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Abstract 

We propose a Bayesian analysis of mediation and moderation effects embedded within a 

hierarchical structure to examine the impacts of two sources of WOM information — online user 

reviews and professional reviews in the context of software download. Our empirical results 

indicate that the impact of user reviews on software download varies over time and such variation 

is moderated by product variety. The increase in product variety strengthens the impact of positive 

user reviews, while weakening the impact of negative user reviews. Furthermore, professional 

reviews influence software download both directly and indirectly, partially mediated by volume of 

online user reviews. Receiving positive professional reviews leads to more software download, yet 

receiving very negative professional reviews has a negative impact on the number of download. 

The increase in professional ratings not only directly promotes software download but also leads 

to more active user WOM interactions, which in turn leads to more download. 

 

Keywords:  Online user reviews, professional reviews, hierarchical model, moderation effect, 

mediation analysis 
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Introduction 

Consumers are facilitated by Internet technology to expediently exchange their experiences and learn from others’ 

recommendations about product information, which significantly influences their decision-making in online markets 

(Godes and Mayzlin 2004). This digital Word-of-Mouth (WOM) effect is particularly important for experience 

goods whose attributes are hard to evaluate before consumptions. The two most prominent and commonly discussed 

sources of online WOM are online user reviews and professional reviews. User reviews are believed to reflect prior 

users’ experiences and preferences, whose two most important attributes are valence and volume (Neelamegham and 

Chintagunta 1999). The former often refers to the average numerical ratings (i.e., whether they are positive, neutral 

or negative) and the latter usually denotes the total number of user reviews. Professional reviews are shown to build 

up product reputations and be a better signal of product quality information (Hann et al. 2005). There is an extensive 

body of research on the impact of either online user reviews or professional reviews on user choices (Basuroy et al. 

2003; Duan et al. 2008, 2009).  

There is, however, lack of attention on how these two sources of WOM information work together to influence 

consumers’ decision-making. Because of the broad reach of Internet, nowadays consumers can easily have access to 

these two sources of WOM information. For example, many popular websites, such as CNETD 

(www.download.com) and Amazon readily provide both user reviews and editorial reviews for their products. 

Consumers are also shown to search for multiple WOM information sources across websites (Park et al. 2009). 

Nevertheless, it is unclear from literature how consumers analyze and integrate user reviews and professional 

reviews to formulate their evaluations and make decisions, if at all. Being an attempt to answer this important 

question, Amblee and Bui (2007) find that user reviews and professional reviews influence freeware download 

equally by modeling these two impacts independently. However, this conclusion could be misleading due to 

ignoring the interrelationship between user reviews and professional reviews.   

The major objective of this paper, therefore, is to open the “black box” of the process through which user reviews 

and professional reviews jointly influence user choices. Specifically, we investigate two related issues by conducting 

a Bayesian analysis of mediation and moderation effects embedded within a hierarchical structure on a panel data set 

of software download in CNETD. One issue is that how volume of user reviews mediates the impact of professional 

reviews on user choices. Reinstein and Snyder (2005) find the surprisingly large influence of professional reviews 

on box office revenue could be partly due to the indirect impact of professional reviews through user-generated 

WOM in addition to their direct impact. This finding suggests a mediation mechanism wherein professional 

reviews−>volume of user reviews−>user choices. The relationship between professional reviews and volume of user 

reviews is in essence related with the motivation behind consumers’ sharing experiences with others. Consumers are 

motivated to engage in both offline and online WOM activities partly to enhance their own self-worth (Dicher 1966; 

Hennig-Thurau et al. 2004). Professional reviews, unlike the abundant user-generated WOM information, are only 

provided by a small group of specialized professionals on a very limited number of products. As a result, consumers 

are more willing to write reviews on products receiving professional reviews, especially on those obtaining higher 

evaluations, for a greater potential to attract other consumers’ attentions and then show their connoisseurship. More 

WOM activities could lead to more user choices (Duan et al 2008; Godes and Mayzlin 2004), resulting in the 

mediated impact of professional reviews on user choices. We find empirical evidences to argue that professional 

reviews influence software download partially mediated by volume of user reviews. The fact that products are 

selected to get reviewed by professionals both directly and indirectly influences download via its impact on volume 

of online user reviews. Overall receiving very negative professional reviews significantly reduces products’ 

download, whereas receiving positive professional reviews contributes to more download. The valence of 

professional reviews not only directly promotes software download but also leads to more active user WOM 

interactions, which in turn leads to more software download. 

In order to provide a broad picture about how both user-generated and professional WOM information influence 

user choices, it is also important to correctly interpret the relationship between valence of user reviews, another 

attribute of user-generated WOM information, and user choices. Therefore, the other issue explored in this study is 

how the impact of valence of online user reviews varies over time and is moderated by product variety. Zhu and 

Zhang (2010) find that product popularity information moderates the impact of online user reviews. Zhou and 

Duan’s paper (2009) demonstrates a significant nonlinear interaction effect between product variety and online user 

reviews, implying a moderation effect of product variety on the impact of user reviews. Yet, they do not go a step 

further to fully explore the variation of the impact of user reviews caused by the change of identified moderator. 

http://www.download.com/
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And neither of those two studies considers the existence of other moderators, which is sufficiently addressed by a 

hierarchical structure embed in the empirical model in this study. We find that the impact of online user reviews 

varies over time, which is mainly caused by the moderation effect of product variety. The increase in product variety 

strengthens the impact of positive user reviews, while suppressing the impact of negative user reviews.  

Our study makes significant contributions to Information System (IS) and Marketing literature. First, to our best 

knowledge, our paper is the first study that identifies the mediation role of volume of online user reviews on the link 

from online professional reviews to user choices. This is partly attributed to the methodological advantage of 

Bayesian framework adopted in our empirical work. Mediation analysis conducted in a Bayesian framework 

overcomes the limitation of its application in the alternative frequency framework, which has been criticized in 

literature for the difficulty of obtaining a robust estimation of standard deviation for a mediation test (MacKinnon et 

al. 2007). The Markov Chain Monte Carlo (MCMC) sampling method, which naturally comes with the Bayesian 

approach, could easily solve this difficulty. Second, this paper is also the first to hierarchically model the nonlinear 

moderation role of product variety on the impact of online user reviews. Moreover, this identified moderation effect 

of product variety makes the impact of online user reviews on software download vary over time. The conventional 

moderation modeling approach specified by the interaction between product variety and user reviews in explaining 

user choices is at risk of neglecting other omitted situational moderators (e.g., promotional event). These factors 

would be left into error term, which leads to the endogeneity problem. Instead, we use a hierarchical structure to first 

control for those noises and capture the moderation effect of product variety in lower level model, and thus isolate 

them from modeling the time variant impact of user reviews.   

