
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2009 Wirtschaftsinformatik

2009

A CUSTOMIZING PLATFORM FOR
INDIVIDUAL PRODUCTION PLANNING
AND CONTROL SOLUTIONS
Benjamin Klöpper
Universität Paderborn

Tobias Rust
Universität Paderborn

Thorsten Timm
Universität Paderborn

Wilhelm Dangelmaier
Universität Paderborn

Follow this and additional works at: http://aisel.aisnet.org/wi2009

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Klöpper, Benjamin; Rust, Tobias; Timm, Thorsten; and Dangelmaier, Wilhelm, "A CUSTOMIZING PLATFORM FOR
INDIVIDUAL PRODUCTION PLANNING AND CONTROL SOLUTIONS" (2009). Wirtschaftsinformatik Proceedings 2009. 87.
http://aisel.aisnet.org/wi2009/87

http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2009%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2009%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009/87?utm_source=aisel.aisnet.org%2Fwi2009%2F87&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

A CUSTOMIZING PLATFORM FOR INDIVIDUAL
PRODUCTION PLANNING AND CONTROL SOLUTIONS

Benjamin Klöpper, Tobias Rust, Thorsten Timm,
Wilhelm Dangelmaier1

Abstract
In production planning and control, decision support has to face the special properties of
production processes and systems. To find an optimal solution for decision problems in this domain
is usually np-hard and a proper definition of objective functions and constraints is extremely
difficult. One reason for the problem of proper model definition for classical optimization methods
is the individual character of production systems. Thus, in many cases only individual solutions for
PPC offer satisfying results. In this paper, we introduce a framework for efficient implementation
of PPC tools in serial manufacturing.

1. Introduction

Production planning and control (PPC) encompasses a large variety of decision problems [15].
These decision problems range from the design of new production systems to the determination of
production quantities and the sequencing of production lots on a production line. For these
problems a large variety of models and algorithms is available (for instance, cf. Afentakis [1],
Kimms [16] and Haase [14]), which should be selected regarding the current application scenario.
Within this contribution, we will define the special requirements of PPC and introduce a software
framework called OOPUS WEB, which enables the fast and efficient development of custom-made
PPC tools.

1.1. Problem Statement

PPC possesses special features, which differ from other application areas of decision support and
optimization. The design and implementation process of PPC tools has to consider these special
features. The first essential feature of PPC is the high frequency of decision-making. Decisions
about production quantities and the matching of the quantities to the available production capacities
have to be made, or at least revised, several times a week or sometimes even several times a day.
The reason for this high frequency is the changing environment: incoming orders, unexpected scrap
rates or machine breakdowns have to be considered.
Another feature is the lack of clearly defined objectives. From the viewpoint of cost-effectiveness,
the overall purpose of PPC is to achieve a predetermined performance at minimal costs [26].

1 Universität Paderborn, Germany

77

Unfortunately, the exact determination of costs in a production environment is often not possible,
because either the costs are not documented continuously or they cannot be documented. Thus,
PPC usually persuades alternative objectives. As the alternative objectives bear conflicts, it is not
possible to describe a common objective function for PPC problems [12].
On the other hand, experienced human planners are able to describe a decision making process,
which leads to good or at least acceptable results [24]. Human planners are also able to modify
existing plans in such a way, that they comply with soft factors, which can hardly be included in an
automated decision making process.
Finally, every production system and process has some unique properties. These properties may
result from organizational or technical issues. Anyways, these individual properties have to be
included in order to achieve feasible or even high quality decisions. The following design
assumptions are concluded from the features described above:

• Since fast decision making is required, PPC tools should use heuristics
• These heuristics have to be selected with respect to individual properties and objectives
• Thus, the data model must include the individual properties of the production system
• The system must enable human planners to analyze and alter automatically generated

production plans
For these reasons a custom-made PPC solution for every production system (plant or workshop) is
required while there is also a need for intuitive graphical user interfaces and effective planning
procedures. Thus, a desirable platform enables the required individuality and cost-effective
development process at the same time.

The reuse of software has always been a major concern of software engineering. Current trends in
software engineering like component-based software engineering [7] or service oriented
architectures (SOA) [23] place emphasis on the reuse of encapsulated components or services.
Especially SOA promises flexible interaction of services by semantic orchestration and
choreography. In our opinion, these mechanisms are not suitable for applications such as PPC,
where the processing of a large amount of data in a short time period is mandatory (cf. next
section).
We think that approaches like generative programming [8] are more promising for the domain of
PPC. The idea is to model software system families such that, given particular requirements
specification, a customized and optimized product can be automatically generated from reusable
components. The foundation of the concept of generative programming is a sound domain
definition, which is the link between different implementations in the software families.

