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A CASE STUDY OF RANDOM FOREST  
IN PREDICTIVE DATA MINING 

 

Sebastian Schüller, Stefan Lessmann, Stefan Voß1 
 
 
Abstract 
The paper examines the potential of a novel data mining method, the random forest classifier, to 
support managerial decision making in complex forecasting applications. A modelling paradigm is 
proposed that embraces a learning curve analysis and grid-search to analyse the model’s sensitivity 
towards the number of training examples and parameter settings, respectively, and, eventually, 
produce a final classifier with high predictive accuracy. The effectiveness of the approach is evi-
denced by experimental evaluation using the data of the 2008 data mining cup competition. 
 
1. Introduction 
 
The support of managerial decision making in terms of gathering and integrating data from hetero-
geneous and distributed data stores is an important topic of information systems (IS) research and 
practice (see, e.g., [16, 21, 25, 26]). A key objective is to provide comprehensible software systems 
that comprise techniques and formal methods to effectively process this data, extract useful infor-
mation and deepen the understanding of concerned business processes. 
The concept of analytical information systems (AIS) or business intelligence has emerged as unify-
ing umbrella to summarise systems which strive to fulfil these requirements (e.g., [7, 8, 12, 20]). 
From a systems perspective, AIS embrace data warehousing to address data integration and aggre-
gation tasks, reporting and online analytical processing to assist human-driven decision making and 
data mining, which provides methods and models to process large data streams in a (semi-
)automated manner, disclose hidden patterns and, eventually, distil information relevant to decision 
makers. Data mining is commonly used in customer-centric settings to support operational planning 
tasks. These included the evaluation of credit risk in banking applications, the detection of fraudu-
lent transactions, e.g., in the telecommunication or insurance business, predicting customers’ likeli-
hood to respond to direct mail or risk of attrition. Such problems have been considered in numerous 
studies (see, [18] for a survey), which demonstrate the potential of methods from statistics, machine 
learning or operational research to improve the quality of business decisions. 
It may be argued that evaluating and confirming the appropriateness of such novel techniques in 
real-world settings is a particular responsibility of IS, since the aforementioned disciplines show a 
tendency to focus on algorithmic, rather than application oriented, aspects (see, e.g., [1, 19, 22]). It 
is exactly this view which is taken in this paper. In particular, a recently developed machine  
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learning approach towards classification, the random forest classifier (RF) [3], is considered and its 
effectiveness to support decision making in a real-world application of customer-centric data min-
ing is examined in the context of a case-study. The business case is defined by the 2008 data mining 
cup (DMC) competition2 task, which involves predicting customers’ (discretised) length of partici-
pation at the South German Class Lottery (SKL). 
The RF methodology offers several appealing features that let this classifier appear superior to al-
ternative methods. For example, other than traditional statistical models like linear discriminant 
analysis or logistic regression, RF is capable of modelling highly nonlinear interactions between 
independent variables and a discrete target variable. On the other hand, in comparison to other 
nonlinear but opaque methods like artificial neural networks or support vector machines (e.g., [14]), 
RF offers the advantage of providing easy to interpret importance measures that capture the strength 
of correlation between independent variables and the target. Such insights shed light on the underly-
ing rules that have been distilled from the training data and, thereby, fulfil the overall data mining 
objective of deriving relevant and comprehensible information from data. Furthermore, RF is com-
putationally efficient and can be applied in settings where the use of support vector machines or 
neural networks is prohibitive. Finally, several classification benchmarks have provided strong evi-
dence for RF being one of the best classifiers in terms of predictive accuracy (see, e.g., [13, 17]). 
Despite these appealing features, the overall experience with RF in customer-centric data mining is 
yet scarce. Noteworthy exceptions are [5, 6, 9, 15, 24], who explore this technique in marketing and 
customer relationship management applications and propose different enhancements of the method-
ology, e.g., considering multinomial logit base models. Though, their experimental setup differs 
from the one considered in this work. Therefore, the paper contributes to the literature by demons-
trating the features of the RF classifier together with techniques to approach particular modelling 
challenges and examining the method’s overall effectiveness in a challenging real-world application 
of corporate data mining. Among other difficulties, the DMC 2008 task involves processing a very 
large dataset and discriminating between multiple classes, each of which is associated with different 
costs of misclassification. 
The paper is organised as follows: The RF methodology is described in Section 2. The task of the 
DMC 2008 is introduced in Section 3. Subsequently, different types of experiments are conducted 
to demonstrate how RF may be used to approach this challenging classification problem and apprai-
se the method’s potential. Conclusions are drawn in Section 4. 
 
