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Abstract 

Recognizing the need for analyzing large amounts of data in the study of online support 

communities, an automated content analysis method is introduced in this article. By adopting 

machine learning techniques and tools, this method requires minimal manual intervention while 

capable of analyzing large amounts of data automatically. Through this method, contents of 

messages from online support communities spanning over years are categorized as either 

informational support or emotional support. A case study on the analysis of online breast cancer 

and prostate cancer message boards is presented to demonstrate that the proposed method 

generates results comparable to results concluded from traditional manual qualitative content 

analysis methods.  
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Introduction 

Online support communities are formed by people with similar life situations (e.g., pregnancy) or illnesses (e.g., 

cancer) to discuss their feelings and thoughts and to search for support anonymously at any time and from any place 

(Pfeil 2009). The number of such online communities seems to be growing quite rapidly (Fox & Fallows, 2003) and 

this has led several researchers to study different aspects of online communities. For example, there are several 

studies focusing on perceived social support (Uden-Kraan et al., 2008), types of support sought and provided in 

online support communities (Coulson, 2005), relationships between the members of such communities (Pfeil and 

Zaphiris 2007), and outcomes of participants of online support communities (Lieberman & Goldstein, 2005). 

According to Pfeil (2009, p. 122), “it is important to investigate online support communities in order to make an 

informed judgment about their benefits and problems.”  

Among these studies on online support communities, knowing which types of social support are sought and 

provided is one of the main focuses. By understanding the type of social support sought/provided, researchers and 

practitioners could get an insight into the dynamics of user behavior in various online support communities 

specifically for patients with different diseases, demographic groups, or for family members. For example, studies 

found gender of the members influenced the type of support sought/provided in online cancer support communities 

(Gooden and Winefield 2007; Klemm et al. 1999; Seale et al. 2006); Coulson (2005) analyzed support 

communicated through online support networks for individuals with irritable bowel syndrome; Braithwaite et al. 

(1999) studied the online support community for patients with disabilities. Many of these studies used qualitative 

methods such as grounded theory (Corbin and Strauss 2007) or deductive thematic analysis (Boyatzis 1998) to 

examine online message contents.  

Qualitative methods are helpful in analyzing and conceptualizing support sought/provided in online message 

contents compared to quantitative analysis. Qualitative content analysis, however, is normally a tedious and time-

consuming task, and thus limits the amount of online messages being analyzed. The lack of enough data spanning a 

long period of time would engender the analysis results less representative of the whole community, as pointed out 

by Coulson (2005) in his effort to study online communities. In addition, due to the huge amount of effort and time 

required, it is often difficult to collect and compare message contents of multiple online support groups. Alternative 

methods that shorten the time and minimize the effort required to analyze the discourse of online support 

communities thus would be useful. Comparative keyword analysis is one of these alternatives (Seale et al. 2006). In 

their study, message contents of online breast and prostate cancer support communities are processed through 

WordSmith Tools (Scott 2004) to generate a list of keywords based on their relative frequency of occurrence in the 

two support communities. Their method, however, still requires considerable human intervention to analyze 

identified keywords. The need of relieving human efforts while analyzing large amounts of data thus calls for an 

automated content analysis method. 

Furthermore, the knowledge of the different types of support sought/provided in online support communities also 

will allow more studies in this area. For example, it will allow us to further our research in social network analysis 

on social structures of online support communities. In addition, by understanding the different types of support 

sought/provided, studies can focus on the trend of support sought/provided across time periods, whether at the 

individual, group or community level. To achieve these research goals, first a method that provides timely analysis 

on large amounts of online message contents to understand various aspects of online social support is required. 

Online support communities are such a fascinating research area with many existing and undiscovered research 

topics. Alternate research methods would help study the full potential of different research topics in this area. 

In order to facilitate studies on online support communities, a new method to automatically classify message 

contents of online support communities into types of support is proposed in this article. Specifically, by applying 

machine learning techniques and tools, this method analyzes and classifies message contents of online support 

communities automatically as either informational support or emotional support. With this analysis method at hand, 

various existing and potential research topics in studying online support communities, and even other studies that 

require analyzing large amounts of data can then be investigated more efficiently. 

In the following sections, first the background of social support and online social support groups is provided. 

Concepts of automated text classification are discussed next. Then the method of automated social support 

classification using a machine learning approach is proposed and evaluated, followed by a case study. This article 

will conclude with the limitations and implications of this method and future works based upon it.   
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Background 

Social Support and Online Social Support Communities 

Social support can be defined as “information leading the subject to believe that he is cared for and loved, esteemed, 

and a member of a network of mutual obligations” (Cobb 1976, p. 300). More specifically, social support is “the 

exchange of verbal as well as nonverbal messages in order to communicate emotional and informational messages 

that reduce the retriever's stress” (Pfeil 2009, p. 124). Coulson (2005) indicated that support groups provide “mutual 

aid and self-help for individuals facing chronic disease, life threatening illness and dependency issues” (p. 580). 

