
Association for Information Systems
AIS Electronic Library (AISeL)

ICIS 2010 Proceedings International Conference on Information Systems
(ICIS)

2010

LEARNING-BY-DOING AND PROJECT
CHOICE: A DYNAMIC STRUCTURAL
MODEL OF CROWDSOURCING
Nikolay Archak
New York University, narchak@stern.nyu.edu

Anindya Ghose
New York University, aghose@stern.nyu.edu

Follow this and additional works at: http://aisel.aisnet.org/icis2010_submissions

This material is brought to you by the International Conference on Information Systems (ICIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ICIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Archak, Nikolay and Ghose, Anindya, "LEARNING-BY-DOING AND PROJECT CHOICE: A DYNAMIC STRUCTURAL
MODEL OF CROWDSOURCING" (2010). ICIS 2010 Proceedings. 239.
http://aisel.aisnet.org/icis2010_submissions/239

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301349839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Ficis2010_submissions%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2010_submissions?utm_source=aisel.aisnet.org%2Ficis2010_submissions%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2010_submissions%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis?utm_source=aisel.aisnet.org%2Ficis2010_submissions%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2010_submissions?utm_source=aisel.aisnet.org%2Ficis2010_submissions%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/icis2010_submissions/239?utm_source=aisel.aisnet.org%2Ficis2010_submissions%2F239&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Thirty First International Conference on Information Systems, St. Louis 2010 1

LEARNING-BY-DOING AND PROJECT CHOICE: A

DYNAMIC STRUCTURAL MODEL OF CROWDSOURCING
Research-in-Progress

Nikolay Archak
Information, Operations and Management

Sciences Department,
New York University,

Leonard N. Stern School of Business
narchak@stern.nyu.edu

Anindya Ghose
Information, Operations and Management

Sciences Department,
New York University,

Leonard N. Stern School of Business
aghose@stern.nyu.edu

Abstract

This paper studies determinants of project choice in online crowdsourcing contests using a unique

dataset from the world’s largest competitive software development portal. Particular attention is

given to the strategic roles of learning and forward-looking behavior in influencing contestants’

decisions. We use a structural dynamic discrete programming (DDP) model to conduct our

analysis and adopt a Bayesian approach to estimation. Our preliminary results provide evidence

of learning-by-doing influencing propensities of users to choose projects of different types. The

value of the parameter of intertemporal substitution that we identify suggests that while users are

forward-looking, the aggregate behavior is far from fully rational. We attribute that result to mix

of forward-looking and myopic users in the population.

Keywords: contest, crowdsourcing, discrete choice, learning, Bayesian estimation

Track Title

2 Thirty First International Conference on Information Systems, St. Louis 2010

Introduction

The term crowdsourcing describes a new Web-based business model that harnesses creativity of a distributed
network of individuals through what amounts to an open call for proposals (Howe, 2006). In other words, an
individual or a firm posts a problem online, a vast number of individuals offer solutions to the problem, the winning
ideas are awarded some form of a bounty, and the company mass produces the idea for its own gain (Brabham,
2008). A specific form of crowdsourcing occurs in the form of contest for software innovation and development. In
fact, online contests for open innovation – seekers posting innovation projects to which solvers submit solutions –
have been developed into a new online commerce model. By taking advantage of the Internet, open innovation
seekers can reach large pool of potential solvers with low cost and possibly better solutions. The potential seeker
could be an individual, or a firm.

The mass media has had extensive coverage of this phenomenon in an enthusiastic manner. Empirical studies of
crowdsourcing sites are however lacking and hence, little is known about the success of real-world markets for
expertise. This paper presents one such study. It analyzes use of a crowdsourcing site, TopCoder.com, which is the
world’s largest competitive software development portal, wherein software buyers offer monetary payments to
software sellers for solutions to problems. More specifically, we aim to examine if there is any evidence of learning
dynamics exhibited by software programmers in such crowdsourcing contests. Towards this objective, we build on
the emerging literature on learning and estimate a theory-based dynamic structural model.