Reusable components in PPC require a well-defined model of tasks, and interaction of tasks as well
as a generic but customizable data model to easily adapt to the current application scenario. Finally,
methods for integrating the customized data models with ready-made software components are
required. This paper introduces our first step towards a platform for a family of highly customized
and optimized PPC applications.

2. Related Work

The common way to solve the various PPC problems is to either run centralized ERP or PPC
software. These systems (such as, SAP ECC 5.0 and SAP APO [2], SAGE [27], or Navision [9])
cover many PPC tasks like demand planning, lot sizing, and scheduling using standard algorithms.
The task of modeling manufacturing systems in such an ERP system is complex and requires
expensive experts. Without remarkable effort and expertise, many ERP projects fail [25]. Since
standard ERP and PPC software provide standard algorithms and standard models, it is hardly
possible to accurately model a production system in standard software. Hence, these software

78

products are likely to provide merely inaccurate and inadequate solutions for PPC decision
problems.
Brehm et al. [4] suggest more flexible ERP solutions with the application of Federated ERP
systems on the basis of Web Services and P2P networks. The basic idea is to choose the current
best web service for a given business task. This approach has several shortcomings. It relies on a
centrally defined database model, which has to be accepted by all Web Services and ERP systems
[5]. This severe prerequisite complicates the inclusion of workshop specific properties in the
planning process. Furthermore, the XML based interaction between Web Services is not adequate
for mass data usually processed in PPC systems.

On the other hand, there are various planning and optimization algorithms and methods from
research and practice, of which many are well documented in literature. These algorithms can be
distinguished by their purpose, their objectives and the complexity of the problems. The purpose
addresses the current problem solved by the algorithm or the method. It can solve a single problem
(such as quantity planning (for instance, cf. Plossl [21]) or scheduling (for instance, cf. Graves
[13])) or solve several problems simultaneously (such as quantity planning and scheduling (for
instance, cf. Haase [14])). The objectives address the alternative objective persuaded by the
algorithm (e.g., minimize delay or minimize storage costs). The complexity finally describes if the
methods solves the given problem for complex product structures (multi-level problems, cf.
Afentakis [1] or Kimms [16]) and multiple periods. Finally, every algorithm supports different
technical properties, like setup times. These methods and algorithms should be selected and
combined regarding the current objectives and properties of a given production system.

3. The OOPUS WEB Approach

OOPUS WEB is a platform used to fast and efficiently create individualized planning and
scheduling tools. It provides flexible and adaptable master data functions as well as smart planning
interfaces, which enable maximal information transparency for dispatchers.
The basic principle of OOPUS WEB is to decouple the data model from PPC algorithms and other
modules of the platform. This way, a large variety of planning algorithms and models is available
and can be selected depending on the current application scenario. OOPUS WEB is clearly focused
on the area of serial production in line production fashion. This limitation enables the definition of
a lean but extensible data model. This data model is the basis of the OOPUS WEB platform. It is
called Model of Serial Manufacturing and is described in detail in [19].
The next section outlines the technical implementation of OOPUS WEB. Subsequently, we
introduce an approach for the flexible integration of planning and optimization algorithms and
functional components like user interfaces. An example for the combination of planning methods in
OOPUS WEB will be introduced in section 4. This use case describes the practical application of
OOPUS WEB beginning with the forecasting of demands, continuing with multiple stages /
multiple line quantity planning and finishing with single line detailed scheduling.

3.1. Technical Implementation

OOPUS WEB is entirely implemented in Java and all used packages and frameworks are open
source. This enables an unproblematic distribution of the software for research and teaching. In the
technical implementation, the focus is on flexibility as well. To limit maintenance, a thin client
architecture was chosen, and realized by a web browser interface. Figure 1 shows the overall
architecture. A servlet container executes the entire business logic; the users' workstations are
limited to the user interfaces. The required decoupling between the presentation and business logic
and the persistent data storage is assured by the open source frameworks “Hibernate” and

79

“Tapestry”. Tapestry enables the implementation of web-applications according to the Model-
View-Controller paradigm, thus user interfaces can be efficiently adapted to changing requirements
[22]. Hibernate [3] decouples the business and presentation logic from the currently used database
scheme and automatically creates JavaBean representations of database schemes. Planning
interfaces, which feature a more intense interaction with the user, are realized as Java applets. To
encapsulate business logic and data management on the server, the applets interact with servlets,
which implement the business logic and data access.
To embed OOPUS WEB into existing IT infrastructures, it is necessary to interact with classical
ERP software. This concerns standing data (such as products and resources) as well as dynamic
data (stocks, primary demands, and production schedules). The exchange of data is bidirectional.
Up to now, OOPUS WEB implements an interface to the ERP system SAP ECC on basis of the
JavaConnector [18].