Social support has been studied from various perspectives (Heaney and Israel 2002; Lakey and Cohen 2000) as to its 

benefits to support seekers, either through direct effect by increasing support seekers' physical, mental and social 

health and reducing their mortality rate (Berkman and Glass 2000; Thoits 1995) or through a buffering effect 

between stressful life events and patients' health by helping them cope with these events (Cohen and Wills 1985; 

Thoits 1995).  

With the advent of the Internet and online discussion boards and their growing users in recent years, scholars also 

shift their focus to the study of online support communities. Differences between online support communities and its 

offline counterpart are pointed out (e.g., Klemm et al. 1998; Pfeil 2009). Examples of advantages of online support 

communities are: greater accessibility in terms of time and space; encouraging connection through weak ties, 

resulting in better access to diverse information and experts (Wellman et al., 1996); and offering anonymous 

communication. On the other hand, compared to offline support communities, online communities can have some 

disadvantages such as: information posted in online support communities may be incorrect or hostile to other users; 

lack of nonverbal cues of communication; excluding people with low literacy levels etc. There have been many 

studies in this area where researchers endeavor to understand the dynamics of online interaction (e.g., Klemm et al. 

1999; Maloney-Krichmar and Preece 2005; White and Dorman 2000; Pfeil and Zaphiris 2009). 

Among the studies of social support communities, online or offline, a constant interest is the type of support 

sought/provided within support communities. As indicated by Schaefer et al. (1981), “social support can have a 

number of independent components serving a variety of supportive functions” (p. 385). Knowledge about the 

different types of support sought/provided would provide us with an insight into the behavior and relationships 

among participants of diverse social support communities. A literature review in this area shows that there are 

various classifications of social support. Schaefer et al. (1981) classified social support into emotional, tangible, and 

informational support. House (1981) categorized social support as four types of behavior: emotional, instrumental, 

informational and appraisal. Cutrona and Russell (1990) identified five types of social support: informational, 

emotional, esteem, tangible assistance, and social network support, which are further grouped into two broad 

categories: action-facilitating support (including informational and tangible support) and nurturant support 

(including emotional, network, and esteem support) (Cutrona and Suhr 1992). Kleem et al. (1998) used support 

types of information giving/seeking, encouragement/support, personal experience, personal opinion, prayer, thanks, 

humor and miscellaneous in their study on online cancer support groups. These classifications are also further 

adopted as the theoretical basis of various research (e.g., Coulson 2005). Despite the different theoretical framework 

of support classification these studies use, informational and emotional support have been generally concluded as 

the most common types of social support (Pfeil 2009). 

In the research on types of social support sought/provided in online cancer support communities, qualitative content 

analysis has been one of the most widely adopted methods of study. Through content analysis, online message 

contents are scrutinized manually and are classified into different categories, inductively (e.g., Gooden and 

Winefield 2007) or deductively (e.g., White and Dorman 2000). In order to fully understand the target online 

support communities, analysis of messages spanning a long period of time is expected. Analyzing message contents 

manually however, is a time consuming task and requires much time and effort. This limits the amount of data that 

can be analyzed. For example, by adopting grounded theory, Gooden and Winefield (2007) collected and analyzed 

messages that spread over only a one-month period from online support communities. In another study by Klemm et 

al. (1999), online messages spanning a forty-one day period were collected for analysis. The use  of such limited 

amounts of data for analysis risks a less holistic view and may lead to a biased view of the intricacy of support 

givers/seekers’ online behaviors. Some studies attempt to address this issue by collecting data evenly spaced over 

multiple periods of a year, considering possible differences of message contents in different months of a year. For 

instance, Klemm et al. (1998) collected data from four days in June and five days in January; in White and Dorman 
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(2000), data were collected from the first five days of March, June, September, and December. However, the 

collected data for analysis were still trivial compared to the total messages posted over years on many online support 

communities. Moreover, this same concern about content analysis on a small, non-representative dataset is also 

pointed out in other Computer Mediated Communication (CMC) research (e.g., De Wever et al. 2005).   

To introduce a new method of studying online social support, in this study we will take Cutrona and Suhr's (1992) 

categories of action-facilitating support and nurturant support as our reference of classification of message contents 

in online support communities. In their definition, action-facilitating support is “intended to assist the stressed 

individual to solve or eliminate the problem that is causing his or her distress,” and nurturant support “encompasses 

efforts to comfort or console, without direct efforts to solve the problem causing the stress” (p. 155). We made two 

minor changes to their use of the two types of support: 1. We intentionally disregard the tangible support in our 

analysis because as pointed out, in the online setting, tangible support of direct aid or services are very rare, as users 

of online support communities are generally dispersed geographically and can barely meet to provide tangible 

support (Pfeil 2009). 2. In this study we still refer action-facilitating support as informational support and nurturant 

support as emotional support since in a broader view, action-facilitating support provides problem-solving 

information and nurturant support brings emotional comfort and attachment. 