Models of consumer learning about product quality are ubiquitous in the empirical marketing literature. It is now
widely acknowledged that consumers can be strategic and forward-looking in their choices of experience and
credence goods, thus choosing the product not only based on the current period utility level, but also taking into
account the informational gain obtained from learning the new product qualities (Ching and Ishihara, 2007;
Crawford and Shum, 2005, Erdem et al., 2005; 2008, Mehta et al., 2008). Relatively far less attention has been paid
to the strategic implications of learning for occupational choice in general and project choice in particular. This topic
seems to be of increasing significance nowadays, considering the trend of ubiquity in job specialization. For
example, while at a high level software engineering can be thought of as a single occupation, at the micro level it
can be decomposed into numerous specializations, ranging from the web development to the database management
to the mobile phone application development and programming, and so on. Each requires its own specific
knowledge and skills. Given this, it is plausible to assume that an unemployed individual choosing between
potential employers or an employed individual choosing between new projects to participate in (up to the extent of
such choice allowed by the employer) can base the decision not only on the best match with the current set of skills,
but also on the potential usefulness of the additional skills that can be obtained in the process of employment. For
example, software engineers with significant prior experience with Java programming language but little experience
with C++ will have higher myopic incentives to perform Java projects (due to the better expected performance and
decreased costs) but also a forward-looking incentive to engage in more C++ projects (to better learn C++).
Understanding the extent of such strategic considerations can have important implications in many marketing areas.
Examples include project management and salesforce management, given the recent evidence that learning-by-doing
plays an important role in a salesperson’s performance (Lu and Voola, 2009).

Research Setting: Simultaneous Crowdsourcing Contests on TopCoder.com

Empirical estimation of learning-by-doing models in a discrete choice setting is challenging, with the major
complication being the unobservability of the full choice set of an individual. In this paper, we consider a unique
setting of the online crowdsourcing contests in which this problem is largely resolved due to the constraints imposed
by the environment. Our data comes from TopCoder, the world’s largest competitive software development portal.

TopCoder.com is a website managed by the namesake company. The company hosts weekly online algorithm
competitions as well as weekly competitions in software design and software development. The work in design and
development produces useful software, which is licensed for profit by TopCoder. As of July 23, 2008 163,351
people have registered at the TopCoder website. 17.3% of those registered have participated in at least one

 Author1 Lastname & Author 2 Last name (or Author1 Last name et. al.) / Short Title up to 8 words

 Thirty First International Conference on Information Systems, St. Louis 2010 3

Algorithm competition, 0.3% in Design, 0.7% in Development1. We are particularly interested in Design and
Development competitions as they have tangible payments to competitors.

The business model underlying software Design and Development competitions is briefly summarized below.
TopCoder produces software applications for major clients. It interacts directly with the client company to establish
application requirements, deadlines, budget etc. Once the application requirements are defined, the application goes
to the Architecture phase, where it is split into a set of components. Each component is supposed to have a relatively
small scope and precise set of technical requirements defining the expected component behavior and interface for
interacting with other components. For instance, an “Address Book” component can be required to implement
certain address management functionality, moreover, it should be written in Java and provide a Web service
interface. The set of requirements to each component is summarized in a single document (Requirements
Specification) and posted on the website as a single Design competition. Any registered member of the website
satisfying minimum legal requirements can submit a UML design to any posted design competition. Winning design
submission goes as input into the Development competition, which has similar structure, only the competitors are
required to submit actual code implementing the provided UML design. Output from Development competitions is
assembled together into a single application, which is later delivered to the customer.

Design and Development competitions are posted on TopCoder website on a weekly basis, Illustation 1 shows a
sample list of weekly Development competitions. Every competition has a deadline by which all solutions must be
submitted, it is usually within five to seven day interval after the competition posting date. It also has a monetary
prize that is given to the competition winner and 50% of this amount is given to the first runner-up.

