
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2009 Wirtschaftsinformatik

2009

REENGINEERING DEPRECATED
COMPONENT FRAMEWORKS: A CASE
STUDY OF THE MICROSOFT
FOUNDATION CLASSES
Robert Neumann
Otto-von-Guericke-Universität Magdeburg

Sebastian Günther
Otto-von-Guericke-Universität Magdeburg

Niko Zenker
Otto-von-Guericke-Universität Magdeburg

Follow this and additional works at: http://aisel.aisnet.org/wi2009

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Neumann, Robert; Günther, Sebastian; and Zenker, Niko, "REENGINEERING DEPRECATED COMPONENT FRAMEWORKS:
A CASE STUDY OF THE MICROSOFT FOUNDATION CLASSES" (2009). Wirtschaftsinformatik Proceedings 2009. 81.
http://aisel.aisnet.org/wi2009/81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301349476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2009%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2009%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009/81?utm_source=aisel.aisnet.org%2Fwi2009%2F81&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

REENGINEERING DEPRECATED COMPONENT

FRAMEWORKS: A CASE STUDY OF THE MICROSOFT
FOUNDATION CLASSES

Robert Neumann, Sebastian Günther, Niko Zenker1

Abstract
In today’s application engineering, the implementation of frameworks and related technology
boosts development quality and reduces related effort. Framework functionality embodies expert
knowledge and is driven towards reuse. While stable from a conceptual point of view,
technological changes require constant adaptation and reengineering. This article presents overall
framework engineering principles and practices (FEPP) and shows their concrete application
using the example of the Microsoft Foundation Classes. Abstracting from the case study, the focus
of this work is upon introducing particular methods for how to cut down on the complexity of
maintenance projects by considering the FEPP during framework development.

1. Motivation

As offsprings of the object-oriented programming paradigm, component frameworks in the past
were subject to intensive research that reached its peak in the 1990s. Economies of frameworks
were derived from framework engineering principles which have established a collection of
concepts and best practices describing how to efficiently develop software frameworks. Even
though framework development, maintenance, and discontinuance are well analyzed phases in the
framework lifecycle, the reactivation of an already discontinued framework seems to be a rather
unexplored discipline.

A very successful and well known example in the domain of Windows application development is
the Microsoft Foundation Classes (MFC). However, as with the introduction of the .Net framework
in 2002 Microsoft changed its focus away from native towards managed development, the MFC
were decided to be not longer maintained. Contrarily, the number of Independent Software Vendors
(ISVs) outside the managed world was still significant, whereby some of them had established
gigantic code bases in native C/C++ code with the MFC interfacing between their application and
the Windows operating system. Those ISVs were dependent on the MFC being updated to expose
new Windows features as they wanted to support their products even on modern Windows versions.

Visual Studio 2008 (released in October 2007) for the first time after more than ten years contained
a major set of updates for the MFC demonstrating an attempt to bring the MFC back to the market.

1 Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg

737

The resurrection of the MFC moved the question of how to assess the maintainability of a
“reactivated” framework into the focus of our investigations. Using the MFC, we investigated
places in a framework that are sensitive to future refinement projects. We analyzed how well the
architecture of the framework supports maintenance and what can be done to reduce the intensity in
effort those projects require. A resulting catalog of refinement points compares the architecture of a
framework to framework engineering principles and practices (FEPP) and discusses how deviations
from the FEPP might impact the complexity at which future maintenance projects are possibly
driven. The catalog depends on a study that was conducted in cooperation with the Microsoft
Visual C++ team in 2008.

The paper is organized as follows: The second section gives an overview of the basics of software
frameworks, clarifies terminology, and discusses the significance of frameworks. It follows a listing
of framework key characteristics which represent the starting point for our further explanations.
Based on this, the third section introduces an approach for how to improve the maintainability of a
framework using the FEPP. Thereby, the focus is upon demonstrating that perspicacious
development embodies the foundation for easy-to-accomplish future maintenance.

2. Backgrounds of Framework Engineering

The term ”software framework” generally refers to a high-level design that is abstract enough to be
applicable to various problems of an application field. It can be used to bootstrap concrete
implementations which are based on a common architecture [10]. Referring to Taligent Inc.,
frameworks are defined as “a set of prefabricated software building blocks which programmers can
use or customize for specific computing solutions” [15]. Thereby, Taligent emphasizes that a
framework captures the problem-solving expertise necessary to solve a particular class of problems.
Companies can use frameworks to obtain such problem-solving expertise without having to fully
develop it. Furthermore, frameworks provide a well-designed infrastructure, so that when new
pieces are created, they can be added easily or substitute old pieces with minimal impact [14].