Automated Text Classification 

In the computer science discipline, the task of automated text classification is to categorize documents into a pre-

defined set of classes automatically based on their content. Compared to the manual text categorization process, 

automated text classification has the advantage of effectiveness in terms of saving time and labor power, and higher 

portability by application to other task domains (Sebastiani 2002). Examples of automated text classification tasks 

include topical classification (e.g., to classify news articles as sports/politics/economic topics, Nigam et al. 2000); 

text filtering (e.g., spam mail detection, Sahami et al. 1998); text genre classification (e.g., factual/opinion text 

classification, Riloff and Wiebe 2003); and sentiment analysis (Pang and Lee 2008). In the task of classifying 

message contents into types of social support, an example is given here: 

Suppose there are two sentences extracted from an online support community: 

“I also take tamoxifen and I have had no problems on it.”      

and 

“I want to wish you good luck in all the coming procedures.”      

As human classifiers we can categorize the first sentence into informational support and the second one as emotional 

support with minimal effort. However, to do it automatically through software tools, a mechanism used to 

characterize document contents is required such that decisions of classification can be made. This mechanism can be 

a set of human-generated rules specifying how to classify text. In this case, the class to which a text is categorized is 

dependent on how it is interpreted by the rules. These rules take the form of: 

if [criterion] then [category]   (ex. if [“good luck” in message] then [emotional support] ) 

A more popular and state-of-the-art mechanism is to do automated text classification through a machine learning 

approach (Sebastiani 2002), which is also the approach we use here. Through a machine learning approach, first a 

so-called “learner” software tool is fed with a small set of manually classified documents. By analyzing and 

comparing these manually classified documents via a set of pre-determined document characteristics (such as 

document length, specific words which occur in the document), the automated text classifier is “trained” and 

generated through the learner. The generated text classifier is then ready to classify a new set of unseen documents, 

which is also called “to predict” (the amount of unseen documents is normally much larger than those manually 

classified ones). In the studies of machine learning approach, what matters is the accuracy of the automated 

classification done by the classifier. The most important factors affecting the accuracy of classification are the above 

mentioned pre-determined document characteristics and the type of classifier to be trained to. Different document 

characteristics capture different aspects of content features, while different types of classifiers determine “how to” 

classify given document characteristics into classes. The choices of the document characteristics and classifier type 

will be described in more detail in the next section. 



 Huang et al. / An Automated Approach to Analyze Online Support Contents  

 Thirty First International Conference on Information Systems, St. Louis 2010 5 

Automated Support Classification: A Machine Learning Approach 

The proposed method is innovative in that, although the topic of automated content analysis has been extensively 

studied in the Computer Science research field (e.g., Pang and Lee 2008), the focus of these studies, however, is on 

various machine learning techniques. To the best of the authors’ knowledge, this article is the first endeavor to apply 

this method from the Computer Science research field to the study of online support communities. Figure 1 

illustrates this method. The basic approach of this method is to first separate downloaded data into two non-

overlapping datasets, one small and one large. By adopting machine learning techniques and tools, message contents 

in the small dataset (which is also called the training set) are used to create the classifier capable of analyzing and 

classifying message contents automatically. The classifier is then applied to the large dataset (which is also called 

the testing set) to predict the categories of the online message contents, which is free from human intervention. The 

value of this proposed method lies in its capability of analyzing large amounts of data, resulting in classifications 

better representative of the online support community. In this section, the method used to automatically classify 

message contents of online support communities as informational support or emotional support is described, 

experimented and evaluated, and the focus will be put on the creation of the classifier. The prediction on the testing 

dataset will be demonstrated in detail in the next section. The unit of analysis in this study is the sentence. As a 

result, each sentence in a message will be processed and classified into one of the two pre-defined classes.  

 

Figure 1. Method of automated support classification 

Data Collection 

The messages we used to do the classification task are acquired from a large online cancer support community with 

more than a hundred thousand registered members posting hundreds of messages every day. This community hosts 

various discussion boards for patients with different types of cancers and for their caregivers. For the purpose of the 

case study demonstrated in the next section, the focus here is on the breast cancer support discussion board. RSS 

(Really Simple Syndication) feed is used to download messages, resulting in two sets of messages. The small set 

includes 326 messages, containing 2174 sentences from the breast cancer support discussion board with date of post 

ranging from Oct. 2009 to Feb. 2010. These messages comprise the training dataset. The large set has 10000 

messages, containing 55175 sentences. These are testing dataset messages.  

Ethical Concern 

Ethical issues of personal privacy and potential psychological harm should be considered before conducting 

qualitative research on online communities (Eysenbach 2001). Given the public nature of the target online support 

community, all the personal postings are publicly accessible without user registration and can be searched through 

google.com. In addition, the number of members in this online support community is expected to be more than 

100,000, which far exceeds the number of 10 or 100 that may require privacy concerns pointed out by Eysenbach 

(2001). As a result, we regard the target online community as a public space and no informed consent is needed. 

Still, to ensure that there will be no ethical issues, we do not use direct quotes from the message content, nor do we 

disclose any information that is identifiable to members of the online support community in this article. 