Important component of the Design and Development process is its scoring and review system. Once the submission
deadline has passed, all submissions enter the review phase. Each submission is graded by three reviewers according
to the specified scorecard on dimensions varying from technical submission correctness and clarity of
documentation to flexibility and extendability of the solution.

After the review process is complete, submissions enter the appeals phase where the competitors get a chance to
appeal the decisions made by the reviewers. Once all appeals have been resolved, the placement is determined by
the average score across all three reviewers. A sample of results is shown in Illustration 2.

TopCoder implements policy of maximum observability2. At first, competitors can always observe identities of their
opponents, i.e., other members registered for the same contest. Moreover, for every member TopCoder tracks all
prior competition history and summarizes it in a single rating number3. The rating is provided for members who
have submitted at least one solution in some contest. It is calculated via a relatively complex formula taking into

1http://en.wikipedia.org/wiki/TopCoder

2One important exception from this rule is that contestants cannot see scores given by the reviewers to their
opponents until after the appeals phase is over.

3Ratings are different for every competition track. Thus, an individual participating in both Design and Development
competitions will have two different ratings - one for Design and one for Development.

Illustration 1: Sample List of Weekly Contests

Track Title

4 Thirty First International Conference on Information Systems, St. Louis 2010

account all prior submission history of the contestant and relative performance compared to other contestants4.
Fortunately, the exact formula for calculating the rating value is not important, as, in fact, even more information is
available for each rated competitor, including all prior competition history. This information can be revealed by
clicking on the member's handle. Thus, we will simply think of ratings as proxies for the coder's performance so far:
the better the coder performed in the past, the higher the rating will be, and more recent performance will have
higher effect on the current rating.

Our goal is to capture how the following three factors influence project choice for software programmers in the
online crowdsourcing contests: (i) monetary payment from each project, (ii) reputation rating from prior projects,
and (iii) learning a particular set of skills from different projects. Two parameters are directly observable: (i)
monetary payment (since we see the project payment for every project), and (ii) reputation rating. However, skills
are not directly observable. Instead we assume a common multivariate normal prior on the initial skills of every
coder.

Anecdotal Evidence of Forward-Looking Behavior and Learning Dynamics on

TopCoder.com

Structural models of user behavior are always as good as the assumptions they rest upon. Before we proceed with
describing our own structural model of project choice, we should at least demonstrate face validity of the basic
assumptions that we make. In particular, we assume that (i) participation in software projects related to a particular
technology, improves future users productivity in similar types of projects (learning-by-doing) and (ii) contestants
are forward-looking and take into attention potential impact of new skills they learn on their future performance.
The first assumption is widely adopted in the engineering community to the extent that it shifted the teaching
paradigm for many engineering classes towards teaching software engineering by doing or “immersion” (Carlson
and Sullivan, 1999; Riboud and Saliou, 2003). Next, we provide anecdotal evidence in favor of the second
assumption. The evidence is taken from the Software Competition Discussion Roundtables (forums) run by
TopCoder. These forums provide opportunity for the designers and developers to interact with each other and
TopCoder representatives and discuss generic topics related to the evolution of the contest platform. Manual
inspection of the forum content revealed numerous topics exposing forward-looking concerns of the contestants.

Below we give two examples that we consider illuminating. In the first example, a user interested in a particular
technology (Flex), asks whether more projects of that type will soon be available.

<user>: I don't see any Flex component in upcoming project page. Is Calendar application is only Flex project? Or

some applications are going to be in near future?

<admin>: There will be other Flex components coming, but I do not know of any more for at least the next 2-3

weeks.

