Conclusion

In this paper we have realised one of
the recommendations of Walls et al.
(2004), namely to propose a specialised
version of the design theory structure
for methods. We proposed a method
description structure built on the de-
sign theory structure proposed by Gre-
gor and Jones (2007). We also proposed
evaluation criteria for each component.
Our idea was that such a specialisa-
tion with method-specific evaluation cri-
teria would be more readily applicable

for proposing and evaluating method de-
signs as design theories, providing ben-
efits to research and practise. The pro-
posed scientific description structure en-
ables transparent and grounded presen-
tation of the method, therefore support-
ing communication and deeper under-
standing of the intellectual core. We were
able to offer method-specific concepts for
most components of the structure (cf. Ta-
ble 1). In current method publications,
missing or incomplete descriptions of the
methods leave actual benefits open and
evaluations on shaky ground. Using the
proposed evaluation criteria aims at re-
ducing these problems. Thereby, research
would benefit from a more cumulative
approach to method engineering. For
practitioners, the usage of the structure
would make it clearer when and where a
method can be applied, how it compares
to other methods and what measurable
benefits can be expected.

Still, some issues remain. It remains to
be discussed how method design theo-
ries should be published. Also, to cre-
ate a consistent body of knowledge of
IT methods, individually published de-
sign theories would have to be aggre-
gated first and then made comparable,
serving as a major facilitator of scien-
tific progress. To achieve this, a consen-
sus of how to define scope and purpose
would have to be reached. With a con-
sensus on how to describe method design
theories technical standardisation could
follow, which would make referencing,
search and comparison even easier.

References

Abeck S, Link S, Mayerl C, Mehl O, Vogel T
(2005) A system supported method to de-
sign IT services. In: IEEE conference on inte-
grated management (IM 2005), Nice

Aier S (2007) Integrationstechnologien als
Basis einer nachhaltigen Unternehmensar-
chitektur – Abhängigkeiten zwischen Or-
ganisation und Informationstechnologie.
GITO, Berlin

Aier S, Fischer C (2009a) Dokumentation
und Fortschrittsbestimmung von Metho-
den zur Gestaltung soziotechnischer Sys-
teme am Beispiel einer Methode zum Ser-
vice Engineering. In: Hansen HR, Karagian-
nis D, Fill H-G (eds) 9. Internationale Tagung
Wirtschaftsinformatik – Band 1, Wien

Aier S, Fischer C (2009b) Scientific progress
of design research artefacts. In: 17th Euro-
pean conference on information systems,
Verona

Alter S (2002) Sidestepping the IT artifact,
scrapping the IS silo, and laying claim
to “systems in organizations”. Communi-
cations of the Association for Information
Systems 12:494–526

302 Business & Information Systems Engineering 5|2010

BISE – RESEARCH PAPER

Basili VR, Rombach HD (1987) Tailoring the
software process to project goals and envi-
ronments. In: Proceedings of the 9th inter-
national conference on software engineer-
ing, Monterey

Bass L, Clements P, Kazman R (2003) Software
architecture in practise, 2nd edn. Addison-
Wesley, Boston

Braun C, Wortmann F, Hafner M, Winter R
(2005) Method construction – a core ap-
proach to organizational engineering. In:
Proceedings of the 2005 ACM symposium
on applied computing, Santa Fe

Brinkkemper S (1996) Method engineering:
engineering of information systems devel-
opment methods and tools. Information
and Software Technology 38:275–280

Brinkkember S, Saeki M, Harmsen F (1999)
Meta-modelling based assembly tech-
niques for situational method engineering.
Information Systems 24(3):209–228

Bucher T, Klesse M, Kurpjuweit S, Winter
R (2007) Situational method engineering
– on the differentiation of “context” and
“project type”. In: Situational method en-
gineering: fundamentals and experiences.
Springer, Boston, pp 33–48

Cockburn A (2007) Agile software develop-
ment. Addison-Wesley, Upper Saddle River

Cushing BE (1990) Frameworks, paradigms
and scientific research in management in-
formation systems. Journal of Information
Systems 4(2):38–59

Davis FD (1989) Perceived usefulness, per-
ceived ease of use, and user acceptance
of information technology. MIS Quarterly
13(3):319–340

Davis FD, Bagozzi R, Warshaw P (1989)
User acceptance of computer technology:
a comparison of two theoretical models.
Management Science 35(8):982–1003

Dubin R (1978) Theory building. The Free
Press, New York

Eberlein A, Jiang L (2007) Description of a pro-
cess development methodology. Software
Process Improvement and Practice 12:101–
118

Fitzgerald B, Russo N, O’Kane T (2000) An
empirical study of system development
method tailoring in practise. In: Hansen HR,
Bichler M, Mahrer H (eds) Proceedings of
the eighth European conference on infor-
mation systems, Vienna