Procedure 

As mentioned above, to do automated text classification using the machine learning approach, the pre-determined 

document characteristics (also called document “features”) and choice of classifier type are needed. The type of 

classifier we chose for this study is support vector machine (SVM) (Joachims 1998). As a statistical learning 
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algorithm (Vapnik 1999), SVM has been shown to be effective doing automated text classification (Joachims 1998) 

and thus is suitable to our support classification task. In the experiment we adopt LIBSVM software library (Chang 

and Lin 2001) that implements the SVM algorithm to do the training and classifying task. While in this study these 

choices are made, the proposed automated method is not confined with a specific tool or classifier type. 

In the current study, three types of document characteristics (features) are identified to represent the cancer online 

support community messages. The selection of the document features is crucial since these features determine how 

the trained classifier discerns the patterns of their occurrences in messages of different categories statistically and 

thus is able to differentiate between these messages. The three selected features are: 1. Bag-of-Word feature, a 

feature that includes all the words occurring in each sentence. By using this feature, it is hypothesized that 

informational support and emotional support can be differentiated by words that occur in sentences. For example, a 

sentence with words “love” and “hug” is statistically more likely to provide emotional support, while the words 

“website” and “physician” are more probable to occur in sentences expressing information support. Some words 

such as “is”, “has”, “that” are deemed as high occurrence frequency words in both support categories and do not 

help differentiate message contents of different support types. This type of words, which is also called “stopwords,” 

are excluded from this feature. 2. Sentence length. It is supposed that, statistically, informational and emotional 

supports differ in their general sentence length. 3. Unified Medical Language System (UMLS)
1
 semantic type. 

UMLS is an online meta-thesaurus of controlled vocabularies of medical terminologies. Each entry in UMLS has 

been assigned one of the total 134 semantic types such as “Disease or Syndrome”, “Mental Process”, or 

“Therapeutic or Preventive Procedure”. In the support classification task, we assume that sentences providing 

different types of support tend to contain words belonging to different semantic types in UMLS and with different 

frequency. For instance, a word with semantic type “Disease or Syndrome” such as “hypertension” is more likely to 

occur in informational support sentences, and a word with a semantic type “Mental Process” such as “happy” is 

more likely to occur in emotional support sentences. 

With these features and classifier type at hand, the machine learning approach can be described as a five-stage 

process: 

Stage 1: Manually Classify Documents for Training 

The approach we use to train the classifier is also called the supervised learning approach (Sebastiani 2002) because 

the machine learning process is supervised by a set of manually classified data. By using this method, the 2174 

downloaded training set sentences from the breast cancer support message board are first classified manually, 

yielding 1545 informational support sentences and 629 emotional support sentences. To create a uniform-distributed 

training dataset, 629 out of the 1545 informational support sentences are randomly selected to couple with the 

emotional support sentences, resulting in 1258 training sentences. This also sets the baseline result for this 

experiment: By always guessing one type of support would result in a 50% classification accuracy rate. These 

manually classified sentences are then sent to the next stage to pre-process. 

Stage 2: Pre-Process 

In this stage, sentences for training are sent to the pre-processor to 1. remove the stopwords, because too many 

stopwords that are not helpful in support classification will decrease the accuracy of the resulting classifier, and 2. 

stem words occurring in each sentence into its basic form. For example, “walking” is stemmed to “walk,” “action” is 

stemmed to “act.” The purpose of stemming is to increase the accuracy of classification. Without stemming, words 

such as “walk,” “walks,” “walked,” and “walking” are treated as different words, which is unnecessary and 

redundant, and will negatively affect the trained classifier. We adopt the widely used porter algorithm (Porter 1980) 

to do the stemming task.  

Stage 3: Train the Classifier  

In the training process, the pre-processed manually classified sentences are fed to the learner software tool. The 

learner then extracts the features of the sentences based on the three pre-determined document characteristics 

                                                           

1
 http://www.nlm.nih.gov/research/umls/ 
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mentioned above. With sentential features and the class each of the sentences belongs to as inputs, the SVM 

algorithm is “supervised” to learn to separate sentences of the two classes, resulting in the SVM classifier being 

capable of classifying sentences of messages in the online breast cancer support message board into informational or 

emotional support.  

Stage 4: Evaluate the Classifier 

When the training process is over, the next step is to evaluate the classifier by checking the accuracy of 

classification results it generates. A classifier that generates results with higher accuracy means the choices of 

document features and type of classifier are appropriate, and the classification results are more reliable. The 

evaluation method used here is cross-validation (Sebastiani 2002). By using cross-validation, the whole training 

dataset is first evenly divided into pre-determined number of subsets. Each of these subsets is then by turns treated 

as the (evaluating) testing set classified by the (evaluating) classifier trained with the rest of the training set through 

the same process described above. The resulting overall accuracy is the average accuracy of the results generated by 

these evaluating classifiers. 

In this study, a 10-fold cross-validation method is used, by which ten evaluating SVM classifiers are trained and 

tested separately. The result of the automated support classification on the all 1258 training set sentences yields 

87.5% of average accuracy, which is much improved over the baseline accuracy rate of 50%. The training process 

can also be tuned to acquire classifiers generating results with higher accuracy by adopting more sophisticated 

document characteristics. This issue will be discussed in the last section. 