In the next section, we review the extant literature and build up the theoretical foundation for this study. We then 

describe the data and introduce model development, followed by empirical analyses. Finally, we discuss the results 

and implications, as well as identifying areas for future research. 

Theoretical Background  

Online User Reviews and Product Variety 

Researchers studying user-generated WOM effects have mainly focused on two attributes of online user reviews: 

valence and volume (Duan et al. 2008; Liu 2006; Senecal and Nantel 2004). Yet conclusions about the relationship 

between valence of user reviews and user choices are mixed. Some researchers believe that valence of user reviews 

has a persuasive effect on a user’s attitude (Liu et al. 2006) and thus has a positive impact on user choices (Chevalier 

and Mayzlin 2006; Zhou and Duan 2009). For example, Chevalier and Mayzlin (2006) find that the increase in 

valence of user reviews leads to more sales. Yet, there are also different voices from other scholars that online user 

reviews are not influencers of user choices (Chen et al. 2003; Duan et al. 2008, 2009; Liu 2006).  

The psychological choice models proposed by Hansen (1976) seem to shed some lights on reconciling these 

divergent results from empirical works. He points out that situational variables would interact with predispositional 

variables, which leads to external responses (i.e., user choices) at the end. In an e-commerce context, online user 

reviews falls into the territory of predispositional variables. Thus the moderation effect of situational variables 

should not be neglected while examining the impact of user reviews on user choices. Studies conducted in different 

contexts involve distinct situational variables. Without controlling for the moderation effects of these situational 

variables, it would be hard to make consistent conclusions beyond data sets with a different mix of situational 

variables. In line with this reasoning, Zhu and Zhang (2010) empirically identify product popularity information as a 

moderator for the impact of valence of online user reviews on video game sales.  

In this paper, we are interested in examining the moderation effect of product variety on user reviews in influencing 

user choices. Product variety changes over time due to many reasons. Suppliers may have their own schedules to 

promote new products or withdraw unsuccessful products; online platforms also have their own criteria to select 

listing products. In this sense, product variety is actually a final supply-side representation of all these potential 

multiple factors. Hence, product variety, which information almost every user would easily obtain in all online 

stores and is also easily observed by researchers and practitioners, captures those unobserved or uneasily measured 

yet important variations on supply side. The implications from the moderation effect of product variety would be 

thus more comprehensive in academics and more insightful in practice. Recent long tail related studies also 

demonstrate the interaction effect between online user reviews and product variety on product sales. Brynjolfsson et 
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al. (2007) briefly discuss that product variety, as a supply side factor, and online recommendation system, as a 

demand side factor, may influence the consumption pattern concurrently. Zhou and Duan (2009) find a significant 

nonlinear interaction impact between valence of online user reviews and product variety on online software 

download. However, we do realize that there may exist other moderators for online user reviews out of all 

situational variables in addition to product variety. Unfortunately we are short of knowledge from literature that in 

what context which situational variable significantly moderates the impact of online user reviews. As a result, a 

more advanced methodology is required to take these potential moderators into account in order to generate robust 

estimates, which is introduced in the model development section. 

Volume of Online User Reviews Mediates the Impact of Professional Reviews 

Professional reviews are provided by experienced experts to build up reputation, provide advertisement and product 

information (Cameron 1995). Most extant researches agree on the significant relationship between professional 

reviews and consumer decisions (Amblee and Bui 2007; Basuroy et al. 2003; Boatwright et al. 2007; Liman 1983; 

Reddy et al. 1998; Reinstein and Snyder 2005). Liman’s (1983) study shows that professional reviews are 

significant factors in predicting the cumulative box office revenue. Surprisingly, Reinstein and Snyder (2005) find a 

larger impact of positive professional reviews than expected. They argue that one of the reasons could be the indirect 

impact of professional reviews on box office revenue through user-generated WOM in addition to its direct impact 

widely tested in extant studies. Thus, ignoring this indirect impact would cause an inaccurate estimated impact of 

professional reviews.  

This finding motivates us to look into the mediation mechanism through which online user reviews transmits the 

impact of professional reviews on user choices. Following Baron and Kenny’s (1986)’s suggestions on mediation 

analysis, the choice of mediator in context of online WOM activities should satisfy the following two conditions: 1) 

professional reviews can influence this mediator but not vice versa; 2) this mediator influences user choices. 

Empirically, Holbrook (2005) finds a positive correlation between professional reviews and the volume of IMDB 

(www.imdb.com) user reviews in movie industry. Yet, this study is not able to investigate the causal inference 

between professional reviews and volume of online user review due to its data and methodology limitations. 

Hinging on this empirical work, we argue that volume of user reviews is the mediator on the impact of professional 

reviews for several reasons. First, users feel more likely to enhance their own self-worth by writing reviews on 

products with professional reviews of higher evaluations. Self-involvement, which refers to users’ emotional needs 

to gain attentions and enhance images among other users, is shown as one of four motives for incidences of offline 

WOM (Dichter 1966; Engel et al. 1993; Sundaram et al. 1998). Recently, Hennig-Thurau et al. (2004) extend and 

validate it in online context as well. Since not all products on the market are reviewed by professionals, products 

received higher professional evaluations have a better chance to stand out.   

Second, professional reviews usually precede user reviews and are available at the early stages of products’ life 

cycles. For example, in movie industry, professionals are invited to view the film and publish their reviews before 

the film is open to public. This time lag between these two reviews rules out the possibility that professionals favor 

products with more user reviews. Also professional reviews are expected to be more objective and unbiased as a 

better proxy of product quality than user reviews (Hann et al. 2005). Therefore, user reviews are more likely 

influenced by professional opinions from experts that are posted earlier, which renders the support for the first 

condition of volume of user reviews to be the mediator.  

Third, volume of user reviews has been widely shown to improve market outcome (Dellarocas et al. 2007; Duan et 

al. 2008; Liu 2006). The rational is that consumers are more likely to get informed about products with more 

reviews, which in turn promotes sales (Godes and Mayzlin 2004). The second condition of being a mediator is thus 

satisfied too. Based on aforementioned discussion, we propose volume of user reviews as the mediator of the impact 

of professional reviews in our empirical model.  