2. The random forest classifier 
 
The task of classification aims at predicting the membership of objects to a priori known groups, 
e.g., categorising customers into those with a high and a low risk of ending their relationship with a 
company. The objects are characterised by a set of attributes (e.g., customer age, duration of custo-
mer relationship, number of transactions, number of service calls, etc.) and it is assumed that the 
values of these independent variables determine class membership. However, the precise nature of 
the relationship between variables and class is unknown and has to be approximated. Consequently, 
a classification algorithm is employed to infer (learn) this dependency from a dataset of pre-
classified examples. Subsequently, the trained classifier allows predicting the group membership of 
novel examples, where only the attribute values are known. 
The RF methodology has been introduced in [3] and represents a state-of-the-art approach to con-
struct classification models. RF employs the idea of ensemble learning, meaning that, instead of 
building a single (sophisticated) classification model, multiple (base) models are derived from the 
training dataset. To form a prediction, all of these base models cast a vote on an object’s class and 
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these are aggregated by means of majority voting to arrive at a final prediction (classification). It 
has been shown that such a combination of multiple base models is beneficial to reduce variance as 
well as bias of class estimates and thus increases forecasting accuracy [2, 11]. 
However, a key requirement to achieve such an improvement is diversity among ensemble partici-
pants. In other words, a large number of base models can only help to improve predictive accuracy, 
if individual models capture different aspects of the relationship between attributes and class mem-
bership. On the contrary, several ‘identical’ models cannot be expected to predict any better than a 
single one. For example, Breiman formally proved that the performance of RF depends on the indi-
vidual strength of the base classifiers and the correlation among them [3]. 
Diversity may generally be achieved by: 1) constructing individual classifiers on (slightly) different 
training sets; 2) using a sub-sample of randomly selected attributes for individual classifiers; and 3) 
employing different classification algorithms. RF employs the former two ideas, whereas the well 
known CART (classification and regression trees [4]) methodology towards decision tree induction 
is used to construct multiple base models. Each decision tree is grown on an individual bootstrap 
sample (e.g., [2]) drawn from the training data with replacement using only a subset of randomly 
selected variables. The procedure is continued until a user specified number of decision trees has 
been appended to the forest.3 Therefore, employing a RF classifier requires the modeller to pre-
define values for two parameters: the number of trees in the forest (T) and the number of attributes 
to be selected at random for growing an individual tree (Z). Consequently, identifying a suitable 
setting for a given task is one of the modelling challenges that has to be addressed. A popular ma-
chine learning approach to achieve this is to conduct a grid-search. That is, a range of candidate 
values is defined for each parameter and all possible combinations are evaluated empirically, e.g., 
on a separate validation dataset that has not been used during model building (e.g., [17]). Then, the 
parameter combination with highest classification accuracy on training data is retained to construct 
a final classifier with these values.  
Finally, it should be noted that RF naturally provides measures of attribute importance, which can 
be seen as a particular merit in corporate data mining settings to not only predict but understand 
customer behaviour and exploit respective insights to improve business processes. The idea to app-
roximate the informative value of a variable, say v, in RF makes use of the fact that the training data 
for individual trees is sampled with replacement. Therefore, each bootstrap sample will miss some 
examples, whereas others appear multiple times. The former are called out-of-bag (oob) examples 
and can be used to assess the predictive performance of the corresponding tree, i.e., they represent 
validation data for this tree. Consequently, it is straightforward to compute the number of correct 
class predictions for each example across all trees for which the example is oob. Then, the value of 
v is randomly permuted in all examples and the computation is repeated, which gives another esti-
mate of prediction accuracy. Given that v is correlated with the class variable (i.e., is valuable for 
classification), the estimate on the distorted data will be lower than the first one on original data. 
Consequently, the informative value of v is given by the percentage decrease of correct class predic-
tions on oob cases caused by the permutation [3]. 
 