Stage 5: Classify Message Contents with Trained Classifier 

Now that the automated support classifier is generated, it can be applied to classify contents of the testing set 

messages downloaded from the online breast cancer support message board. The advantage of the automated 

analysis method is that the only human intervention required is the initial manual labeling of the training dataset. 

Once the classifier is trained, it can be applied to analyze any amount of testing data in the same domain, which also 

leads to another advantage of this method: a relatively larger volume of message contents can be analyzed, resulting 

in a more holistic view of entire message board.  

In the next section, a case study will be used to demonstrate how the automated support classifier is applied to a 

widely studied topic – gender differences on types of support sought/provided in online cancer support communities. 

Case Study: Online Breast and Prostate Cancer Support Groups 

The purpose of this case study is to show that our automated classification method produces results comparable to 

the traditional manual content analysis methods. To show this we take gender differences in online support 

communities as the topic of this case study. Previous research has indicated that men and women share different 

characteristics of communication in terms of behavioral or linguistic patterns (e.g., Coates 2004; Spence and 

Helmreich 1978; Tannen 1990). These gender differences also manifest in online user behavior (e.g., Boneva et al. 

2001; Hargittai and Shafer 2006). In the healthcare domain, researchers of cancer support groups pointed out men 

and women show different tendencies in types of support sought/provided, online (Gooden and Winefield 2007; 

Klemm et al. 1999; Seale et al. 2006) or offline (Gray et al. 1996). More specifically, compared to men with cancer, 

women with cancer are more likely to seek/provide emotional support. On the other hand, men with cancer are more 

likely to seek/provide informational support when compared to women with cancer. In this case study, the proposed 

automated support classification method is applied to two large online cancer support message boards – breast 

cancer and prostate cancer support message boards hosted on the cancer support community mentioned in the 

previous section. These two types of cancer support groups are widely adopted in the study of gender differences 

since breast cancer support groups are dominated by women participants and the majority of participants of prostate 

support groups are men. In addition, breast cancer and prostate cancer have similar age of onset, morbidity and 

mortality rates, thus providing comparable sources of analysis (Gooden and Winefield 2007; Gray et al. 1996; 

Klemm et al. 1999; Seale et al. 2006). Furthermore, prior research in these two communities also has focused 

specifically on informational and emotional support, which is relevant for the current study. Our objective is to 

check if the results of automated support classification of messages in online breast/prostate cancer support message 
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boards also support previous results that woman exchange relatively more emotional support and men exchange 

relatively more informational support.  

To do the support classification, first messages from both breast and prostate support message boards are 

downloaded using RSS feed. There are a total of 10000 messages (55175 sentences) from the breast cancer support 

message board, spanning a two-year period and 6184 messages (49174 sentences) from the prostate support message 

board, spanning a eight-year period downloaded. Please note that the 10000 messages from breast cancer support 

message board are not overlapped with the messages for training the classifier in the previous section and thus are 

unseen messages. Because in the previous section we have trained the breast cancer support classifier, the classifier 

is directly applied to the classification task. As to the automated classifier for prostate support message board, we 

again downloaded and manually labeled 492 messages (3958 sentences, which are disjoined from the 6184 testing 

set messages) and then chose 529 informational support and 529 emotional support sentences out of the labeled 

dataset to train the classifier. The resulting classification accuracy using 10-fold cross-validation is 88%.  

Now that the breast cancer support classifier and the prostate cancer support classifier are available, they are used to 

classify those testing set messages, which is an automated process. The summarization of the findings in this case 

study is listed in table 1 below. As can be seen, compared to message contents in prostate cancer support message 

board, message contents in breast cancer support message board express relatively higher proportion of emotional 

support (53% compared to 31% in prostate cancer support message board). On the other hand, the proportion of 

informational support sentences is relatively higher in the prostate support message board (69% compared to 47% in 

breast cancer support message board). These results support findings generated through other qualitative methods. It 

also tells us that in the online breast cancer support message board, the amount of exchanged informational and 

emotional support are about the same, while in the online prostate cancer support message board, the amount of 

exchanged informational support is more than twice as exchanged emotional support, signifying the gender 

difference. 

To summarize, this case study illustrates the use of the proposed research method to study gender differences in 

online support communities. By applying this method to analyze online breast cancer and prostate cancer discussion 

boards, message contents are classified automatically as either informational support or emotional support. The 

comparison of the analysis outcomes from the two online discussion boards shows that this case study concludes 

similarly to previous studies using manual content analysis methods. Different from previous studies in which data 

was collected from a period of days or months, this method analyzes data spanning over years, result in a more 

comprehensive view of the online support communities and thus a stronger support for the gender differences. 