4Detailed description of the rating system can be found at
http://www.topcoder.com/wiki/display/tc/Component+Development+Ratings

Illustration 2: Sample Details for a Development Contest

 Author1 Lastname & Author 2 Last name (or Author1 Last name et. al.) / Short Title up to 8 words

 Thirty First International Conference on Information Systems, St. Louis 2010 5

In the second example, a newbie user asks what technologies would be useful to know in order to compete
successfully in TopCoder

<user> Hi, I want to participate in TC development competitions. But it looks like one has to learn some

technologies like JPA, EJB 3, Hibernate. So I have some questions: 1) If somebody can tell that which technologies

like these are common and occur frequently as requirement for TC development then it would be great…

In fact, TopCoder recognized strong forward-looking aspects of user behavior in software design and development
contests and have introduced the upcoming contests page listing the basic information (such as language platform
and dependencies) for the contests that are likely to be posted in the nearest future. The upcoming contest page was
introduced only recently and so it is not covered by the time range of our dataset and therefore it is not represented
in our structural model.

Dataset

We obtained historical contest data from the TopCoder website. The dataset included 968 Java an 542 C# contests
and covered a period of 226 weeks. The total number of different TopCoder members, who participated in at least
one of the contests in our dataset, was 1,660. Among these members, 301 individuals participated in Design
competitions only, 1,106 individuals participated in Development competitions only, and 253 participated in at least
one Design and at least one Development competition. Due to limited size of this paper, we concentrate on results
Software Design contests only. Descriptive statistics of projects are given in Table 1.

Table 1. Descriptive Statistics (Project Data)

 Java C#

 Mean St. Dev. Min Max Mean St. Dev. Min Max

Projects Per

Week

4.28 3.49 0 16 2.39 2.68 0 16

Payment

(USD)

691.06 334.77 100 2900 773.25 286.95 100 3000

Number of

Requirements

9.67 14.35 1 195 11.13 10.97 1 60

Specification

Length (in

pages)

4.79 3.22 2 43 4.55 2.48 2 21

Number of

Contestants

2.79 2.16 1 26 2.48 1.54 1 11

Note that the participation rate for every particular contest is very low: the mean number of submissions in a contest
is less than three and the median number of submissions is two. Nonetheless, TopCoder represents a classic example
of the crowdsourcing platform as the submissions come from a diverse pool of potential contestants and the
identities of individuals who will submit solutions are not fixed or known in advance.

Descriptive statistics of submissions are given in Table 2 (all variables represent coder characteristics right before
the coder submits a solution for the contest). The distribution of the number of contests per individual is heavily
skewed as evidenced by the relationship between its mean and standard deviation; while most contestants in our
sample have participated only in a couple of contests, there is also a large core of around 50 users that consistently
participate in design competitions. Our results are mostly pertinent to the behavior of individuals in the core;
removing the rest of the samples as a robustness check does not significantly affect the estimation results.

Table 2. Descriptive Statistics (Submission Data)

 Mean St. Dev. Min Max

Track Title

6 Thirty First International Conference on Information Systems, St. Louis 2010

Experience in Java

(number of contests)

23.61 37.5 0 211

Experience in C#

(number of contests)

15.08 26.58 0 123

Rating 1255.98 623 0 2794

Model

Every week there is a new set of contests posted on the website. Users can browse through requirements documents
for the posted contests and decide on the projects to choose. We will use subscript t to index weeks, subscript i to
index individuals and subscript j to index projects. In a majority (more than 90%) of all individual-week pairs in our
dataset, at most one project per week has been chosen. To simplify the modeling task significantly, we exclude the
rest of the observations, thus reducing the model to the traditional discrete choice setting.

We also emphasize that we do not model user choice between different contest types (Algorithm, Design,
Development) but only the choice of projects within a particular contest type (Design and Development). The reason
we can do that is that the contests of different types on TopCoder are neither complements nor substitutes.
Algorithm competitions tend to be of very different nature than design and development contests: they have a much
shorter time scale of less than two hours and do not generate monetary compensation for participants. Substitution
effects between Design and Development contests, although may exist, are believed to be weak due to significant
difference in the style of both contests. In our sample of 1,660 contestants, only 253 ever participated in contests of
both types. We performed additional robustness check by estimating the model with this set of individuals omitted;
the results were not significantly affected.