Hibernate

Tapestry

Servlet

Persistent Data Layer

ERP Database

ERP System

OOPUS WEB
Database

Database Server

Web
Browser

Java
Applets

Business Logic Layer Presentation Layer

Servlet Container

Figure 1: Architecture of an OOPUS WEB Application

3.2. Flexible Combination of Various Planning and Optimization Algorithms

Figure 2 shows the principle idea of the OOPUS WEB platform following the task structure defined
in [11]. The overall task, the detailed planning and scheduling of a given production process, is
decomposed in several subtasks, each working on a section of the overall model.

Submodel A Submodel B
Model Production system/process

Activity Control

Activities

Activity Control

Activity Control

Activities

Basic Activities

Detailled Planning and Scheduling Task

Subtask A Subtask B

Interpreter Interpreter

A∩B

Figure 2: Decomposition of Tasks in OOPUS WEB

Such a section or submodel consists of partial subsets of production stages (multiple stage planning
methods), a single production stage (single stage planning methods) or even a single line (single

80

machine planning methods). Furthermore, the overall model is also divided into submodels
regarding the granularity of planning periods. This way, it is possible to perform planning and
scheduling on the level of months, weeks, days or shifts, or to directly create a machine scheduling
down to the minute. In order to solve a subtask, planning methods and algorithms are combined and
applied, which can be selected from a method toolbox.

3.3. Customizing the data model

The Model of Serial Manufacturing is just the basis of the development of application specific
models. Part of the OOPUS WEB platform is a customizing concept for the data model. The basic
idea is to provide different variants for the modeling of production processes within production
stages. The variants enable the inclusion of different technical properties of the production stages
and a varying level of detail. Thus, it is possible to include the particular properties of a planning
problem according to the current application scenario.
Technically, the customizing concept relies on the representation of a relational database scheme as
bill of material (BOM). Therefore, different technical or business oriented functions are
encapsulated in a component. A component is a property an OOPUS WEB implementation
supports or not. An example of a technical component is the inclusion of set-up times in the model,
an example of a business-oriented property is the detailed modeling of inventory costs. The
definition of plus/minus bill-of-materials [28] enables the derivation of consistent variants of a
database by selecting several relevant components from the BOM representation of the Model for
Serial Manufacturing. A system of rules - partially automatically generated from the BOM
representation - assures the consistency of the model by forcing the user to consider dependencies
and conflicts between the components during the configuration.
The customizing concept encompasses two different processes: the process of creating a new
configuration depending on an application scenario and the extension of the pool of components.
Two wizard-like tools support both processes. Since the configuration and extension address
different people in the development process, two independent Java applications were developed.
The software automatically performs many process steps - like the derivation of conflicts and
dependencies from the BOM.

3.4. Automated Interface Generation

If the customizing concept is applied, different OOPUS WEB implementations may possess
different database schemes. On the other hand, the methods and algorithms from the method
toolbox and OOPUS WEB components possess their specific internal representations. Thus, for
every combination of database scheme and method a proprietary interface is required. To restrict
the implementation effort, an automated interface generation was developed. The basic idea is to
define a mapping between the JavaBeans (automatically derived from the database scheme by
Hibernate) and the internal model of input and output variables of the different methods and
components. The mapping is defined by an XML file, where several blocks describe the derivation
of input parameters from the possible JavaBeans or the re-calculation of output variables. Elements
of such a block are parametrizable Hibernate queries, which specify the required data from the
database and calculation instructions, which calculate the values of the input parameters from the
JavaBeans. The XSLT code generation [6] creates an individual interface class. Thus, the interface
classes implement the interpreters in Figure 3.
The automated interface generation supports two different types of interfaces. The first kind of
interface treats the methods and algorithms as a black box. It derives all required data, calls the
algorithm, receives the results of the calculation, and writes them into the database. This kind of
interface is suitable for many planning and optimization algorithms and requires no modification or

81

specific programming within the implementation of the algorithm. This is an important property, if
existing implementations shall be reused. The left part of Figure 3 illustrates the processing scheme
of the black box interface.
On the other hand, this kind of interface implies that all required data is known in advance. This
condition is not true for every algorithm and every component of the platform. Especially when
user interaction is involved (like in manual planning), it is not possible to comply with this
precondition. Thus, the second kind of interface allows a more client/server-like interaction
between the methods or components and the database. Of course, these interfaces require an
OOPUS WEB specific programming style. The methods or user interfaces must be able to call
get/set methods provided by the interface. The client/server-like interface supports interoperability
and distributed computing by the application of CORBA technology.