Table 1. Results of automated support classification of 
online breast and prostate cancer support community messages 

 Num. of 

Messages 

Num. of 

Sentences 

Info. Support 

Sentences 

Emo. Support 

Sentences 

Percentage of  

Info. Support 

Percentage of 

Emo. Support 

Breast Cancer 

Support Board 
10,000 55,175 25,816 29,359 47% 53% 

Prostate Cancer 

Support Board 
6,184 49,174 33,737 15,437 69% 31% 

Limitations, Implications, and Future Work 

In this article, a new method of analyzing messages of online support communities is proposed. This method helps 

classify online message contents into informational support and emotional support automatically with the results 

comparable to those acquired from other qualitative data analysis methods. By exempting from human intervention, 

this method gives timely analysis of messages from online support communities. This feature makes it possible to 

analyze larger volumes of messages than using other alternative methods, which not only render a more 

comprehensive view of supports sought/provided in a given online support community, but also enables the quick 

comparison of multiple online support communities which was a time-consuming and tedious job. Although this 

method seems promising, there are a couple of limitations requiring further investigation. 

First, since this method broadly classifies supports into either of the two classes – informational and emotional 

support, the analysis results lack details of message contents that can be acquired through existing manual 
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qualitative analysis methods. For example, using grounded theory to analyze online support message contents, 

Gooden and Winefield (2007) identified concepts “Facts about the disease” and “Dealing with effects of disease” as 

sub-categories of informational support, which is more difficult for this computerized method to accomplish and 

requires more sophisticated design of the classifier training process. Second, the proposed method does not 

differentiate support seeking and providing, which also results in less detailed insights. Third, by taking the sentence 

as the unit of analysis without relating them together, this method is unable to capture supports conveyed through 

multiple sentences. For example, there are cases when a sequence of sentences as a whole conveys a different type 

of support from what each single sentence literally represents. Last, from the preliminary experiment results, the 

automated classification generates an accuracy rate of 87.5%, which is good though not great, leaving space for 

improvement. To conclude, compared to traditional qualitative content analysis methods, although the proposed 

research method is able to analyze large amounts of data, its generated results contain less detailed insights of 

message contents and may be less accurate. This shortcoming, however, would expect to draw researchers, 

particularity from computer science or information system disciplines, to discover better machine learning 

approaches with the aim to generate analysis results as detailed as human scrutiny. In short, the purpose of the 

proposed automated classification method is not to replace but to complement existing qualitative methods. It 

provides a more holistic view of the target online communities and also could used to verify findings generated from 

traditional methods. Despite these limitations, this method nevertheless opens doors to various research topics and 

thus has tremendous implications on different research disciplines in the studies of online support communities. This 

method itself also provides a new way of doing qualitative content analysis. Some of these implications are briefly 

described below. 

Empirically, with this automated message classification method, researchers can study and compare dynamics of 

support behavior differentiated by various stress events or demographic distributions such as gender and ages on 

online support communities without much difficulty. Furthermore, researchers can study the trend of 

informational/emotional supports sought/provided, either by individual users or the whole online support community 

over a longer period of time. Last, based on the result of automated support classification, many analysis methods 

can be applied for further understandings. For example, social network analysis can be conducted to compare the 

support structures of different support types for a given online support community. This study can also be furthered 

to investigate the recent trend of consumers' involvement of knowledge co-creation with healthcare providers on 

online support communities (Winkelman and Choo 2003) by studying the interplay of structure of social network 

formed, type of support sought/provided and the knowledge creation processes, which is also the main theme of our 

ongoing project. 

In the aspect of designing online support web sites, online support communities such as PatientsListMe.com allow 

their members to maintain and visualize their health status chronologically as charts in their user profiles. By using 

this automated support classification method, the trend of types of support sought/provided can also be analyzed and 

visualized to help users keep track of their activities. In the community level, a chart depicting different types of 

support provided in each discussion board or discussion thread can also help support seekers/providers and lurkers 

have the preliminary idea of the intended discussion board/thread. 

Technically, this method can be the onset of a new research topic. Efforts can be taken to devise different machine 

learning strategies to generate more sophisticated text classifiers to help acquire more detailed support information 

such as increasing the accuracy of the automatic analysis, more fine-grained support classification, or using a 

different unit of analysis such as paragraph or term level analysis. We are also working on enhancing the accuracy 

and capabilities of the classifier by incorporating more document content features such as syntactic features, and by 

using a more fine-grained support classification such as the five types of support proposed by Cutrona and Russell 

(1990). 

Last and probably a more important implication is that the proposed method alone provides qualitative researchers 

an alternative choice when analyzing document contents. The applications of this method are not just restricted to 

study online support message boards. Any document content that needs to be analyzed and categorized according to 

its content can benefit from the advantages brought about by this method – capable of analyzing large amounts of 

data while relieving from human intervention. This method thus is particularly useful and a necessity when the 

required amount of data exceeds human abilities to analyze, or needs much effort and time to generate the desired 

outcome, such as messages spanning multiple years in online support communities presented in this article. As 

mentioned above, this proposed method has its advantages and limitations and is meant to complement current 

qualitative research methods. By providing an alternative method choice to researchers, the aim is to facilitate the 

acquisition of knowledge on the dynamics of human behavior or other human generated contents.    