Gericke A (2008) Konstruktionsforschung und
Artefaktkonstruktion in der gestaltung-
sorientierten Wirtschaftsinformatik: Ein
Literaturüberblick. http://www.alexandria.
unisg.ch/publications/49921. Accessed
2009-10-19

Goldkuhl G (2004) Design theories in informa-
tion systems – a need for multi-grounding.
Journal of Information Technology Theory
and Application 6(2):59–72

Gregor S (2002) A theory of theories in infor-
mation systems. In: Gregor S, Hart D (eds)
Information systems foundations: building
the theoretical base. Australian National
University, Canberra, pp 1–20

Gregor S (2006) The nature of theory in infor-
mation systems. MIS Quarterly 30(3):611–
642

Gregor S (2009) Building theory in the
sciences of the artificial. In: DESRIST’09,
Malvern

Gregor S, Jones D (2007) The anatomy of a de-
sign theory. Journal of the Association for
Information Systems 8(5):312–335

Greiffenberg S (2004) Methodenentwicklung
in Wirtschaft und Verwaltung. Dr. Kovač,
Hamburg

Guba EG (1981) Criteria for assessing the
trustworthiness of naturalistic inquiries. Ed-
ucational Communications and Technol-
ogy Journal 29(2):75–91

Hafner MJ (2005) Entwicklung einer Me-
thode für das Management der Informa-
tionssystemarchitektur im Unternehmen.
Difo-Druck, Bamberg

Hafner M, Winter R (2005) Vorgehens-
modell für das Management der un-
ternehmensweiten Applikationsarchitek-
tur. In: Ferstl O (ed) Wirtschaftsinformatik
2005: eEconomy – eGovernment – eSoci-
ety. Bamberg

Hevner AR, March ST, Park J, Ram S (2004)
Design science in information systems re-
search. MIS Quarterly 28(1):75–105

Iivari J (2002) The IS core – VII: Towards in-
formation systems as a science of meta-
artifacts. Communications of the Associa-
tion for Information Systems 12:568–581

Iivari J, Hirschheim R, Klein HK (1998) A
paradigmatic analysis contrasting informa-
tion systems development approaches and
methodologies. Information Systems Re-
search 9(2):164–193

Iivari J, Hirschheim R, Klein HK (2000–2001)
A dynamic framework for classifying infor-
mation systems development methodolo-
gies and approaches. Journal of Manage-
ment Information Systems 17(3):179–218

ISO (2000) Industrial automation systems –
requirements for enterprise-reference ar-
chitectures and methodologies. ISO 15704

Jones D, Gregor S, Lynch T (2003) An informa-
tion systems design theory for web-based
education. In: IASTED international sympo-
sium on web-based education, Rhodes

Karlsson F (2008) A wiki-based approach to
method tailoring. In: Proceedings of the 3rd
international conference on the pragmatic
web: innovating the interactive society, Up-
psala

Karlsson F, Ågerfalk PJ (2004) Method config-
uration: adapting to situational characteris-
tics while creating reusable assets. Informa-
tion and Software Technology 46:619–633

Kitchenham B, Pickard L, Pfleeger SL (1995)
Case studies for method and tool evalua-
tion. IEEE Software 12(4):52–62

March ST, Smith GF (1995) Design and nat-
ural science research on information tech-
nology. Decision Support Systems 15:251–
266

Markus ML, Majchrzak A, Gasser L (2002) A de-
sign theory for systems that support emer-
gent knowledge processes. MIS Quarterly
26(3):179–212

Moody DL (2003) The method evaluation
model: a theoretical model for validating
information systems design methods. In:
Ciborra CU, Mercurio R, de Marco M, Mar-
tinez M, Carignani A (eds) Proceedings of
the eleventh European conference on in-
formation systems, Naples

Oei H, Falkenberg E (1994) Harmonisation of
information systems modelling and spec-
ification techniques. In: Verrijn-Stuart AA,
Olle TW (eds) Methods and associated tools
for the information systems life Cycle. El-
sevier Science, North-Holland, Amsterdam,
pp 151–168

Offermann P (2009) Eine Methode zur
Konzeption betrieblicher Software mit
einer Serviceorientierten Architektur. GITO,
Berlin

Offermann P, Bub U (2009a) Empirical com-
parison of methods for information sys-
tems development according to SOA. In:
17th European conference on information
systems, Verona

Offermann P, Bub U (2009b) A Method for in-
formation systems development according
to SOA. In: AMCIS 2009 proceedings, Paper
108

Offermann P, Levina O, Schönherr M, Bub U
(2009) Outline of a design science research
process. In: Proceedings of the 4th inter-
national conference on design science re-
search in information systems and technol-
ogy, Philadelphia