Data 

We conduct this study in the context of online software download at CNETD, which is a leading and representative 

online platform for software download. CNETD is a library of over 30,000 free or free-to-try software programs for 

four different platforms including Windows, Mac, mobile device and webware. For each platform on CNETD, there 

are more than 10 groups of software programs with approximately 5~20 categories in each group. CNETD lists 
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detailed product descriptions as well as weekly and cumulative download counts for each software program. Users 

can post their reviews by detailed comments and an overall rating on a scale of one to five, with one being the worst 

and five the best. CNETD also provides editorial reviews for selected software programs in a similar manner by a 

five-star rating system (usually popular products). For each category, CNETD lists the number of software programs 

available for download by license type and operation system, which makes the information of product variety 

readily available for consumers.  

Providing both user reviews and professional reviews for selected programs on CNETD is the main reason that we 

choose this context. This makes our study feasible to examine the impacts of these two sources of online WOM 

information simultaneously without the need to link two independent platforms providing them separately. 

Specifically, we use cumulative average user ratings (on a scale of one to five) as a measure for valence of online 

user reviews and cumulative number of online user reviews as a measure for volume of online user reviews. 

Reviews whose average ratings are above/equal/below 3 are defined as positive/neutral/negative reviews, regardless 

whether they are created by users or professionals. Most information on CNETD is updated on a daily basis. Though 

professional reviews written by CNETD are usually posted at the early stages of selected software programs’ life 

cycles, once a reviewed product has a substantially update, CNETD editor would update their reviews within two 

business days. Therefore, we can comprise a longitudinal data set of those two sources of online WOM information 

to analyze the dynamics of software download.  

Our data was collected weekly for four categories between Aug. 2007 and Feb. 2008. These four categories are: 

Digital Media Player, Download Manager, File Compression and MP3 Finder, which includes popular downloaded 

categories and also categories with different application purposes. We extract the following information on every 

software program listed in each category on a weekly basis: software name, date added, software characteristics, 

total download, last week download, average user ratings, number of user reviews and CNET ratings. Since every 

category represents a unique group of software with similar functions, we define each category as a single market. 

Bayesian Model Development 

We employ a Bayesian framework in this study mainly for its more feasible and efficient implementation to conduct 

a mediation analysis. It is always a challenge to conduct a mediation analysis in a traditional frequency framework 

in order to obtain the robust estimation of standard error. Its asymptotic estimation results in a poor power of the 

mediation test for small samples (MacKinnon et al. 2007), such as our case in category of MP3 Finder, which only 

has less than 100 products weekly. Nevertheless, Bayesian approach could easily estimate standard error of a 

mediation effect in a more straightforward and less restricted manner by using the MCMC method. More generally, 

Bayesian framework works better in finite sample context, while most widely used techniques of frequency statistics 

are built upon the asymptotical assumption that requires a large sample size of data, i.e., long time series dimension 

for a panel data set. Most data sets explored in previous studies, however, do not meet such requirements. The 

Bayesian framework has been widely implemented in fields such as Marketing and Finance, yet seldom discussed in 

IS research. Therefore, we choose to apply the Bayesian technique instead of the often used probability models 

aiming to provide a new perspective to explain digital WOM effect, given its advantage in modeling mediation 

effect in finite sample.  

In this section, we introduce a series of models. We first focus on the valence of online user reviews to model the 

moderation effect of product variety on its impact on software download. We use a single equation model including 

interaction terms between product variety and user ratings as a benchmark, which is the conventional way to capture 

moderation effect. We then introduce a hierarchical structure as a more robust method to test the moderation effect 

of product variety and control for other omitted moderators. We do not include volume of online user reviews into 

these two models in order to narrow down the variation sources from independent variables and thus clearly 

demonstrate the advantage of hierarchical structure. We then proceed to present a Bayesian version of a standard 

mediation analysis with volume of online user reviews as the mediator for professional reviews, which leads to our 

final empirical model.  

To facilitate our introduction of models, we illustrate the notation as following, 

i=1,…,I software programs, 

t=1,…26 the week when software i is posted,  

Yit= number of weekly download of software i at week t, 
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Xit= control variables: Xit1 =LOGTOTALDOWNLOADit (log transformation of cumulative number of download of 

software i at week t), Xit2 =WEEKLYRANKit (weekly download rank of software i at week t), Xit3 =FREEPRICEDit (a 

dummy variable measures if software i is free-to-try at week t), Xit4 =AGEit (Days since software i has been posted), 

Xit5 =AGESQit (square term of AGEit),  

WEEKLYVARIETYt = total number of software programs listed in the category at week t. 

USERVALit = average user rating for software i at week t (one to five scale with half points), 

USERVAL
R

it = USERVALit -3, 

USERVAL
R
SQit = square term of USERVAL

R
it, 

USERVOLit = number of user reviews software i has received by week t, 

PRODit = a dummy variable measures if software i receives CNET editorial review at week t, 

PROVALit = CNET editorial rating software i receives at week t (one to five scale with half points). 

Baseline Model 

To model the moderation effect of a moderator (Mo) on the outcome (Y) impact of an independent variable (X), the 

conventional approach is to test the significance of a product term X*Mo in explaining Y (Kenny et al. 1998). In our 

study, Mo is product variety, X are user ratings and Y is software download. We use this model as a benchmark to 

compare with the following hierarchical moderation model, which would be shown as theoretically superior.  

Previous literature suggest that the impact of user reviews with different valence level is nonlinear (Chevalier and 

Mayzlin 2006; Clemons et al. 2006; Zhao et al. 2008; Zhou and Duan 2009). We apply a simple linear 

transformation on USERVALit to help differentiate the impacts of different levels of user ratings. Since 3 is the 

middle point of the rating scale, we use USERVALit -3 instead of USERVALit, which is named as USERVAL
R

it for 

parsimony. Built upon this, we then include both USERVAL
R

it and the quadratic term of USERVAL
R

it, denoted by 

USERVAL
R
SQit. As a result, neutral user reviews have zero values of USERVAL

R
it and any deviation from 3 point 

leads to extreme user reviews with non-zero values of USERVAL
R

it and USERVAL
R
SQit. Zhou and Duan (2009) 

empirically demonstrate that the interaction effect between product variety and user ratings is nonlinear. Therefore, 

to capture the moderation effect of product variety on user reviews, we include the interaction term indicated as 

USERVAL
R
SQit*WEEKLYVARIETYt. Moreover, we include all control variables, Xit, into the equation as explained 

beforehand. We also include the software fixed effects (εi) in the model to control for any unobserved intrinsic 

individual software characteristic. Hence, the model can be expressed as below: 

1 2 4 5 6( ) * * * * * *

~ (0, . )  ~ (0, . ) i=1,...,I; t=1,...,26.