Research Methods 

10 Thirty First International Conference on Information Systems, St. Louis 2010  

References 

Berkman, L. F., and Glass, T. 2000. "Social Integration, Social Networks, Social Support, and Health," in Social 

Epidemiology, L. F. Berkman and I. Kawachi (eds.), New York: Oxford Press, pp. 137-173. 

Boneva, B., Kraut, R., and Frohlich, D. 2001. "Using E-Mail for Personal Relationships: The Difference Gender 

Makes," American Behavioral Scientist (45:3), pp. 530-549. 

Boyatzis, R. E. 1998. Transforming Qualitative Information: Thematic Analysis and Code Development, London: 

Sage. 

Braithwaite, D. O., Waldron, V. R., and Finn, J. 1999. "Communication of Social Support in Computer-Mediated 

Groups for People with Disabilities," Health Communication (11:2), pp. 123-151. 

Chang, C.-C., and Lin, C.-J. 2001. "LIBSVM: A Library for Support Vector Machines," Software available at 

http://www.csie.ntu.edu.tw/~cjlin/libsvm 

Coates, J. 2004. Women, Men and Language: A Sociolinguistic Account of Gender Differences in Language, (3
rd

 

ed.), London: Pearson ESL. 

Cobb, S. 1976. "Social Support as a Moderator of Life Stress," Psychosomatic Medicine (38), pp. 300-314. 

Cohen, S., and Wills, T. 1985. "Stress, Social Support, and the Buffering Hypothesis," Psychological Bulletin (98), 

pp. 310-357. 

Corbin, J., and Strauss, A. C. 2007. Basics of Qualitative Research: Techniques and Procedures for Developing 

Grounded Theory, (3
rd

 ed.), London: Sage. 

Coulson, N. S. 2005. "Receiving Social Support Online: An Analysis of a Computer-Mediated Support Group for 

Individuals Living with Irritable Bowel Syndrome," CyberPsychology & Behavior (8:6), pp. 580-584. 

Cutrona, C. E., and Russell, D. W. 1990. "Type of Social Support and Specific Stress: Theory of Optimal 

Matching," in Social Support: An Interactional View, B. R. Sarason, I. G. Sarason, and G. R. Pierce (eds.), New 

York: John Wiley, pp. 319-366. 

Cutrona, C. E., and Suhr, J. A. 1992. "Controllability of Stressful Events and Satisfaction with Spouse Support 

Behaviors," Communication Research (19:2), pp. 154-174. 

De Wever, B., Schellens, T., Valcke, M. and Van Keer, H. 2006. "Content Analysis Schemes to Analyze Transcripts 

of Online Asynchronous Discussion Groups: A Review," Computers & Education (46:1), pp. 6-28.   

Eysenbach, G., and Till, J. E. 2001. "Ethical Issues in Qualitative Research on Internet Communities," British 

Medical Journal (323:7321), pp. 1103-1105. 

Fox, S., and Fallows, D. 2003. "Internet Health Resources: Health Searches and Email Have Become More 

Commonplace, but There is Room for Improvement in Searches and Overall Internet Access," Pew Internet & 

American Life Project. 

Gooden, R. J., and Winefield, H. R. 2007. "Breast and Prostate Cancer Online Discussion Boards: A Thematic 

Analysis of Gender Differences and Similarities," Journal of Health Psychology (12:1), pp. 103-114. 

Gray, R., Fitch, M., Davis, C., and Phillips, C. 1996. "Breast Cancer and Prostate Cancer Self-Help Groups: 

Reflections on Differences," Psycho-Oncology (5:2), pp. 137-142. 

Hargittai, E., and Shafer, S. 2006. "Differences in Actual and Perceived Online Skills: The Role of Gender," Social 

Science Quarterly (87:2), pp 432-448. 

Heaney, C. A., and Israel, B. A. 2002. "Social Networks and Social Support," in Health Behavior and Health 

Education: Theory, Research, and Practice, K. Glanz, B. K. Rimer, and F. M. Lewis (eds.), San Francisco, CA: 

Jossey-Bass, pp. 185-209. 

Joachims, T. 1998. "Text Categorization with Support Vector Machines: Learning with Many Relevant Features," in 

Proceedings of the European Conference on Machine Learning (ECML'98), Chemnitz, Germany, pp. 137-142. 

Klemm, P., Reppert, K., and Visich, L. 1998. "A Nontraditional Cancer Support Group: The Internet," Computers in 

Nursing (16:1), pp. 31-36. 

Klemm, P., Hurst, M., Dearholt, S. L., and Trone, S. R. 1999. "Gender Differences on Internet Cancer Support 

Groups," Computers in Nursing (17:2), pp. 65-72. 

Lakey, B., and Cohen, S. 2000. "Social Support Theory and Measurement," in Social Support Measurement and 

Intervention: A Guide for Health and Social Scientists, S. Cohen, L. G. Underwood, and B. Gottlieb (eds.), New 

York: Oxford University Press, pp. 29-52. 

Lieberman, M. A., and Goldstein, B. A. 2005. "Self-Help On-Line: An Outcome Evaluation of Breast Cancer 

Bulletin Boards," Journal of Health Psychology (10:6), pp. 855-862. 