OMG (2008) Software & systems process engi-
neering meta-model specification. http://
www.omg.org/cgi-bin/doc?formal/08-04-
01.pdf. Accessed 2009-09-25

Peffers K, Tuunanen T, Rothenberger MA,
Chatterjee S (2008) A design science re-
search methodology for information sys-
tems research. Journal of Management In-
formation Systems 24(3):45–77

Plihon V, Rolland C (1997) Using a generic
approach to support the construction of
methods. In: Database and expert systems
applications. Springer, Berlin, pp 663–672

Puketza NJ, Zhang K, Chung M, Mukher-
jee B, Olsson RA (1996) A methodology
for testing intrusion detection systems.
IEEE Transactions on Software Engineering
22(10):719–729

Purao S (2002) Design research in the technol-
ogy of information systems: truth or dare.
GSU Department of CIS Working Paper

Ralyté J, Deneckère R, Rolland C (2003)
Towards a generic model for situational
method engineering. In: Advanced in-
formation systems engineering. Springer,
Berlin

Rossi M, Tolvanen J-P, Ramesh B, Lyytinen
K, Kaipala J (2000) Method rationale in
method engineering. In: Proceedings of the
33rd Hawaii international conference on
system sciences, Hawaii

Rossi M, Ramesh B, Lyytinen K, Tolvanen J-
P (2004) Managing evolutionary method
engineering by method rationale. Journal
of the Association for Information Systems
5(9):356–391

Siau K, Rossi M (1998) Evaluation of infor-
mation modeling methods – a review. In:
Proc 31st annual Hawaii international con-
ference on system sciences, Hawaii

Simon H (1981) Sciences of the artificial, 2nd
edn. MIT Press, Cambridge

Song X, Osterweil LJ (1992) Toward objec-
tive, systematic design-method compar-
isons. IEEE Software 9(3):43–53

Stojanović Z (2005) A method for
cComponent-based and service-oriented
software systems engineering. Delft
University of Technology

ter Hofstede AHM, Verhoef TF (1997) On the
feasibility of situational method engineer-
ing. Information Systems 22(6/7):401–422

Travis J (1999) Exploring the constructs
of evaluative criteria for interpretivist re-
search. In: Proc. 10th Australasian confer-
ence on information systems

Vaishnavi VK, Kuechler W (2007) Design sci-
ence research methods and patterns: in-
novating information and communication
technology. Auerbach

Venable JR (2006) The role of theory and
theorising in design science research. In:
DESRIST 2006, Claremont

Walls JG, Widmeyer GR, El Sawy OA (1992)
Building an information system design the-
ory for vigilant EIS. Information Systems Re-
search 3(1):36–59

Walls JG, Widmeyer GR, El Sawy OA (2004) As-
sessing information system design theory
in perspective: how useful was our 1992 ini-
tial rendition? Journal of Information Tech-
nology Theory and Application 6(2):43–58

Business & Information Systems Engineering 5|2010 303

http://www.alexandria.unisg.ch/publications/49921
http://www.alexandria.unisg.ch/publications/49921
http://www.omg.org/cgi-bin/doc?formal/08-04-01.pdf
http://www.omg.org/cgi-bin/doc?formal/08-04-01.pdf
http://www.omg.org/cgi-bin/doc?formal/08-04-01.pdf

BISE – RESEARCH PAPER

Walsham G (1995) Interpretative case stud-
ies in IS research: nature and method.
European Journal of Information Systems
4(2):74–81

Wilde T, Hess T (2007) Forschungsmetho-
den der Wirtschaftsinformatik – Eine em-
pirische Untersuchung. WIRTSCHAFTSIN-
FORMATIK 49(4):280–287

Winograd T, Flores F (1986) Understanding
computers and cognition: a new founda-
tion for design. Ablex Publishing, Norwood

304 Business & Information Systems Engineering 5|2010

	Proposal for Components of Method Design Theories
	Introduction
	Methods as Design Artefacts
	What is Design Science Research Output?
	Method Design

	Components of Design Theory
	Theories in Information Systems
	Design Theories
	Criteria for Theory Evaluation

	Derivation of the Method Design Theory Components
	Purpose and Scope
	Method-specific Refinement
	Scientific Role
	Examples

	Constructs
	Method-Specific Refinement
	Scientific Role
	Examples

	Principles of Form and Function
	Method-Specific Refinement
	Scientific Role
	Examples

	Artefact Mutability
	Method-Specific Refinement
	Scientific Role
	Examples

	Testable Propositions
	Method-Specific Refinement
	Scientific Role
	Examples

	Justificatory Knowledge
	Method-Specific Refinement
	Scientific Role
	Examples

	Principles of Implementation
	Method-Specific Refinement
	Scientific Role
	Examples

	Expository Instantiation
	Method-Specific Refinement
	Scientific Role
	Examples

	Discussion
	Abstract
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