3. Data mining Case Study 
 
3.1. Forecasting objective 
 
The DMC 2008 competition involves forecasting lottery participation at the SKL. The lottery emb-
races a period of six months and is divided into sub-sections of one month. Participants have to pur-
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chase tickets for each month individually, or can decide to stop playing, whereby this decision is 
irreversible, i.e., participation in the sixth month requires that all previous month have been played. 
The objective of the SKL is to maximise the number of tickets sold and avoid cancellations. Conse-
quently, data mining can be employed to predict, at the beginning of the lottery, how long custo-
mers, who have already declared interest in playing the lottery but not yet purchased a ticket for the 
first month, will participate. Such estimates could be used in many ways, e.g., to contact likely 
churners and offer some incentives to prevent defection. 
The problem is stated as a five-group classification problem, whereby the groups are labelled with 
integers from zero to four and are defined as: 1) participant will not purchase first ticket, 2) partici-
pant plays only the first month, 3) participant plays the first two months, 4) participant plays the full 
lottery but does not purchase a ticket for the following event, and 5) participant plays the full lottery 
and at least the first month of the subsequent one. 
The task is complicated by the fact that each class is associated with a certain utility (i.e., the reve-
nue of selling tickets) and misclassification costs that depend on the particular type of error. There-
fore, the task can be characterised as a multi-categorical cost-sensitive classification problem and 
the particular costs and benefits of accurate and inaccurate predictions are shown in Table 1. Thus, 
classifiers may be assessed in terms of the profit resulting from their predictions. 
 

Table 1: DMC 2008 cost (negative values) and utility (positive values) matrix 
 

 Predicted class 

True class 
 0 1 2 3 4 

0 20 5 0 -5 -10 
1 0 20 5 0 -5 
2 -10 0 20 5 0 
3 -20 -10 0 20 5 
4 -40 -20 -10 0 20 

 
3.2. Data and variables 
 
The DMC organisers provide two datasets for model building and hold-out evaluation, respectively, 
each of which contains 113.477 records (i.e., lottery participants). Individual participants are desc-
ribed by a set of 69 attributes. During the competition, the class membership of test set examples 
was concealed, whereas this information is now publicly available at the DMC website. In addition, 
the website provides a detailed description of the individual attributes. Some summary statistics are 
given in Table 2. 
It is remarkable that the data consists mainly of ordinal attributes, which is explained by the fact 
that participants are predominantly characterised by social-demographic information. Such attrib-
utes capture, e.g., the affinity of a social group towards house ownership, communication technol-
ogy, etc., and are usually measured on a rating scale where increasing (integer) values indicate in-
creasing affinity. RF is – as most data mining methods – unable to accommodate such ordinal at-
tributes. Therefore, they have to be treated as either nominal (the approach taken in this study) or 
continuous variables. It would be interesting to examine the potential of methods, which enable 
exploiting ordinality (e.g., decision trees with dedicated splitting criteria). However, this is left to 
future research. 
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Table 2: Summary statistics of the DMC 2008 data 
 

Attribute statistics 

No. of binary attributes 5 
No. of nominal attributes 7 
No. of ordinal attributes 50 
No. of continuous attributes 7 

Prior probabilities* 

Class 0 23,88% 
Class 1 6,72% 
Class 2 8,84% 
Class 3 14,29% 
Class 4 46,27% 

*Estimated from the training dataset. 
 