R R R

it it t it it t x it i it

i it

LOG Y USERVAL WEEKLYVARIETY USERVAL SQ USERVAL SQ WEEKLYVARIETY X

N tau e N tau y

γ γ γ γ γ γ ε ε

ε ε

= + + + + + + +

，

 

where γx is a coefficient matrix on control variables with a dimension of 1 by 5. The impact of valence of user 

reviews is measured by γ2*USERVAL
R

it+(γ5+γ6*WEEKLYVARIETYt)*USERVAL
R
SQit. Negative user reviews have 

opposite signs of USERVAL
R

it and USERVAL
R
SQit. Therefore, γ5+γ6*WEEKLYVARIETYt denotes the significance of 

difference between the impacts of 5-star and 1-star reviews in magnitude, which differentiates between positive and 

negative WOM effects.  

Hierarchical Moderation Model 

The baseline model aims to model the moderation effect of product variety on the impact of user reviews on 

software download. However, if there is any other factor that also moderates user reviews, the estimation could be 

seriously biased due to the endogeneity problem. Hansen (1976) summarizes four categories of situational variables, 

which interact with predispositional variables (online user reviews in this context). Product variety may be after all 

only one situational variable captured in our context, which moderates the impact of online user reviews. For 

example, Zhu and Zhang (2010) find product popularity information to be the moderator in the video game context. 

Therefore, the likelihood that there are always some moderators omitted to enter the interaction term in baseline 

model due to the lack of knowledge or unavailability of data should be nontrivial. This raises the endogeneity 

problem, which brings biases into parameter estimations. Let us hypothetically assume an omitted moderator 
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denoted by Moo. The error term εit in our baseline model now actually contains two extra components in addition to 

the standard normally distributed noise: Moo and Moo*USERVAL
R
SQit, the latter of which makes εit correlate with 

USERVAL
R

it, USERVAL
R
SQit and the interaction term in the baseline model. Therefore, we propose a hierarchical 

model to separate those omitted potential moderators from estimating the impact of online user reviews.  

We build up a hierarchical structure on the coefficients on USERVAL
R
SQit to capture the moderation effect of 

product variety on the impact of valence of user reviews. We allow the coefficients on USERVAL
R
SQit (β3

t
) random 

over study period, which vary along weekly product variety with an error term δ3
t
. To avoid confusion, in this paper 

we name the equation to explain random coefficients as lower level model. This error term δ3
t
 is indispensable in the 

sense that it can control for all omitted moderators other than product variety. This is the key to free this hierarchical 

moderation model from the endogeneity problem that our baseline model suffers from. In addition, we follow the 

suggested way of setting up a hierarchical model to completely separate the lower level dimension (time dimension) 

from the estimation of software download model (Rossi et al. 1995). As a result, the intercept term (β1
t
) in software 

download model is also allowed to vary along weekly product variety with an error δ1
t
. The following is our 

hierarchical moderation model setup: 

1 2 3

1 2

( ) * * *

* ,  j=1,3

~ (0, . )  ~ (0, . ), ~ (0, . )  i=1,...,I; j=1,3; t=1,...,26.

t R t R

it it it x it i it

t j j t

j t j

t

i it j

LOG Y USERVAL USERVAL SQ X

WEEKLYVARETY

N tau e N tau y N tau

β β β β ε ε

β α α δ

ε ε δ δ

= + + + + +

= + +

， ，

 
where βx is a coefficient matrix on control variables with a dimension of 1 by 5. Similarly, β3

t
 denotes the 

significance of difference in magnitude between the impacts of positive and negative user reviews with the same 

valence deviation from neutral user reviews. In addition to its robustness in estimation by counting all omitted 

potential moderators into the error term of the lower-level equation (δ3
t
), this hierarchical structure has another 

advantage of examining whether the impact of valence of user reviews on software download varies over time. The 

impact of valence of user reviews is measured by β2*USERVAL
R

it+β3
t
*USERVAL

R
SQit. If β3

t
 is significant over 

time, the impact of valence of user reviews is shown to be time variant. Compared with the baseline model, this 

model is also more flexible to extend to other contexts, where there emerge or exist other interesting moderators 

besides product variety. Those factors can be simply added into the lower level model as independent variables to 

take their moderation roles into account. 

Bayesian Mediation Analysis  

 

Figure 1. Model of Mediation and Moderation Effects 

We now go one step further to examine how volume of user reviews transmits the impact of professional reviews on 

software download. As discussed in theoretical background section, we here propose a partial mediation model in a 

Bayesian framework based on the previous hierarchical moderation model. Figure 1 depicts the overall empirical 

model we would like to examine. Volume of user reviews (USERVOLit) is the mediator and software download (Yit) 

is the outcome variable. If path c is missing, indicating a complete mediation, this means the association between 

professional reviews and software download is completely accounted by volume of user reviews. However, Judd 

and Kenny (1981) point out that it is unrealistic to expect a complete mediation for psychological behaviors, which 
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are influenced by various causes. We, hence, believe it is more rigorous to examine a partial mediation model at the 

first place and determine whether professional reviews is irrelevant to software download after volume of user 

reviews has been controlled by testing the significance of path c. We intentionally differentiate between valence and 

existence of professional reviews. Unlike user reviews, professionals, in a much smaller community than ordinary 

consumers, would only have limited time and efforts to review a fairly small portion of products available on the 

market. For example, CNET editorial team only reviews less than 20% of products posted in CNETD. As a result, it 

is important to understand the impact of whether receiving professional reviews on a product’s performance in 

addition to the impact of the valence of professional reviews. Accordingly, we include two terms, PRODit and 

PRODit*PROVALit, to both capture the impact of the valence of professional reviews and differentiate products with 

professional reviews from those without. As for products without CNET reviews, their PROVALit values are 

irrelevant to model estimation and thus specified as zero for simplicity. According to the procedure suggested by 

Baron and Kenny (1986), the first step of a standard mediation analysis is to examine the relationship between 

professional reviews and software download without considering the mediator, which leads to the following first-

step model setup: 

1 2 3 4 5

1 2

( ) * * * * * *

* ,  j=1,3

~ (0, . ), ~ (0, . ), ~ (0, . ),  i=1,...,I; j=1,3; t=1,...,26.