All of the above definitions share the idea of two basic aspects: Firstly, a framework provides the
users with a certain set of functionality and secondly, frameworks allow the users to customize or
modify this functionality. Framework reengineering is becoming evidently a vital activity in the
software industry [4]. Its goal is to understand, analyze, and improve frameworks to form new
framework versions. Reengineering includes tasks, such as refactoring (changes to the appearance
of code), redesign (changes to the architecture), and refinement (new functionality, bug-fixing, or
performance improvements). Since the reengineering process can be triggered as part of the
software lifecycle -especially the maintenance phase-, we will in the remainder of this work also
refer to it as “framework maintenance”.

In the following, we will further discuss the significance of frameworks and show their different
key characteristics.

2.1. Significance of Frameworks

Frameworks support the application development process by providing prefabricated solutions to
reoccurring problems. They capture and leverage the expertise of domain experts in a software
component that can be included by other application programs. The use of frameworks can result in
a dramatically shortened development time with fewer lines of code. This is because several
common aspects of the applications are already captured by the framework. The effort required for
maintaining applications can also be significantly reduced when multiple applications are built on

738

top of one framework [8]. In case of modifications or fixes being made to the framework,
applications implicitly benefit from the changes, since those are automatically propagated through
the framework. The applications that are built from the framework follow the same design and
share the same code base; thus frameworks provide consistency and therefore a better integration
across platforms.

Above all, using frameworks is related to two major aspects: Reuse and Quality. Thereby, not only
the implementation of a system, but also the design of the system is reused. Since the design of
successful frameworks has already proven to be efficient and has run through an in-depth testing
and refinement process, it forms a quality base for developing new applications. Once a framework
has been developed, the problem domain has already been analyzed and a working design and
implementation have been produced [1].

2.2. Framework Key Characteristics

With the term “Framework Key Characteristics” (FKC) we refer to properties that are commonly
embodied by successful frameworks to a relatively high extent. The FEPP relate to particular FKC
by describing ways of how to implement them. Both FEPP and FKC will again be mentioned
together, when addressing how they can help reducing maintenance.

The design and the functionality of a framework incorporate the following FKC:

Reusability means that software and ideas are developed once and then used to solve multiple
problems. This leads to an enhanced productivity, since applications can now be built on top of
already existing solutions for generic problems [11].

Ease-of-Use encompasses the application developer’s ability to use the framework [8]. The
framework should be easy to understand and facilitate the development of applications. Ease-of-use
is also established by providing a detailed documentation including descriptions of the framework’s
functionality as well as sample applications demonstrating how to solve easy problems using the
framework.

Extensibility means that new components or properties can be added easily to the framework.
Extension typically is achieved by deriving from existing classes (inheritance) or adding
customized components to the framework (composition). So called hook methods provide a way to
extend stable interfaces with new functionality. This is important to “ensure timely customization of
new application services and features” [6].

Flexibility describes a framework’s ability to be used in more than one context. The more problems
the framework can be applied to, the higher the problem domain coverage. Very flexible
frameworks are reused more often than frameworks with a lower degree of flexibility [11].

Completeness refers to a framework’s ability to cover all possible variations of a problem. Since
even the best frameworks can never provide solutions to all possible problems with an arbitrary
level of detail, it makes it consequentially impossible for frameworks to be complete. However, a
certain degree of completeness can be achieved and is referred to as “relative completeness” [8].
Relative completeness encompasses default implementations for the abstractions within a
framework, so that these abstractions do not necessarily have to be implemented by the user.
Consistency is a characteristic which reflects that the rules and conventions which determine the
framework are followed throughout the whole framework without exception. Consistency in

739

frameworks speeds up the developers’ understanding of the framework and helps to reduce errors
in its use [11]. Consistent frameworks always follow the same interface conventions and class
structures as well as the same notations for naming variables, functions, and classes.