3.3. Modelling challenges and experimental setup 
 
The DMC 2008 dataset facilitates numerous types of analysis to focus on different aspects of data 
mining. In this study, the task of predictive modelling with RF is emphasised. In particular, a lear-
ning curve analysis is undertaken to appraise the sensitivity of RF with respect to the number of 
training examples. Secondly, the task of model selection is considered to study the influence of dif-
ferent settings of the parameters T and Z on the RF classifier and determine suitable settings. 
This particular selection of experiments can be understood, when remembering that model selection 
is usually organised by empirically evaluating different candidate settings. Consequently, the com-
putational effort associated with parameter tuning depends on the number of training examples. 
Since time and computing resources are constraint in real-world applications, practitioners face a 
trade-off between the number of parameter values to be examined and the size of the dataset to 
benchmark each individual setting. Thus, it is useful to analyse the model’s learning behaviour in 
the first place, to scrutinise how many examples are really needed. The learning curve may reveal 
that model selection can be restricted to a sub-set of examples, which would allow more parameter 
values to be assessed and, possibly, better settings to be found. 
Here, better refers to the forecasting performance of the final RF classifier (i.e., with tuned parame-
ters), given by the profit that would result from classifying test set participants. However, in order 
to be profitable, a classifier has to take the asymmetric costs of error (Table 1) into account. For 
example, incorrectly predicting class 1 when the true class is 0 (still) produces a profit of 5, whe-
reas, e.g., predicting class 4 results in a loss of 10. Such a distinction between different error types 
is not made in standard classification, where the overall number of errors is minimised. Consequent-
ly, a post-processing of the RF predictions is required to improve forecasting accuracy in terms of 
profit. This may be achieved by considering the well known Bayes rule of optimal classification 
(see, e.g., [14]): Let y denote the class (y=0,1,…,4) of an examples x and C(i,j) the cost of predict-
ing y=i if the true class is y=j. Then, the Bayes optimal prediction for x is the class i that minimizes 
the conditional risk R:4 
 

( ) ( ) ( )| | ,
j

R y i p j C i j= = ⋅∑x x . 

 
The conditional risk can be used to calibrate RF predictions. For a given example, the number of 
votes for each class (i.e., the number of trees that forecast a particular class) can be extracted from 
the forest and dividing this number by T gives an estimate for ( )|p j x . These estimates, together 
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contains costs and profits. However, it is straightforward to normalise Table 1 in a way such that ( ), 0C i i i= ∀ . 
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with known misclassification costs (Table 1), are used to form RF class prediction that minimise risk 
and, respectively, maximise profit. 
 
3.4. Learning curve analysis 
 
A learning curve analysis examines the forecasting accuracy of a classification model when the 
number of training examples is varied [23]. Therefore, the training set is partitioned into a learning 
set (~60%) for building different classifiers and a validation set (~40%) for measuring their perfor-
mance on out-of-sample data, without affecting later comparisons on the test set. In particular, the 
learning curve is produced by repetitively constructing and assessing RF classifiers, each time 
shrinking the learning set by randomly deleting some instances. Respective results are shown in 
Fig. 1, whereby the performance of individual models is given in terms of average profit per exam-
ple. Note that the baseline of 7,24 represents the expected profit of a naïve classification, i.e., as-
signing all examples to class 4, which would be the best naïve strategy for the given data.5   
 

Fig. 1: Learning curve analysis of RF classifier in terms of profit per example 
 

7,24 
7,44 
7,64 
7,84 
8,04 
8,24 
8,44 
8,64 
8,84 
9,04 

 1.
00

0  

 6.
00

0  

 11
.00

0  

 16
.00

0  

 21
.00

0  

 26
.00

0  

 31
.00

0  

 36
.00

0  

 41
.00

0  

 46
.00

0  

 51
.00

0  

 56
.00

0  

 
 
The learning curve illustrates that a number of 60.000 examples is sufficient to ensure maturity of 
the final RF classifier. That is, it seems unlikely that adding more data would facilitate significant 
performance improvements. In addition, it seems feasible to reduce the number of training instances 
in subsequent experiments, to increase learning times without sacrificing accuracy. Though, to the 
best of our knowledge, there is no formal method to determine an appropriate threshold. One might 
be tempted to fit a polynomial or logarithmic function to the learning curve and conduct statistical 
tests, e.g., to identify the number of examples where the approximating function’s slope stops 
changing significantly. However, given the fluctuations of the learning curve and the randomness 
inherent to any complex prediction task, the merit of such a formal test is questionable. Therefore, a 
practical approach is taken in this study and the number of training examples to be considered du-
ring model selection is determined on the basis of a visual inspection of the learning curve. A value 
of 50.000 examples is selected and used in subsequent experiments.  
 