t R t R

it it it it it it x it i it

t j j t

j t j

t

i it j

LOG Y USERVAL USERVAL SQ PROD PROD PROVAL X

WEEKLYVARETY

N tau e N tau y N tau

β β β β β β ε ε

β α α δ

ε ε δ δ

= + + + + + + +

= + +

 
The impact of valence of professional reviews is measured by β5 and the impact of whether receiving professional 

reviews is captured by β4+β5*PROVALit. If these two estimators are significant, the relationship between 

professional reviews and software download is established. We can then proceed to estimate our final model. As 

suggested by the standard mediation test procedures (Baron and Kenny 1986; Judd and Kenny 1981), the model of 

volume of user reviews is designed to capture the path a by including variables mediated by volume of user reviews, 

i.e., professional reviews in this case. We then add the volume of user reviews into software download model to 

measure the additional impact of volume of user reviews on software download (path b) besides the direct impact of 

professional reviews (path c), which is described as following: 

1 2 3 4 5 6

1 2

1 2 3

( ) * * * * * * *

* ,  j=1,3

* *

~ (0, . ), ~ (0, .

t R t R

it it it it it it it x it i it

t j j t

j t j

it it it it

i it

LOG Y USERVAL USERVAL SQ PROD PROD PROVAL USERVOL X

WEEKLYVARETY

USERVOL PROD PROVAL

N tau e N tau y

β β β β β β β ε ε

β α α δ

λ λ λ σ

ε ε

= + + + + + + + +

= + +

= + + +

), ~ (0, . ), ~ (0, . )  i=1,...,I; j=1,3; t=1,...,26.t

j it
N tau N tauδ δ σ σ

 

We recognize that other possible explanations to influence volume of user reviews may exist. For instance, recently 

there have been some studies that argue retailing sales and the valence of user reviews would also influence volume 

of user reviews that a product attracts (Duan et al. 2008). Accordingly, the error term in the model of volume of user 

review (σit) may include these influencers. To obtain an unbiased estimated mediation effect, we need to make sure 

that σit does not correlate with professional reviews. Valence of user reviews and past download can be interpreted 

as indicators of ordinary users’ tastes while professional reviews represent experts’ tastes. Holbrook (1999) shows 

that ordinary user and experts have different criteria in their tastes. Hence, valence of user reviews and past 

download left in σit would not correlate with professional reviews and the model of volume of user reviews is free 

from endogeneity problem. λ2 and λ3 can then properly estimate the impact of professional reviews on volume of 

user reviews, which represents the path a in Figure 1. β6 captures the impact of volume of user reviews on software 

download, which represents the path b in Figure 1 In addition, β4 and β5 in software download model capture the 

direct impact of professional reviews on software download, which represents the path c in Figure1.  

Empirical Analyses 

For all the models estimated in this study, we specify very vague priors for all unknown parameters. Given the 

mixed findings about digital WOM effect in literature, it is more rigorous not to adopt any extant research 

conclusions as prior information. We assume normal N(0,10
3
) prior distributions for all regression coefficients and 

inverse gamma IG(10
-3

,10
-3

) prior distributions for the variance parameters. We then estimate all models using 

MCMC method for each category. We discard the first 15,000 draws with 10 thins for burn-in and use additional 

15,000 draws with 10 thins to characterize the posterior distributions of parameters. We also conduct a convergence 

diagnostic to ensure the “true” parameters are recovered and thus the estimates are reliable. For all parameters, the 

visual check based on the history plots and autocorrelation plots show that convergence has been reached well 
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before the end of the burn-in period. We also assess convergence by inspecting Gelman-Rubin diagnostic (BGR), 

which confirms the validity of estimate results as well. The estimations of key covariates for the following three 

models in each category are reported in Tables 1-4 through the posterior means and standard deviations. 

Baseline Model  

Table 1 shows the empirical results of our baseline model in each category. The coefficients on the interaction term 

USERVAL
R
SQit*WEEKLYVARIETYt (γ6) in all categories are significantly positive, which implies a significant 

interaction effect between valence of user reviews and product variety. However, when we look into the coefficient 

on USERVAL
R

it (γ2), except in category of Download Managers, all other three categories have insignificant 

estimates. The discussion in model development section has pointed out that other omitted moderators could 

confound this estimation, which would be addressed in the following hierarchical moderation model. As a result, the 

online WOM effect is improperly estimated as (γ5+γ6*WEEKLYVARIETYt)*USERVAL
R
SQit. The impact of 1-star 

user reviews is not only of the same magnitude but also of the same sign as the impact of 5-star reviews in these 

three categories. It is obviously misleading to infer based on the insignificance of γ2 that negative user reviews 

benefit download as much as positive user reviews do.  

  Table 1. Estimation Results of Baseline Model  

 M SD M SD M SD M SD 

 Digital Media Player Download Manager File Compression MP3 Finder 

Software Download Model 

USERVALR
it (γ2) -0.0104 0.019 0.143 0.023 0.005 0.027 0.046 0.049 

WEEKLYVARIETYt (γ4) 0.003 0.0001 0.006 0.0002 0.006 0.0004 0.023 0.001 

USERVAL RSQit (γ5) -0.273 0.011 -0.150 0.012 -0.286 0.016 -0.262 0.025 

INTERACTION TERM (γ6) 0.001  0.0001  0.001 0.00003 0.002 0.0001 0.004 0.0002 

DIC -774.094  1443.640 334.578 1357.110 

Note that for all estimation results listed in Tables 1~4, boldface type indicates the significance of estimators, namely the 95% posterior credible 

interval does not cover zero.  

Hierarchical Moderation Model 

We report the empirical results from our hierarchical moderation model in Table 2. The most obvious difference 

between the results of baseline model and hierarchical moderation model is that the coefficients on USERVAL
R

it (β2) 

in hierarchical moderation model become significant in all categories, which are insignificant in most categories in 

baseline model. The impacts of positive and negative user reviews on software download are thus shown to be 

significantly distinct in both magnitude and sign. We also compare the frequency estimations between baseline 

model and hierarchical moderation model. It is not surprising to see the similar difference for coefficients on 

USERVAL
R

it from the frequency results comparison, given the uninformative priors used in the original Bayesian 

estimations. This change in significance confirms our concern about the existence of omitted moderators other than 

product variety, which would result in the endogeneity problem if tested by a conventional moderation modeling 

approach, no matter either of Bayesian or frequency framework is applied. Hence, this result empirically 

demonstrates the advantage of employing a hierarchical structure to model the moderation effect over the 

conventional approach, together with its theoretical superiority we have argued in model development section. 