During our investigations, we found out that the MFC incorporate those characteristics to a very
high extent. Even though the MFC core was designed more than 17 years ago, it considers the FKC
in an exemplary fashion. Ease-of-use, for example, is achieved by providing an elaborated
interface, a very comprehensive and always up-to-date documentation, and a complex, but easy-to-
use development environment. On the other hand, due to their age, the MFC do not consider certain
aspects of the object-oriented programming paradigm, such as Polymorphism. An example of why
this can be disadvantageous will be given in section three. In conjunction with the problem of
maintenance, it will be discussed pros and cons of the way MFC incorporates the FKC.

3. Addressing Framework Maintenance

A study conducted by the National Bureau of Standards estimated that 60% - 85% of the total
software development cost is due to maintenance [5]. These numbers are determined mostly by
errors that were not found during operational testing and thus needed to be fixed at the customer’s
side, generally an expensive undertaking. Therefore, it seems reasonable to attempt a reduction of
potential future maintenance efforts from the very beginning. Certainly intensive and exhaustive
testing prior to the release plays a major role, but maybe as important as that is to initially design
the framework in a fashion that makes future engagements easier to accomplish. The incorporation
of best practices, such as design patterns or object-oriented methods in general, standards,
guidelines, and substantiated documentation can significantly support the creation of better
preconditions for future maintenance and extension development.

The catalog we have derived from the MFC case study distinguishes the reduction of framework
maintenance into two core activities: preventing and enabling maintenance. Preventing
maintenance refers to an attempt to reduce the likelihood of future maintenance while enabling
maintenance encompasses a concept that makes the framework accessible for future maintenance.

3.1. Preventing Maintenance

Preventing maintenance represents a concept to increase the overall quality of a framework while
reducing the likelihood of future maintenance. The quality of a framework is determined by the
degree to which it incorporates previously mentioned FKC on the one hand and by the amount of
errors it contains on the other hand. Even though the number of bugs can be reduced by
instantiating methods of testing, the integration of FKC can further reduce the likelihood of
erroneous behavior. The following four FEPP describe how to achieve a relatively high saturation
of the FKC in a framework that help cutting down on the likelihood of maintenance.

3.1.1. Documentation

The documentation of a framework represents a driver that can make a critical contribution to the
overall success of the framework. Ease-of-use and reusability can be established by providing a
detailed documentation including descriptions of functionality as well as sample applications
demonstrating how to solve easy problems with the framework. Without documentation, the only
way for application developers to understand how the framework is used would lie in trying to
comprehend the way the framework is used from the source code. However, if there was not even
the source code available, the value of the framework to the framework applicants would be very

740

low. With the Microsoft Developer Network (MSDN)2, Microsoft provides a comprehensive and
highly up-to-date documentation for the MFC that is always accessible over the internet.

3.1.2. Contracts

One of the key problems when working with frameworks, such as MFC, is that, provided the inputs
to a function or component, the framework users do often not receive the output they expected. In
other words: the perceived behavior of a function might sometimes differ in some way from the
behavior that the users anticipated. Due to this misunderstanding, users often open bug fixing
enquiries on the vendors’ side, whereby the vendors have two possibilities of dealing with them:
Either they modify the way in which the respective functionality is exposed by the framework or
they refine the documentation and clarify how to correctly use this part of the framework.

To avoid this misunderstanding between component designers and component users from the very
beginning, contracts provide a way of determining beforehand, whether a class or a component
used within a certain context generates a correct result [2]. They “specify preconditions on
participants to establish the contract and the methods required for the instantiation of the contract“
[12]. While adding a clear communication between the framework users and the framework
designers, contracts can help reducing the frequency at which users open bug fixing enquiries that
aim at clarifying the way hooks3 are used. Contracts can help to enhance the ease-of-use and thus
the reusability FKC of a framework and allow a slimmer documentation. Furthermore, they can
improve the flexibility of the framework architecture making maintenance projects easier to
conduct.

Regarding MFC, we could identify only a weak contractual behavior. Behavioral contracts, for
example, are incorporated by the macros VERIFY, ENSURE, and ASSERT. In case of an error, the
MFC application terminates with a runtime exception, whereby a dialog states the problem that
caused the shutdown. Even though this kind of contractual behavior seems to comply with the idea
of behavioral contracts, it is only very inchoate and can be easily circumvented. MFC’s exception
handling mechanisms can trivially be bypassed by just overriding and reimplementing the function
that wraps a macro accordingly. To split the contract of the base class, it is enough to just not
implement previously mentioned macros in the overridden function.