Figure 3: Interaction Scheme for Automatically Generated Interfaces

3.5. User Interface in OOPUS WEB

Experiences from earlier PPC projects were used to provide the required information transparency
[20]. These projects have shown that ergonomic graphical user interfaces are crucial. Practical
experience proved that a combination of a planning table and an accumulated quantity table (AQT)
offer excellent support for detailed scheduling tasks.
The planning table, implemented as a gantt chart, displays lots on production lines in a
chronological order. The dispatcher can directly interact with the production schedule. He is able to
trigger lot-oriented functions like shifting lots or changing the lot size. The AQT presents a
production schedule, handled in the planning table, in aggregated fashion as calculated cumulated
quantities. The (future) production progress is set into relation with the primary and dependent
material requirements. The two interfaces are implemented in a parametrizable version, which
provide a basis for fast implementation of application specific user interfaces.
Both, planning table and AQT are components of several PPC applications. However, in our
opinion only the integrated use of both planning tables enables the information access required for
planning. To use both interfaces simultaneously, a two-display-mode is suggested. Whenever a
change is made in the planning table, the long-term results are visible in the AQT. Thus, it is
possible to create an initial plan (using algorithms from the toolbox) and analyze this initial plan in
the AQT regarding backlog and capacity utilization, and tune the plan manually using the planning
table. For a detailed description of the interaction between the tables, cf. [20].
While the AQT is a generic concept used to visualize quantities and delivery status in PPC detailed
planning and scheduling, the current visualization in the planning table depends heavily on the
properties of the presented production stage. For example, depending on the production stage, setup
times or information about working teams has to be shown. Thus, different versions of planning
tables are provided by the framework and are dynamically linked, depending on the type of the

82

current production stage. The client/server like interface (section 3.4) can be used to decouple the
several planning table implementations and the changing data model.

4. OOPUS WEB use case

This section introduces a use case for OOPUS WEB. It ranges from a long-term forecasting over all
products to a detailed scheduling for a single line. It is shown how several components and
algorithms can be combined to fulfill a complex PPC task.
Figure 4 shows the use case according to the decomposition in section 3. The overall process is
controlled by the user. The user starts the three main steps forecasting (1), automatic planning (2)
and fine-tuning of production plans (3).

User

Forecasting
method

Forecasting

Interface

User

Gantt Action

Fine Tuning

Interface

MLCLSP

Automatic Planning

Interface

PLSP

Interface

Read / Write

User

Lot Table

1 2 3

Batch Process

A B GC D E F H I

Demand Table

Figure 4: A use case of OOPUS WEB

The three steps are only coupled by the underlying database model. For the sake of simplicity, we
just included two database tables in Figure 5, although the use case obviously requires information
about the structure of the production system and the material as input. The demand table contains
the demands resulting from actual client call-offs as well as forecasted demands. The lot table
provides information about which quantity of which product is produced on which production line
at what time. The time can vary regarding its granularity. Thus, it is possible to define, for example,
daily lots that specify which quantity of a product has to be produced on a production line during a
specific day, and on the other hand, to provide lots with to-the-minute start and end times. The
varying granularity is required for the flexible combination of planning algorithms and problems.

The forecasting component reads historical demands from the demand table (A) and writes
forecasts into it (B). The automatic planning process is implemented for the sake of simplicity by
the two well-defined and well-known optimization problems: Multi Level Capacitated Lot-sizing
Problem (MLCLSP) and Proportional Lot-sizing and Scheduling Problem PLSP. A batch process
executes them. The MLCSLP accesses client call offs and forecasted demands (C) in order to
determine day lots. These day lots are written into the lot table with a flag identifying them as day
lot (D). The PLSP reads the day lots (E) and determines a detailed sequence of lots. This result is
also written to the lot table (F). Finally, the user tunes the automatically generated plan with the
planning interfaces. In this process, information from the demand (G) and the lot tables (H) is read
and created, and deleted or changed lots are written to the lot table (I).