Additionally, we also try to allow β2 also random over time and regress it on product variety in a similar way as we 

deal with β3
t
. Yet the coefficients on its lower level model are both insignificant in all categories, which suggests 

that the moderation effect of product variety is nonlinear, being consistent with Zhou and Duan’s finding (2009). 

Therefore, it is reasonable to only allow coefficients on USERVAL
R
SQit (β3

t
) random over weeks in our hierarchical 

moderation model in order to capture the nonlinear moderation effect of product variety on the impact of user 

reviews. We find that β3
t
 are mostly significant over 26 weeks

1
. Thus the impact of user reviews on software 

download is significant and time-variant, measured by β2*USERVAL
R

it+β3
t
*USERVAL

R
SQit. Results from lower 

                                                           

1 The plot of β3
t over weeks in each category for hierarchical moderation model is available upon request.  
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level equation suggest that this variation over time is mainly caused by product variety. α2
3
, the coefficient on 

product variety in lower level model to explain β3
t
, is significantly positive, which implies the nonlinear moderation 

effect of product variety on the impact of user reviews on software download. 

Table 2. Estimation Results of Hierarchical Moderation Model 

 M SD M SD M SD M SD 

 Digital Media Player Download Manager File Compression MP3 Finder 

Software Download Model 

USERVALR
it (β2) 0.237 0.015 0.078 0.014 0.236 0.017 0.095 0.023 

Lower Level Model 

α1
1 

2.141 0.256 4.224 0.153 2.828 0.215 3.404 0.264 INTERCEPT 

α1
3 

-0.127 0.059 -0.194 0.044 -0.151 0.061 -0.219 0.064 

α2
1 0.004 0.001 0.006 0.001 0.006 0.001 0.023 0.003 WEEKLYVARIETYt 

α2
3 0.0005 0.0001 0.001 0.0002 0.001 0.0003 0.003 0.001 

DIC 20420.800 7983.740 7391.270 4103.110 

Bayesian Mediation Analysis 

Given the satisfactory performance of the above hierarchical moderation model to test the moderation effect of 

product variety, we further investigate the mediation process from professional review to software download 

through volume of user reviews.   

For the sake of limited space, we do not report the estimation results of our first-step model, which are available 

upon request. We observe that the coefficient on PRODit*PROVALit (β5) is significant in each category, indicating a 

significant impact of valence of professional reviews on software download. The coefficient on PRODit (β4) is also 

significant in each category. The impact of whether the product receives professional reviews is then measured by 

β4+β5*PROVALit. We conduct a series of estimations for this term at each possible value of PROVALit, i.e. 0.5, 1,…, 

4.5, 5. Most of them are shown significant with negative/positive values, implying the negative/positive impact of 

receiving very negative/positive professional reviews on download. These tests establish a significant relationship 

between professional reviews and software download. We thus are able to step forward to test our final model, 

whose results are shown in Table 3. 

As we briefly mentioned beforehand, Bayesian framework has an advantage of computing the standard error of a 

mediation effect through MCMC sampling method. For example, in this model, the indirect impact of valence of 

professional reviews is measured by λ3*β6. In a frequency framework, it is difficult to estimate its standard error in a 

small sample, as the distribution that a product of two normally distributed statistics follows is unknown. And using 

the asymptotic estimator of this standard error requires a large sample (MacKinnon et al. 2007). Yet, MCMC 

method simply calculates a product of λ3 and β6 from their each draws, which produces a sample of a new quantity: 

λ3*β6. The standard error of λ3*β6 is thus easily computed. MCMC sampling method has no requirement for sample 

size, which makes Bayesian mediation analysis especially fit small sample size problem, as the case of category of 

MP3 Finders with less than 100 weekly products in our study. In addition, this MCMC sampling method also 

facilitates our estimation involved with any combination of estimators, i.e., the way we estimate impact of receiving 

professional reviews in the above first-step model. 

We first check the estimated coefficients related with the mediation process described as three paths in Figure 1. In 

software download model, the coefficient on USERVOLit (β6) is significantly positive in each category, indicating 

the positive impact of volume of online user reviews on software download, which explains path b in Figure 1. This 

result is consistent with previous studies’ findings (Duan et al. 2008; Liu 2006). The coefficients on PRODit (β4) and 

PRODit*PROVALit (β5) are significant for each category, the latter of which denotes a positive direct impact of 

valence of professional reviews on software download. Similarly as the analysis for first-step model, to infer the 

direct impact of whether receiving professional reviews on download captured by β4+β5*PROVALit, we present a 

series of estimations for this term at each possible value of PROVALit, i.e. 0.5, 1,…, 4.5, 5, by a series of box plots 
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shown in Figure 2. In each category, receiving negative professional reviews results in less download directly while 

receiving very positive professional reviews leads to more download directly. The path c in Figure 1 is thus verified.  
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Figure 2. Direct Impact of Receiving Professional Reviews 

Note: that for all box plots in Figures 2~5, the middle line denotes the mean. The vertical 

length denotes the 95% posterior credible interval. 

Table 3. Estimation Results of Final Model  

 M SD M SD M SD M SD 

 Digital Media 

Player 

Download 

Manager 

File 

Compression 

MP3 Finder 

Software Download Model 

USERVALR
it (β2) 0.181 0.014 0.051 0.012 0.172 0.012 0.066 0.021 

USERVOLit (β6) 0.0003 0.00002 0.003 0.0001 0.004 0.0001 0.0002 0.00001 

PRODit (β4) -0.848 0.074 -0.227 0.064 -0.023 0.065 -0.885 0.145 

PRODit * PRODVALit (β5) 0.382 0.020 0.052 0.018 0.054 0.018 0.392 0.044 

Lower Level Model 

α1
1 

2.505 0.278 5.001 0.140 4.713 0.153 4.407 0.255 INTERCEPT 

α1
3 

-0.141 0.029 -0.225 0.021 -0.239 0.034 -0.267 0.039 

α2
1 0.004 0.001 0.006 0.001 0.006 0.001 0.023 0.003 WEEKLYVARIETYt 

α2
3 0.0004 0.0001 0.001 0.0001 0.002 0.0001 0.004 0.0004 

Volume of User Reviews Model 

PRODit (λ2) 21.550 9.415 -25.050 7.914 -

89.800 

8.137 18.450 9.805 

PRODit * PRODVALit (λ3) 32.560 3.661 10.860 2.289 42.420 2.284 71.280 8.912 

         

Indirect Impact of Professional Ratings 

(λ3*β6) 

0.009 0.001 0.031 0.007 0.189 0.011 0.016 0.002 

Total Impact of Professional Ratings 

(β5+λ3*β6) 