                                                 
5  Note that Fig. 1 is based on a RF classifier with default settings for the parameters T and Z. This is because the 

learning curve analysis, in our setup, is the first experiment to be conducted and precedes model selection. 
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3.5. Model selection 
 
Model selection aims at adapting a classifier to a particular task by identifying suitable settings for 
user parameters. The RF classifier has been reported to be fairly robust towards settings of its pa-
rameters T and Z [3]. However, applications in corporate data mining contexts are yet scarce, so that 
an empirical confirmation of this claim is necessary. Therefore, a large number of 600 different 
settings have been evaluated on the validation set, each time using (the same) 50.000 randomly se-
lected training examples for constructing the respective RF classifier. In particular, candidate values 
of 1, 2, …, 30 for Z are examined, whereas the number of trees in the forest is varied from 5 to 100, 
increasing T by 5 in each iteration. This produces a matrix of 30x20 results (i.e., profit per valida-
tion example), which can be visualised by means of a surface plot (Fig. 2). 
 
Fig. 2: Predictive accuracy of RF classifiers with 600 different candidate parameter settings on validation data in 

terms of profit per example. 
 

 
 
Fig. 2 confirms that RF is indeed robust towards parameter values since performance variations are 
minor. In fact, only a small number of settings with very few attributes per tree and trees per forest 
turn out to be inappropriate. Regarding the latter parameter, one may speculate that further perfor-
mance improvements could be achieved if even higher values for T were evaluated. For example, 
Breiman recommends making the forest as large as possible and uses up to 5000 trees in some ex-
periments [3]. However, such settings are computationally infeasible for the data considered here: 
Using the free software package R6 and a 2.4GHz Windows PC with 1GB of main memory, it was 
not possible to build forests with more than 100 trees due to memory limitations. 
On the contrary, it has been recommended to use small values for the parameter Z [3]. This can be 
explained by the fact that the attributes for each tree are selected at random. Therefore, using more 
attributes per tree inevitably increases the similarity among all trees, because many of them will 
have access to the same attributes and thus perform identical splits. Due to the inverse relationship 
between the similarity among trees and the performance of the RF classifier [3], small values for Z 
should generally give superior results. 
The results of Fig. 2 illustrate, that there is no uniquely best parameter configuration. In particular, 
the maximal performance of 8,8 is reached by 87 different settings in total. Though, the objective of 
model selection is to determine a single parameter setting to be used when building the final RF 
classifier to predict the out-of-sample test set. Theoretically, this single setting could be selected 
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among the ‘best’ configurations at random. However, the goal of building a diverse forest suggests 
having T as large and Z as small as possible. Consequently, a configuration with T=100 and Z=11 is 
selected. 
 
3.6. Out-of-sample prediction 
 
The last experiment examines the capability of RF to accurately predict the group membership of 
lottery participants within the test set. Therefore, a forest with 100 decision trees, each of which 
uses 11 randomly selected attributes for node splitting, is build on the full training set. Intuitively, 
since only a single model is needed once the parameter values have been identified, it is reasonable 
to use all available training examples at this stage. The resulting classifier produces a profit of 
990.115 (8,73) per example. In order to set this result in context, some additional experiments are 
undertaken to examine what performance would result from other modelling choices. For example, 
a RF classifier with a smaller number of trees and larger number of attributes is build, as well as 
classifiers that use fewer training examples to construct the final model. Respective results are pre-
sented in Table 3, whereby the first row repeats the performance of the model resulting from the 
proposed modelling paradigm. 
 