83

All interfaces in Figure 5 are generated by the automated interface generation introduced in section
3.4. The interface generator converts a model in form of a XML file to a Java class, thus just the
definition between the internal model of the component or algorithm has to be defined. The current
read and write operations on the database are performed by the Hibernate framework.

4.1. Forecasting

In most industries, demand information based on actual customer call-offs are only available within
a limited time horizon. If a longer planning horizon is required, a prediction of demands in the later
periods is needed. Thus, a forecasting component was developed and integrated into OOPUS WEB
(Figure 5).
This component enables forecasting of demands with several customizable methods. Information
available on the internet, like economic growth or the oil price, can be integrated in the model. The
user directly controls the forecasting process. A benchmarking process supports the user in
choosing the best forecasting method by comparing the available methods and suggesting the most
suitable method for the given data. The result of the forecasting process can be saved in the demand
table and is used as input for production planning.

Figure 5: Forecasting Component

4.2. Automated Planning

The next step in the use case is a multi stage method to determine production quantities on an, for
example, daily or weekly basis. OOPUS WEB can generate those plans either using optimal
methods or heuristics. Anyway, the results of the forecasting in the previous step are used as input
data (demands to meet). For the application of optimal methods, the solver is called. With a solver,
problems like the MLCLSP (cf. [17]) can be solved to determine production quantities. The result
of the optimization is production quantities for each period of time, each production line, and each
product. These quantities are saved in the lot table as day or week lots. Since MLCLSP does not
determine a production sequence, it is not possible to directly consider sequence depending setup
times stored in the database. Thus, the generated interface can be used to calculate an average
sequence independent setup time for each product. This average setup time can be considered in the
restrictions of the MLCLSP.
The third step is the automatic planning of single production stages and single lines on a more
detailed level. The day lots generated in the previous step are used as input data. An example of a
problem applied in this step is the PLSP (cf. [10]). The PLSP takes the week or day lots as input
and determines a detailed sequence of lots that offers the best compromise between setup and
inventory costs. The result of the PLSP is lot information with exact quantities and start/end times.
It is written to the lot table.

84

The final production-planning step is the manual adaptation of the automatically generated plans by
the production planner. This is done by the user interfaces described in 3.5.

5. Conclusion and Further Work

The platform OOPUS WEB enables the derivation of data models for individual software solutions
from a global master model and the continuous extension of this global model. OOPUS WEB
enables the application-oriented combination of methods and algorithms from a toolbox, to provide
the best solution for every serial production system. The implementation effort is limited by
automated interface generation.
Based on experience from previous industrial projects OOPUS WEB provides two interacting
planning interfaces for the production planning and scheduling, which provide maximum
information transparency and efficient tuning possibilities for the human dispatcher. These
interfaces are either parametrizable or provided in different variants, which can be combined with
changing data models by the automatically generated interfaces.
Up to now, OOPUS WEB supports classical detailed planning and scheduling functions like
quantity planning and machine scheduling. In the near future, more tasks from the PPC area shall
be supported by OOPUS WEB. An example for this is the demand-oriented definition of shift plans
or assignment of production steps to stations on an assembly line. These fundamentally different
tasks require alternative user interfaces.
By continuously extending the platform - in research, teaching and application – OOPUS WEB is
intended to grow to a comprehensive construction kit for PPC applications and restrain future
development efforts.
The basic ideas behind OOPUS WEB - the definition of a common data model, which can be
extended and modified within a customizing concept and the automated interface generation to
apply existing and new components within the platform, can be transferred to other areas than
production planning and control.

References

[1] AFENTAKIS, P., GAVISH, B.: Optimal Lot-Sizing Algorithms for complex product structures, in: Operations
Research, Bd. 34 (1986), 237-249.

[2] BALLA, J.: Production Planning with SAP APO-PP/DS, Bonn 2006.

[3] BAUER, C., KING, G.: Java Persistence with Hibernate, Greenwich 2004.

[4] BREHM, N., MARX GOMEZ, J., RAUTENSTRAUCH, C.: An ERP Solution Based on Web Services and Peer-to-
Peer networks, in: International Journal of Information Technology and Management, Bd. 1 (2007).

[5] BREHM, N., MARX GOMEZ, J.: Web Service-Based Specification and Implementation of Functional
Components in Federated ERP-Systems, in: Abramowicz, W. (Hrsg.), Business Information Systems 2007, Lecture
Notes in Computer Science, Bd. 4439, Berlin 2007, 133-146.