0.391 0.020 0.083 0.019 0.242 0.020 0.408 0.044 

DIC 184349.000 72083.400 58031.000 42326.100 

Digital Media Player Download Manager 

File Compression MP3 Finder 
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In the model of volume of user reviews, the coefficients on PRODit*PROVALit (λ3) are significant for all four 

categories, which denotes a significantly positive impact of valence of professional reviews on volume of user 

reviews, indicated by path a in Figure 1. Mediated by volume of user reviews through path b, the indirect impact of 

valence of professional reviews on download (λ3*β6) is shown to be significantly positive as well. The coefficients 

on PRODit (λ2) are significant for all categories other than MP3 Finder. Yet to claim the significance of mediated 

impact of whether receiving professional reviews on software download, we need to consider this term: 

(λ2+λ3*PROVALit)*β6. Similarly as what we did to show the direct impact, we also present a series of estimations 

for this term in Figure 3. Being consistent with its direct impact, in categories of Download Manager and File 

Compression, receiving very negative professional reviews has a negative indirect impact on software download 

through volume of user reviews while receiving very positive professional reviews has a positive indirect impact. 

However, in other two categories, we find that receiving professional reviews always indirectly increases software 

download through its positive impact on volume of user reviews regardless of the level of valence. 
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Figure 3. Indirect Impact of Receiving Professional Reviews 
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Figure 4. Total Impact of Receiving Professional Reviews 

We then investigate the total impacts of both valence of professional reviews and the existence of professional 

reviews. The former is shown to be significantly positive, indicated by β5+λ3*β6. The total impact of whether 

receiving professional reviews is simply the summation of its direct and indirect impacts, measured by 

β4+β5*PROVALit+(λ2+λ3*PROVALit)*β6. After a rearrangement, this term becomes 

β4+λ2*β6+(β5+λ3*β6)*PROVALit. For a better illustration, we report this impact in Figure 4 by a similar manner as 

Digital Media Player Download Manager 

File Compression MP3 Finder 

Digital Media Player Download Manager 

File Compression MP3 Finder 
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we presented its direct/indirect impact. The inference is very similar to that of its direct impact. For example, in 

category of Digital Media Player, receiving professional reviews with valence lower than 2.5 leads to decreased 

software download. Only receiving professional reviews with valence higher or equal to 2.5 can result in more 

download. 

The estimations related to valence of online user reviews are similar to those from previous hierarchical moderation 

model. In each category, the coefficient on USERVAL
R

it (β2) is significantly positive, which suggests a difference in 

sign between the impacts of positive and negative reviews on download. As expected, most of the coefficients on 

USERVAL
R
SQit (β3

t
) are significant over the data collection period as shown in Figure 5, which plots β3

t
 by each 

week. This finding shows that the impact of user reviews denoted by β2*USERVAL
R

it+β3
t
*USERVAL

R
SQit varies 

over weeks. The time variant part of this impact, β3
t
, is explained by our lower level model, 

α1
3
+α2

3
*WEEKLYVARIETYt+δ3

t
. We find that in each category α2

3
 is significant, indicating the nonlinear 

moderation effect of product variety on the impact of user reviews on software download. In other words, the 

variation of the impact of user reviews is mainly caused by the change in product variety over time. The increase in 

product variety enforces the impact of positive user reviews on download, while diminishing the impact of negative 

user reviews. For example, in category of MP3 Finder, the expected value of β3
t
 can be explained as -

0.267+0.004*WEEKLYVARIETYt, which implies that the addition of one more software program would change the 

impact of use reviews on software download by 0.004*USERVAL
R
SQit. Thus this change in the impact of user 

reviews caused by product variety also varies over different valence levels of user reviews. The higher/lower the 

positive/negative ratings are, the more their impact on software download increases/decreases due to the increase in 

product variety.  
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Figure 5. Box Plots for Coefficients on USERVAL
R
SQit (ββββ3

t
) 

It is also interesting to notice the possible existence of product variety threshold because of the opposite signs of 

estimated coefficients on USERVALRSQit (β3
t
) over weeks. Estimated β3

t
 are positive over most weeks of our study 

period but are negative for other weeks as shown in Figure 5 in each category. The lower level model provides a 

technical explanation that there may exist a switching point of product variety beyond which β3
t
 turns positive from 

negative, given the different signs of α1
3
 and α2

3
. We name this switching point as product variety threshold 

estimated by (-1)*(α1
3
/α2

3
), which is shown in Table 4. As a result, product variety larger than the threshold would 

result in positive β3
t
. This suggests that the moderation effect of product variety above threshold strengthens the 

impact of positive user reviews and weakens the impact of negative user reviews to such a degree that 5-star positive 

user reviews benefit download more than 1-star negative reviews hurt download. However when product variety is 

lower than this threshold, β3
t
 is expected to turn negative. For example, in category of Digital Media Player, on 19

th
 

and 22
nd

 weeks, β3
t
 are exceptionally negative due to the much lower product variety during these two weeks than 

the threshold  316. In these two weeks, the amount of which 1-star user reviews lead to less software download is 

significantly larger than the increased number of download by receiving 5-star user review by 8*β3
t
. This is 

consistent with conclusions from the earlier study conducted by Chevalier and Mayzlin (2006).  

Digital Media Player Download Manager 

File Compression MP3 Finder 
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Table 4. Estimated Product Variety Threshold  

 M SD M SD M SD M SD 

 Digital Media Player Download Manager File Compression MP3 Finder 

THRESOLD ((-1)*(α1
3/α2

3)) 316 24.21 191 5.117 139 5.757 72 3.356 

We also make a comparison of magnitudes between the impacts of professional reviews and user reviews. We find 

that valence of professional reviews ((β5+λ3*β6)*PRODVALit) is more influential than valence of positive user 

reviews (β2*USERVAL
R

it+β3
t
*USERVAL

R
SQit) in each category only when product variety is below threshold to 

result in negative β3
t
, because of the larger value of (β5+λ3*β6) than β2. In parallel with this, the valence of 

professional reviews is more influential than valence of negative user reviews only when product variety is above 

threshold for positive β3
t
. Yet, since the impact of user reviews is moderated by product variety, the comparison 

between the impacts of professional reviews and positive/negative user reviews under situations with product variety 

above/below threshold is indefinite and much more complex. This is in contrast to findings of Amblee and Bui’s 

(2007) study. They regress user choices on both professional reviews and user reviews independently, which only 

captures the direct impact of professional reviews without investigating the indirect impact of professional reviews 

on user choices through volume of user reviews. Our results show that total impact of valence of professional 

reviews (β5+λ3*β6) is larger than its direct impact (β5) given the positive values of λ3 and β6. For example, in 

category of File Compression, the direct impact only accounts for its total impact by 22.31%. Thus the estimated 

impact of professional reviews in Amblee and Bui’s (2007) study is very likely underestimated. 