Finally, we model learning as happening when the user submits the project. Winning is obviously not a prerequisite
for learning to happen: users who deliver a solution and lose the contest are likely to learn as much as the user who
won it, assuming a similar amount of effort was put in the solution. While some users may complete the component
but not submit it for review, we believe that to be an extremely rare phenomenon, especially for solutions in which
the user has invested significant amount of time to learn something new. Finally, submitting the solution allows user
to get a useful feedback from the review board, providing detailed information on strengths and weaknesses of the
submission. Such feedback should greatly contribute to the overall learning experience.

Myopic Contestants

First, consider a setting with myopic users. We model user i utility from choosing alternative j in week t as

uijt = αxjt + βyijt + ui0δj0 + ui1δj1 + εijt,

where xjt represents project specific covariates (payment, number of requirements and specification length) for
project j posted in week t, yijt represents contestant specific covariates (experience with projects of the same type,
experience with projects of other type and reputation) for contestant i in week t, ui0 is a proxy for the individual's
Java skills (or preference for Java), ui1 is a proxy for the individual's C# skills (or preference for C#), δj0 is one if the
project is in Java and zero otherwise, δj1 is one if the project is in C# and zero otherwise and εijt is idiosyncratic
“love-for-variety” error term which is assumed to be i.i.d. extreme-value type I distributed. We follow a standard
convention of having an outside option (not doing any project in a particular week) with the expected utility
normalized to zero. Under these assumptions, the project choice probability is given by a standard multinomial
logistic expression:

pijt = exp(αxjt + βyit + ui0δj0 + ui1δj1)/(1 + Σkexp(αxkt + βyikt + ui0δk0 + ui1δk1)).

Furthermore, we assume that individual specific random effects ui0 and ui1 have a joint bivariate normal distribution
with means µi0 and µi1 and covariance matrix Σ.

 Author1 Lastname & Author 2 Last name (or Author1 Last name et. al.) / Short Title up to 8 words

 Thirty First International Conference on Information Systems, St. Louis 2010 7

Forward-Looking Contestants

A more advanced model of user behavior should take into account potential effects of contestant actions on
contestant specific covariates such as experience with projects of a particular type (Java/C#) and contestant’s
reputation (rating). As such covariates directly enter contestant's utility function in every period, forward-looking
contestants should choose projects taking into account not only direct utility gain in the current period but also
change in the future expected utility due to the associated change in experience and reputation:

Eutotal
ijt(scur) =maxaction Euimm

ijt(action;scur) + βdiscountΣnew state p(scur to snew | action)Eutotal
ijt(snew),

where E represents expectation across all relevant random variables, uimm
 stands for the immediate period utility

function (as in the section for myopic users), scur and snew represent the current and the new user state and p

represents the transition probability between states conditional on the action chosen by the user. Parameter βdiscount

is of particular importance as it captures the substitution effect for intertemporal consumption. An empirical estimate
of zero would indicate fully myopic users; it is generally accepted that a rational individual should have the value of

βdiscount above 0.9 (the actual value, of course, depends on the time scale chosen, which in our case is a single

week).

We employ a structural discrete choice dynamic programming (DDP) framework to conduct our analyses for
forward-looking contestants and adopt a Bayesian approach to estimation. In particular, we use the Bayesian
Dynamic Programming algorithm developed in Ching et al. (2009) which significantly speeds up the estimation of
the structural model by combining simulation steps of the MCMC algorithm and the fixed-point iteration steps of
the DP algorithm. Due to space limitations and technical complexity of the algorithm, we avoid presenting it in the
paper. Interested readers can refer to an excellent tutorial by the inventors (Ching et al., 2009) The algorithm was
implemented in C++ and its correctness was validated on a simulated dataset of two competing stores with coupon
reward programs from the tutorial paper. The estimation code is available upon request.