3.1.3. Standard Conformity

Standard conformity incorporates the flexibility and reusability characteristics of frameworks.
Furthermore, standards can help improving the consistency of the overall framework architecture
and code. Incorporating standards not only improves the product quality (standards are geared to
principles and best practices), but also can help improving the flexibility of the framework.

Due to specific aspects of the Windows operating system, Microsoft had to rely on an extended
C/C++ standard in its compiler. Standards allow code to become independent from its base
technology. Standardized code should run on every platform that complies with the standard and
enables software developers to use their products with a variety of base technology distributions of
multiple vendors.
Since the MFC exclusively targets the Microsoft Windows platform, it stands to reason that MFC
does not support the development of platform-independent code. Other compilers on the Windows

2 http://www.msdn.microsoft.com
3 Hooks are understood here as the means to perform customization to a framework.

741

platform do not explicitly support the MFC; a fact that binds the MFC developer community to the
Microsoft compiler. In case of a specific compiler becoming superior to the Microsoft compiler by,
for example generating particularly high-performing executables, MFC applications could not
benefit from this. Furthermore, bugs within the Microsoft compiler could not be by-passed by
simply switching to another compiler that does not show these bugs.

An alternative solution to circumvent this problem could encompass concentrating all MFC-related
client code in one module. This module can then be compiled with the Microsoft compiler while
the MFC-independent rest of the code is passed to a compiler that can achieve better performance.
However, from the application developers’ perspective, an MFC that works without any
Microsoft- specific extensions would certainly be favored as it would increase their flexibility.

3.1.4. Default Behavior

One important question concerning the completeness of a framework is how default behavior is
incorporated and exposed. If the users, for example, do not need or want to customize certain
abstractions within a framework, a default implementation that fits their particular requirements
might save them time and effort. On the other hand, if a default implementation of an abstraction
should not be sufficient, they could simply override it and provide their own customized
functionality.

Even though providing default behavior on the first glance increases the size of the framework code
base, this does not automatically result in a potentially increased maintenance complexity. Since an
enhanced completeness is connected to an enhanced ease-of-use, the framework users will
potentially open less support enquiries that aim at refining hot spots4 in the framework. In many
cases, the aggregated effort for maintaining the code that adds the default behavior might be less
than the effort that evolves from refining badly designed hot spots.

Regarding the MFC framework, default behavior is incorporated in classes that are intended to be
used as base classes (e.g. CObject) as well as in the hook methods that represent the set of
Windows message handlers. Instead of leaving the implementation of the message handlers to the
developers of the application extensions, the MFC provides a default implementation for every
method.

3.1.5. Summary

As can be seen in the following table 1, each individual FEPP incorporates different FKC.

Table1: Framework Key Characteristics (FKC) vs. Framework Engineering Principles and Practices (FEPP)

4 Hot Spots are places within the framework that require customization from the user.

742

3.2. Enabling Maintenance

Even though the previously discussed methods help reducing the likeliness of future maintenance,
this does not mean that the product does not need to be maintained at all. Changes in the domain of
the framework, extensions requested by the user, or even bugs represent reasons to make
modifications to the framework. Thus, it seems even more important to establish the framework on
an architecture that is open and flexible enough to efficiently support future maintenance, use
appropriate design patterns, and establish and follow conventions.

3.2.1. Architecture

Inside the architecture, we want to point at two concepts that effectively enable the user to
customize the framework’s behavior: Message Mapping5 vs. the use of Polymorphism. Message
Mapping describes the way MFC binds Windows messages (integer IDs) to Windows message
handlers (typically classes), whereby the event handlers announce which events they are able to
process. The basic idea of Message Mapping is that the users of MFC in their client applications
are able to customize the message handling to hook in their own responses on events.

As MFC evolved as a child of the established programming standard C++, it could benefit from
object-oriented language concepts. One powerful feature of C++, however, was not utilized:
Polymorphism. The concept of Polymorphism captures the potential to more intuitively perform
what was implemented with Message Mapping in MFC. Modifying the MFC to make use of
Polymorphism could encompass to automatically attach a certain virtual message handler function
to a specific Windows message in the MFC message pump (figure 1). Changing the message
handler of a Windows message could now be achieved by deriving a new class from the MFC’s
Windows message processing class (CWinApp) and overriding the virtual message handlers in the
new class respectively.

Figure 1: A polymorphism-based alternative to Message Mapping.