Conclusions, Discussions and Future Works    

We develop a Bayesian analysis of mediation and moderation effects embedded within a hierarchical structure to 

investigate how online user reviews and professional reviews jointly influence software download. For user-

generated online WOM information, we look into two attributes: valence and volume of online user reviews, which 

are both shown to significantly influence users’ decision-making. In terms of valence of online user reviews, we find 

that product variety moderates the impact of online user reviews on software download, which results in the time 

variation of this impact. The way consumers react to user ratings depends on how many product choices are 

available at some time. The increase in product variety enhances the impact of positive user reviews while reducing 

that of negative user reviews. Consumers tend to get persuaded easier/harder by the positive/negative user reviews 

as a response to a surge in product variety. In addition, the moderation effect of product variety also infers a possible 

existence of product variety threshold, which is specific to product category, being consistent with Zhou and Duan’s 

finding (2009). In a market with product variety below threshold, the impact of 1-star user reviews is more 

significant than the impact of 5-star reviews, which echoes the findings of Chevalier and Mayzlin (2006). On the 

contrary, in a given product category, 5-star user reviews would benefit download more than 1-star reviews hurt 

download in a market with abundant products more than threshold level, all else being equal. 

In terms of volume of user reviews, consumers prefer products with more user reviews, which is also consistent with 

results from previous studies (Duan et al. 2008; Liu 2006). This finding reinforces the emphases that volume of 

online user reviews has received in academic research regarding consumer decision-making of online shopping and 

supports the practice of encouraging active online user-generated WOM interactions.  

Yet, we find that volume of online user reviews also mediates the impact of professional reviews on software 

download. As a mediator, volume of user reviews magnifies the impacts of both whether receiving professional 

reviews and valence of professional reviews, via its positive impact on software download. The results from our 

mediation analysis indicate that consumers do care about whether professionals pick the product to review and the 

evaluations from them. Consumers are more interested in writing reviews for products with more positive 

professional reviews, which then leads to more download indirectly. The direct impact of valence of professional 

reviews on software download is also positive. Thus, overall higher valence of professional reviews is always 

helpful in promoting download among products reviewed by professionals. However, compared with products not 

reviewed by professionals, those with very negative professional reviews are receiving less download. Although 

receiving negative professional reviews may still attract more consumers to write their own reviews, its total impact 

on software download is negative due to the strong adverse direct impact.  



 Zhou & Duan / Online User Reviews and Professional Reviews 

 Thirty First International Conference on Information Systems, St. Louis 2010 15 

This identified mediation process, through which user reviews and professional reviews influence user choices, is an 

important finding for practitioners. Professional reviews and user reviews are shown to influence users’ decisions in 

different manners, which makes consumers get more informed by learning from and integrating these two distinct 

sources of WOM information. Hence our findings recommend that both user-generated and professional reviews 

should be provided on a single e-commerce platform. Being forced to seek across websites for these two kinds of 

reviews would inevitably increase consumer search costs and discourage their purchases. Moreover, marketers are 

suggested to utilize both user and professional reviews for predicting a product’s performance. It is sometimes 

difficult to obtain actual sale and transaction data. Accurate predictions of user choices then become important for 

firms’ marketing and R&D strategies. Since volume of user review only partially mediates the impact of 

professional reviews, the information of online user reviews alone is not sufficient to obtain an accurate prediction 

of a product’s performance.  

Our paper also generates new insights on reconciling the divergent findings of digital WOM effect in literature. 

First, one possible source for the mixed conclusions regarding the impact of valence of online user reviews could be 

the omission of the moderation effect of situational variables, which may vary across contexts. The conventional 

moderation modeling approach is to include interaction terms between user reviews and identified moderators in 

explaining user choices. However, our empirical comparison between the baseline model and hierarchical 

moderation model shows a nontrivial likelihood that other omitted moderators exist in addition to product variety, 

the identified moderator in our study. Therefore, the estimation could still be biased even after modeling the 

moderation effects of interested factors through the conventional moderation modeling approach, which may infer 

misleading conclusions about impact of valence of online user reviews.  

Second, our results contribute to the understanding of the explanatory power of the impact of online user reviews 

and professional reviews. Amblee and Bui (2007) find that impact of user reviews and professional reviews are at 

the same magnitude level by modeling them independently. Our study demonstrates the potentially underestimated 

impact of professional reviews due to lack of recognizing the mediation process. The direct impact of professional 

reviews, which is mistakenly treated as the total impact in their study, is shown to be smaller than the actual total 

impact for all categories in our study. The results from our Bayesian mediation analysis imply that overall the 

impact of valence of professional reviews is more significant than the impact of valence of positive/negative user 

reviews for sure only when product variety is below/above threshold.  

Third, our findings also contribute to the debate about whether professional reviews are predictors or influencers of 

user choices. Eliashberg and Shugan (1997) find that professional reviews are predictors instead of influencers. Yet 

Basuroy et al. (2003) argue that professional reviews are both predictors and influencers of box office revenue. In 

support of their finding, our results imply that product category could be the reason to cause the disagreement in this 

debate. Professional reviews function as opinion leaders in terms of their direct impact on user choices and as 

predictors in terms of their indirect impact on user choices through volume of user reviews. We find that the 

comparison result between these two influence and prediction effects is indefinite, depending on product category. 

In other words, in some category, the prediction effect dominates influence effect, which could be the case as 

Eliashberg and Shugan’s study (1997), or vice versa for other categories.  

This study can be extended in several directions. We empirically find that for some categories receiving professional 

reviews always attracts more user reviews while for other categories receiving very negative professional reviews 

decreases the volume of user reviews. It would be interesting to take a deeper look at the role product category plays 

in the relationship between receiving professional reviews and volume of user reviews. Our results also imply that 

the impact of online user reviews could be moderated by situational variables other than product variety. Future 

research could thus test whether this claim is empirically supported in a specific context with other interesting 

moderators available. Finally, recent studies point out that the impact of online user reviews on sales diminishes 

over time because of the early reviews’ positive self-selected bias (Li and Hitt 2008). It is thus interesting to 

examine whether this self-selected bias of user reviews is still significantly positive after controlling for the 

fluctuation of product variety or other moderators over time. 
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