Identification in our model comes from the manner in which the three factors (payment, reputation and learning
opportunities) influence the coder’s decisions and how the influence changes depending on the prior history of the

Illustration 3: MCMC Results for Major Variables

Track Title

8 Thirty First International Conference on Information Systems, St. Louis 2010

coder. While value of money should be constant over time, value of additional reputation and learning opportunities
change depending on the accumulated experience and reputation. In particular, we would expect the value of
learning to decrease with experience: the more we learn, the smaller is the marginal effect of the next learning
experience. Our model assumes that coders are forward looking and solve a dynamic programming problem when
deciding on the projects to participate in and the level of effort to choose. In the DP problem, we represent the
coder’s state as the combination of the current Java skills (unobservable directly but can be proxied by the number
of performed Java projects and the initial coder skill which is a random effect) and the current C# skills (modeled
similar to Java). Note that the reputation rating and its volatility are not currently included in the state variable due to
significant increase in the size of state space associated with such inclusion. We are currently working on extension
of the model and improvements to the estimation algorithm that will allow us to do that.

Preliminary Results and Discussion

We use MCMC (Markov Chain Monte Carlo) approach for estimation, in particular, we use uninformative priors
and Metropolis-Hastings algorithm for sampling. The chain was run for 80,000 iterations and the last 40,000 were
used as a burn-in. The sample paths for major covariates are shown in Illustration 3. As the number of iterations
grows, each sample path converges to a single number representing our posterior belief about the value of the
corresponding coefficient.5

Among project covariates, the project payment and the specification length are strong negative determinants of
project choice, i.e., coders in crowdsourcing contests strongly prefer choosing simpler projects: those with shorter
requirements specification documents but also with smaller payments. We are currently working on the extension of
our model including unobservable project-specific random effects that will allow us to separate influence of the
project payment on the project choice from the unobservable project complexity. Controlling for the requirements
specification length, coders prefer contests with larger number of requirements; we suggest a plausible explanation
that among two contests with similar length of the requirements document, one having more individual requirements
is better documented and detailed and therefore is easier to deliver. Experience with the same language is not a
significant determinant of the project choice, while experience with a different language has a strong statistically and
economically significant negative effect: if a user has experience with Java, she is unlikely to pick a C# project
myopically and vice versa. Together these two estimates provides an evidence of the potential learning-by-doing
effect: as contestants accumulate experience with particular programming language, say Java, their preference for
projects in that particular language only increases. Note that this effect is not due to inherent coder preference for a
particular language (some coders may always prefer Java, others always prefer C#), as we control for individual
coder traits using coder-specific effects. We also emphasize that these coefficients capture impact of skill on the
immediate period user utility. Due to the way we constructed the structural model, they do not include the forward-

looking component represented by βdiscount.

Our estimate of βdiscount, which captures user patience for intertemporal substitution, is in the neighborhood of 0.3

and statistically significant. On one hand, that is evidence in favor of the forward-looking behavior of the users:
they, at least partially, take into account impact of skills they can learn now on their future performance. On the
other hand, the coefficient is far from what a fully rational model of behavior would suggest. Essentially, it
translates $500 a week later to just a $150 today. One plausible explanation for the magnitude of the effect is the
potential heterogeneity of our user base. It may as well be that we have about 30% of rational and 70% of myopic

users in population, which theoretically can translate into a downward biased estimate for βdiscount from the pooled

model. We consider investigating this question as an interesting direction for further research.

Finally, reputation is a negative determinant of project choice: as coders accumulate more reputation, they tend to
become less active. We are currently looking into potential explanations for this effect.

5 Strictly speaking, Bayesian learning in general and MCMC in particular never give a single number as the estimate
but rather the whole distribution of posterior beliefs about the parameter of interest. In our case, the dataset size is
large enough so that the posterior distribution is heavily clustered around a single mode.