Following conclusions are drawn: While Message Mapping is connected to manually editing the
Windows message/Windows message handler entries in the map and then defining the message
handler in a class accordingly, the Polymorphism-based alternative makes the first step unnecessary
and merely requires overriding the appropriate virtual functions. Internally, however, the
Polymorphism-based alternative does something similar to the Message Mapping mechanism, but
is rather exposed as an object-oriented feature of the C++ programming language itself.

5 For more detail on Message Mapping, please refer to the MSDN (http://www.msdn.microsoft.com).

743

Since there are no message map entries to be taken care of, the Polymorphism-based approach
would not only improve the ease-of-use FKC of the MFC, but also make the code of the application
less susceptible to errors. The less code needs to be written by a developer, the fewer the number of
errors he can potentially commit to the application. With respect to the effort that is related to
maintaining and extending the MFC, the last statement also indicates that the Polymorphism-based
approach could result in a decrease of resources necessary for maintenance (as there is less code
affected). Hooking a new Windows message handler into an application could be achieved by
simply overriding a virtual function from the MFC’s message dispatcher class CWinApp rather
than fist declaring and defining a new entry in the message map and secondly creating the message
handler class.

3.2.2. Design Patterns

Design Patterns provide solutions to reoccurring software design problems that have proven to
work in practice [9]. With respect to frameworks, Design Patterns are particularly useful for
designing Hot Spots, the parts of the framework that determine its flexibility. Design Patterns can
support the development of software frameworks by improving the flexibility and enhancability of a
framework’s Hot Spots and thus ultimately paves the way for less complicated modifications due to
maintenance.

During our investigations, we identified three design pattern in the MFC: The Singleton Pattern (by
accessing the main application object CWinApp), the Bridge Pattern (in serialization), and the
Observer Pattern (as the basis of the Document/View architecture). For the ongoing explanations,
we will concentrate on MFC’s implementation of the Observer Pattern only.

The Observer Design Pattern refers to a pattern that is used to observe the state of an object in a
program and is mainly used for realizing distributed event handling mechanisms [9]. The essence of
this pattern is that one or more objects (observers) are registered to observe an event that may be
raised by the observed subject. The subject provides an interface for attaching and detaching
observers as well as notifying all observers that were attached about a new event. The observers
contrarily define a notification function that is called by the subject as soon as a new event occurs.

MFC embodies the Observer Pattern in its Document/View architecture. Documents in MFC are
usually used to store the application’s data and thus act as subjects. Views on the other hand are
attached to windows and display the data within documents on the screen while acting as observers.
Since a document can have many views to display its data in different ways, a document updates all
attached views when its content was changed by calling the function UpdateAllViews. The
Observer Pattern in MFC’s Document/View architecture (see figure 2) ensures that the
modification
of a document’s data is propagated to all views that were attached to this document.

3.2.3. Conventions

Conventions can help developers to better understand code that was written by other persons and
thus try to address problems that evolve from the nature of very large projects. In order to be able to
handle even big software development projects, they are broken down into smaller ones and
assigned to teams. Code that is written in a more natural way with a structure that easier maps to a
human’s native language can consequentially be easier to comprehend and understand [3]. To
enable developers to use the associations and experiences they have gained from past projects, it is
essential that all code produced within a software project (or even in general) follows a similar

744

design. This design aims at providing a coding foundation for all developers and thus tries to
converge their work-related way of thinking expressed in so called coding conventions. Thereby,
coding conventions not only suggest writing short and easy-to-understand statements, but also
advices to use expressive variable and function names [13].

Figure 2: The Observer Pattern in MFC’s Document/View architecture.

Across the Windows API, the foundation for the MFC, we identified the use of the Hungarian
notation. In the Hungarian notation the first character or first several characters of a variable or
parameter name identify the type of this variable or parameter. In addition, the MFC also defines its
own set of naming conventions (e.g. “m_” for member variables or “On” for event handlers).

With respect to maintenance and extension development of MFC, the used naming conventions
certainly help developers to quickly acquaint themselves with existing code. They thus address the
reusability and flexibility FKC, but from a developer’s point of view.

4. Conclusion

This work aimed at presenting an approach that describes what to consider when reengineering
frameworks with respect to their maintainability. As shown in the example of the MFC,
frameworks might be subject to reactivation, even though their deprecation was already decided
earlier. Thereby, the decision about reactivating a framework might be the result of an abruptly
changing market or an organization’s strategy.