[6] CLEAVELAND, J.C.: Program Generators with XML and Java, Upper Saddle River 2001.

[7] CRNKOVIC, I.: Component-based software engineering - new challenges in software development, in:
Proceedings of the 25th International Conference on Information Technology Interfaces, New York 2003.

[8] CZARNECKI, K.; EISENECKER, U.W.: Generative Programming: Methods, Tools, and Applications, Reading
2000.

[9] DIFFENDERFER, P.M., EL-ASSAI, S.: Microsoft Navision 4.0: Jump Start to Optimisation, Wiesbaden 2005.

85

[10] DREXL, A.; HAASE, K.: Proportional lotsizing and scheduling, in: International Journal of Production
Economics Bd. 40 (1995), 73-87.

[11] FERSTL, O.K.; SINZ, E.J.: Grundlagen der Wirtschaftsinformatik, München 2006.

[12] FLEISCHMANN, B.; MEYR, H.; WAGNER, M.: Advanced Planning, in: Stadtler, H.; Kilger, C: (Hrsg.).
Supply Chain Management and Advanced Planning, Berlin 2005.

[13] GRAVES, S.C.: A Review of Production Scheduling, in: Operations Research, Bd. 29 (1981), 646-675.

[14] HAASE, K.: Lotsizing and scheduling for production planning, in: Lecture Notes in Economics and Mathematical
Systems, Vol. 408, Berlin 1994.

[15] HIGGINS, P., LE ROY, P., TIERNEY, L.: Manufacturing Planning and Control: Beyond MRP II, Berlin 1996.

[16] KIMMS, A.: Multi-Level Lot Sizing and Scheduling, Heidelberg 1997.

[17] MAES, J.; VAN WASSENHOVE, L.: Capacitated Dynamic Lotsizing Heuristics for Serial Systems, in:
International Journal of Production Research, Bd. 29 (1991), 1235-1249.

[18] MEINERS, J.: SAP Interface Programming, Bonn 2004.

[19] DANGELMAIER, W.; TIMM, T.; KLÖPPER, B. BRÜGGEMANN, D.: A Modelling Approach for Dynamic and
Complex Capacities in Production Control Systems, in: Abramowicz, W. (Hrsg.), Business Information Systems 2007,
Lecture Notes in Computer Science, Vol. 4439, Berlin 2007, 626-637.

[20] DANGELMAIER, W.; RUST, T.; HERMANOWSKI, T.; BRÜGGEMANN, D.; KASCHULA, D.; DÖRING, A.;
TIMM, T.: OOPUS - A Production Planning Information System to Assure High Delivery Reliability Under Short-
term Demand Changes and Production Disturbances, in: Proceedings of the Ninth International Conference on
Enterprise Information Systems (ICEIS 2007) - Databases and Information Systems Integration, Setúbal 2007, 423-
430.

[21] PLOSSL, G.: Orlicky's Material Requirements Planning, 2nd edition, New York 1994.

[22] SHIP, H.M.L.: Tapestry in Action, Greenwich 2004.

[23] SINGH, M.P.; HUHNS, M.N: Service-Oriented Computing: Semantics, Processes, Agents, Chichester 2005.

[24] STADTLER, H.: Production Planning and Scheduling, in: Stadtler, H.; Kilger, C.: Supply Chain Management and
Advanced Planning, Berlin 2005.

[25] VOGT, C.: Intractable ERP: A Comprehensive Analysis of Failed Enterprise-Resource-Planning Projects, in:
Software Engineering Notes, Bd. 27 (2002), 62-68.

[26] VOLLMANN, T.E.; BERRY, W.L.; WHYBARK, D.C.; ROBERTS, R.J.: Manufacturing Planning and Control
for Supply Chain Management, New York 2005.

[27] WALLACE, T.F., KREMZAR, M.H.: ERP:Making It Happen: The Implementers' Guide to Success with
Enterprise Resource Planning, Chichester 2001.

[28] WOSS, W.: A rule-driven generator for variant parts and variant bills of material, in: 8th International Workshop
on Database and Expert Systems Applications, New York 1997.

86

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	A CUSTOMIZING PLATFORM FOR INDIVIDUAL PRODUCTION PLANNING AND CONTROL SOLUTIONS
	Benjamin Klöpper
	Tobias Rust
	Thorsten Timm
	Wilhelm Dangelmaier
	Recommended Citation

	Microsoft Word - Erste Seiten 247_Band2.doc