 Author1 Lastname & Author 2 Last name (or Author1 Last name et. al.) / Short Title up to 8 words

 Thirty First International Conference on Information Systems, St. Louis 2010 9

Conclusion

Our preliminary analyses provide evidence of learning through users switching propensities across different projects
available to them. This helps us capture users’ dynamic learning behavior in a project management setting. We are
currently working on a number of policy simulations and counter-factual experiments based on our empirical
estimates.

We would like to conclude with the observation that the strategic learning-by-doing considerations generalize far
beyond the crowdsourcing platforms. In particular, advertisers in the sponsored search setting face similar
exploration-exploitation trade-off: while gathering information about the click-through rates of particular slots, they
may loose revenue, but the obtained information may be used to improve their future bidding strategies. Other
instances of learning-by-doing occur in the management and IT consulting industry as well wherein consultants
often make a choice between which projects to chose for their next assignment based on the potential learning that
can be accrued from their participation in a given project. Our theoretical and empirical modeling approach will thus
provide a robust and general framework that can be applied towards enhancing our understanding of learning
dynamics of employees in other industries as well.

References

Carlson, Lawrence E., Jacquelyn F. Sullivan. "Hands-on Engineering: Learning by Doing in the Integrated
Teaching and Learning Program," International Journal of Engineering Education (15:1), 1999, pp. 20-31.

Ching, Andrew, Susumu Imai, Masakazu Ishihara, Neelam Jain. "A Guide to Bayesian Estimation of Dynamic
Discrete Choice Models with an Application to a Store-Level Reward Problem," Working Paper, 2009,
Available at SSRN: http://ssrn.com/abstract=1398444.

Ching, Andrew, Masakazu Ishihara. "The effects of detailing on prescribing decisions under quality uncertainty,"
Working Paper, 2007, Available at SSRN: http://ssrn.com/abstract=1010179.

Crawford, Gregory S., Matthew Shum. "Uncertainty and Learning in Pharmaceutical Demand," Econometrica
(73:4), 2005, pp. 1137-1173.

Erdem, Tulin, Michael Keane, T. Oncu, Judi Strebel. “Learning about computers: An analysis of information search
and technology choice”, Quantitative Marketing and Economics (3:3), 2005, pp. 207-247.

Erdem, Tulin, Michael Keane, Baohong Sun. “A Dynamic Model of Brand Choice When Price and Advertising
Signal Product Quality”, Marketing Science (27:6), 2008, pp. 1111-1125.

Howe, J. "The rise of crowdsourcing," Wired Magazine, 2006, Available at
http://www.wired.com/wired/archive/14.06/crowds_pr.html

Huberman, B., D. Romero, F. Wu, “Crowdsourcing, attention and productivity,” Working Paper, 2008, Available at
SSRN: http://ssrn.com/abstract=1266996.

Ching, Andrew, Susumu Imai, Neelam Jain. “Bayesian Estimation of Dynamic Discrete Choice Models”,
Econometrica (77:6), 2009, pp. 1865-1899.

Lu, Q, R Voola. “Investigating salespeople's learning by doing in a Bayesian learning structural framework”,
Marketing Dynamics Conference, 2009.

Mehta, Nitin, Xinlei Chen, Om Narasimhan. “Informing, transforming and persuading: Disentangling the multiple
effects of advertising on brand choice decisions”, Marketing Science (27:3), 2008, pp. 334-355.

Ribaud, Vincent, Philippe Saliou. “Software engineering apprenticeship by immersion”, International Workshop on

Patterns in Teaching Software Development, 2003.

http://ssrn.com/abstract=1398444
http://ssrn.com/abstract=1010179
http://www.wired.com/wired/archive/14.06/crowds_pr.html
http://ssrn.com/abstract=1266996

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2010

	LEARNING-BY-DOING AND PROJECT CHOICE: A DYNAMIC STRUCTURAL MODEL OF CROWDSOURCING
	Nikolay Archak
	Anindya Ghose
	Recommended Citation

	Microsoft Word - $ASQ8478320_File000001_143143263.doc