The approach we presented identifies two main aspects that should be taken into account, when
analyzing a framework’s internal condition after a reactivation: Preventing maintenance and
enabling maintenance. We have shown that preventing maintenance can be achieved through a
detailed documentation, the incorporation of contracts and default behavior as well as the
consideration of standards. Enabling maintenance on the other hand helps reducing the complexity
of future maintenance by designing the framework architecture in a way that it is easy to access by
incorporating design patterns at places where it makes sense. Furthermore, conventions can support
maintenance by allowing associations that were made earlier in the development phase.

During our investigations, we identified several areas within the MFC that urgently require action
to match this framework with the state-of-the-art in framework engineering. Refining the MFC’s
internals at discussed places might help cutting down on the complexity of future maintenance
projects. However, a careful investigation on the diversity of the MFC applicants would most likely

745

reveal that additional constraints exist which would increase the complicacy of conducting those
changes. Further research could concentrate on the engineering of an approach that describes how
to perform fixes to reactivated frameworks considering the situation of the framework community.
Another open point might be the use of tools, such as Jfreedom [7], to support the framework
reengineering process.

5. Bibliography

[1] ARRANGO, G., PIETRO-DIAZ, G. and PIETRO-DIAZ, R., Domain Analysis Concepts and Research Directions,
IEEE Computer Society 1991

[2] BEUGNARD, A, JÉZÉQUEL, J. M., PLOUZEN, N. and WATKINS, D., Making Components Contract Aware,
IEEE Computer Society 1999

[3] CWALINA, K., ABRAMS, B. and RAGSDALE, S., Framework Design Guidelines: Conventions, Idioms and
Patterns for Reusable .NET Libraries, Amsterdam, Addison-Wesley Longman 2005

[4] DEMEYER, S., MENS, K., WUYTS, R., GUEHENEUC, Y. G., ZAIDMAN, A., WALKINSHAW, N., AGUIAR,
A. and DUCASSE, S, Workshop on Object-Oriented Reengineering, 19th European Conference on Object-Oriented
Programming (ECOOP) 2005

[5] EAGLE, D., Evaluating Larch/C++ as a Specification Language: A Case Study Using the Microsoft Foundation
Class Library, Iowa Sate University, Department of Computer Science, Iowa, USA 1995

[6] FAYAD, M. E. and SCHMIDT, D. C., Application Frameworks, Communications of the ACM, vol. 40, no. 10, pp.
32-38 1997

[7] FLORES, N. and AGUIAR, A., Jfreedom: a reverse engineering tool to recover framework design, Proceedings of
the 6th European Conference on Object-Oriented Programming (ECOOP), Workshop on Object-Oriented
Reengineering 2005

[8] FROEHLICH, G., HOOVER, H., LIU, L. and SORENSON, P., Designing Object-Oriented Frameworks, in: CRC
Handbook of Object Technology, CRC Press, pp. 25-1 - 25-22 1998

[9] GAMMA, E., HELM, R., JOHNSON, R. and VLISSIDES, J., Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley Longman, Amsterdam 1995

[10] GREENFIELD, J. and SHORT, K., Software factories: assembling applications with patterns, models,
frameworks and tools, Wiley Publishing, Inc., Indianapolis, USA 2004

[11] KOSKIMIES, K. and MOSSENBACK, H., Designing a Framework by Stepwise Generalization. Proceedings of
the 5th European Software Engineering Conference 1995

[12] LAJOIE, R. and KELLER, R. K., Design and Reuse in Object-Oriented Frameworks: Patterns, Contracts, and
Motifs in Concert, Proceedings of the 62nd Congress of the Association Canadienne Francaise pour l'Avancement des
Sciences (ACFAS), Colloquium on Object Orientation in Databases and Software Engineering, Montreal, Canada, pp.
94-105 1994

[13] MOSER, H., Auswirkungen von Code Conventions auf Software Wartung und Evolution 2003

[14] NELSON, C., A Forum for Fitting the Task, IEEE Computer 27, pp. 104-109 1994

[15] TALIGENT, The Power of Frameworks, Addison Wesley 1995

746

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	REENGINEERING DEPRECATED COMPONENT FRAMEWORKS: A CASE STUDY OF THE MICROSOFT FOUNDATION CLASSES
	Robert Neumann
	Sebastian Günther
	Niko Zenker
	Recommended Citation

	Microsoft Word - Erste Seiten 246_Band1.doc