Maloney-Krichmar, D., and Preece, J. 2005. "A Multilevel Analysis of Sociability, Usability, and Community 

Dynamics in an Online Health Community," ACM Transactions on Computer-Human Interaction (12:2), pp. 1-

32. 



 Huang et al. / An Automated Approach to Analyze Online Support Contents  

 Thirty First International Conference on Information Systems, St. Louis 2010 11 

Nigam, K., Mccallum, A. K., Thrun, S., and Mitchell, T. 2000. "Text Classification from Labeled and Unlabeled 

Documents using EM," Machine Learning (39), pp. 103-134. 

Pang, B., and Lee, L. 2008. "Opinion Mining and Sentiment Analysis," Foundations and Trends in Information 

Retrieval (2:1-2), pp. 1-135. 

Pfeil, U. 2009. "Online Support Communities," in Social Computing and Virtual Communities, P. Zaphiris and C. S. 

Ang (eds.), Chapman & Hall, pp. 121-150. 

Pfeil, U., and Zaphiris, P. 2007. "Patterns of Empathy in Online Communication," in Proceedings of the SIGCHI 

Conference on Human Factors in Computing Systems, San Jose, California, pp. 919-928. 

Pfeil, U., and Zaphiris, P. 2009. "Investigating Social Network Patterns within an Empathic Online Community for 

Older People," Computers in Human Behavior (25:5), pp. 1139-1155. 

Porter, M. F. 1980. "An Algorithm for Suffix Stripping," Program (14:3), pp. 130-137. 

Riloff, E., and Wiebe, J. 2003. "Learning Extraction Patterns for Subjective Expressions," in Proceedings of the 

Conference on Empirical Methods in Natural Language Processing (EMNLP’03), Sapporo, Japan, pp. 105-112. 

Sahami, M., Dumais, S., Heckerman, D., and Horvitz, E. 1998. "A Bayesian Approach to Filtering Junk E-Mail," in 

AAAI-98 Workshop on Learning for Text Categorization, AAAI Technical Report WS-98-05, Madison, WI, pp. 

55-62. 

Schaefer, C., Coyne, J. C., and Lazarus, R. S. 1981. "The Health-Related Functions of Social Support," Journal of 

Behavioral Medicine (4:4), pp. 381-406. 

Scott, M. 2004. WordSmith Tools version 4, Oxford: Oxford University Press. 

Seale, C., Ziebland, S., and Charteris-Black, J. 2006. "Gender, Cancer Experience and Internet Use: A Comparative 

Keyword Analysis of Interviews and Online Cancer Support Groups," Social Science & Medicine (62:10), pp. 

2577-2590. 

Sebastiani, F. 2002. "Machine Learning in Automated Text Categorization," ACM Computing Surveys (34:1), pp. 1-

47. 

Spence, J. T., and Helmreich, R. L. 1978. Masculinity and Femininity: Their Psychological Dimensions, Correlates, 

and Antecedents, Austin: University of Texas Press. 

Tannen, D. 1990. You Just Don't Understand: Women and Men in Conversation, New York: William Morrow. 

Thoits, P. A. 1995. "Stress, Coping, and Social Support Processes: Where are We? What Next?," Journal of Health 

and Social Behavior (Extra Issue), pp. 53-79. 

Uden-Kraan, C. F. v., Drossaert, C. H. C., Taal, E., Shaw, B. R., Seydel, E. R., and Laar, M. A. F. J. v. d. 2008. 

"Empowering Processes and Outcomes of Participation in Online Support Groups for Patients with Breast 

Cancer, Arthritis, or Fibromyalgia," Qualitative Health Research (18:3), pp. 405-417. 

Vapnik, V. 1999. The Nature of Statistical Learning Theory, (2
nd

 ed.), Springer. 

Wellman, B., Salaff, J., Dimitrova, D., Garton, L., Gulia, M., and Haythornthwaite, C. 1996. "Computer Networks 

as Social Networks: Collaborative Work, Telework, and Virtual Community," Annual Review of Sociology 

(22:1), pp. 213-238. 

White, M. H., and Dorman, S. M. 2000. "Online Support for Caregivers: Analysis of an Internet Alzheimer 

Mailgroup," Computers in Nursing (18:4), pp. 168-179. 

Winkelman, W. J., and Choo, C. W. 2003. "Provider-Sponsored Virtual Communities for Chronic Patients: 

Improving Health Outcomes through Organizational Patient-Centered Knowledge Management," Health 

Expectations (6:4), pp. 352-358. 

 

 


	Association for Information Systems
	AIS Electronic Library (AISeL)
	2010

	INFORMATIONAL SUPPORT OR EMOTIONAL SUPPORT: PRELIMINARY STUDY OF AN AUTOMATED APPROACH TO ANALYZE ONLINE SUPPORT COMMUNITY CONTENTS
	Kuang-Yuan Huang
	Priya Nambisan
	Özlem Uzuner
	Recommended Citation


	Microsoft Word - $ASQ8473057_File000004_143021904.doc