Table 3: Performance of the proposed RF model (bold-face) in comparison to alternative classifiers 
 

No. trees No. attributes No. training examples Predictive performance 
Overall Per example 

100 11 113.476 990.115 8,73 
100 11 50.000 982.575 8,66 
100 11 25.000 973.395 8,58 
80 11 113.476 987.930 8,71 

100 16 113.476 988.295 8,71 
 
It is appealing that the proposed model achieves the overall best performance. Certainly, there is no 
guarantee that this will always be the case, but it confirms the appropriateness of the particular 
combination of learning curve analysis and model selection. Furthermore, there is strong evidence 
that the final classifier should use all available training examples, or, if this should be computatio-
nally infeasible, as much as possible, because classifiers using only 50.000 examples or 25.000, 
respectively, produce inferior results. 
One may argue that this contradicts the proposition to consider smaller training sets during model 
selection. However, model selection does not aim at constructing the most accurate models, but at 
identifying suitable parameters. Consequently, the proposed heuristic is feasible, as long as the in-
fluence of parameters remains stable when the size of training data is reduced. At least in this study, 
no evidence was found that would question this hypothesis. On the contrary, the two last rows of 
Table 3 demonstrate that alternative RF models with different parameters perform slightly worse 
than the one selected during model selection. In other words, the configuration that works best du-
ring parameter tuning is confirmed to the ‘best’ one in the final experiment.  
Finally, a comparison of the RF model with those of DMC participants7 reveals that this classifier 
would have achieved a place within the top 16% (place 33) within the competition. This is a promi-
sing result since the present analysis is restricted to data mining tasks directly associated with pre-
dictive modelling. Therefore, the RF classifier has been applied to the raw DMC data, whereas the 
potential of data pre-processing, e.g., to replace missing values and transform attributes has not 
been investigated. In fact, personal communication with the DMC 2008 challenge winners  

                                                 
7  See http://www.prudsys.de/Service/Downloads/files/Rankingliste_Studenten_dt.pdf. 
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confirmed that such activities, e.g., dummy encoding of nominal variables and discretisation of con-
tinuous attributes (see, e.g., [10]) as well as feature extraction by means of principle component 
analysis (e.g., [14]), have indeed improved the forecasting accuracy of the winning model to a sub-
stantial degree. Consequently, the fact that RF produces competitive predictions without such, po-
tentially laborious, amendments may be seen as a particular merit. One may speculate that this ap-
pealing feature originates from the fact that RF employs decision trees as base models, which are 
known to be robust towards missing values and especially well suited for datasets like the DMC 
2008 one, which contain many nominal variables. However, this hypothesis has to be confirmed – 
or rejected – in future research, e.g., by implementing the RF ensemble methodology with other 
base models, such as Naïve Bayes or logistic regression. 
 
4. Conclusions 
 
The RF classifier has been applied in a case of customer-centric data mining using the data from the 
2008 DMC competition. Focussing on issues and tasks directly associated with predictive model-
ling, several experiments have been undertaken to shed light on the accuracy and behaviour of RF 
in this environment. In particular, the classifier’s sensitivity with respect to the number of training 
examples and settings of user parameters has been examined by means of a learning curve analysis 
and grid-search. These are the tasks practitioners would typically have to fulfil when utilising the 
RF methodology and it has been shown how they may be approached. Finally, simulations have 
confirmed the efficacy of the RF classifier and the proposed modelling paradigm towards model 
building.  
Overall, appealing results have been observed, suggesting that RF represents a powerful alternative 
to standard data mining methods like, e.g., logistic regression or decision trees, which are common-
ly used in corporate practice today. However, an important question from a practitioner’s point of 
view is whether potential gains in forecasting accuracy through use of a novel method like RF 
would justify an enhancement or maybe even replacement of existing data mining software. Such 
an analysis appears to be a promising area for future research, especially since the data considered 
here would allow comparing the profitability of competing methods and therefore facilitates draw-
ing conclusion with respect to not only effectiveness but also the efficiency of data mining activi-
ties. 
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