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COOPERATION MECHANISMS FOR MONITORING 
AGENTS IN SERVICE-ORIENTED ARCHITECTURES 

 

André Miede, Jean-Baptiste Behuet,  
Nicolas Repp, Julian Eckert, Ralf Steinmetz1 

 
 
Abstract 
The Service-Oriented Architecture paradigm (SOA), e.g., realized with Web Services technology, 
enables enterprises to establish cross-organizational, service-based workflows. An important issue 
is the monitoring of the fulfillment of Service Level Agreements (SLAs) which define the 
responsibilities between the participants. Recent research has shown that agent technology is a 
useful approach in this context. Thus, we present ways for agent cooperation on different levels of 
abstraction. This cooperation aims at monitoring workflows and especially to react to deviations in 
different scenarios of SLA violations. 
 
1. Introduction 
 
In an international and highly competitive economy, modern enterprises face many challenging 
requirements. To address these challenges, both the technology side and the business side have to 
cooperate seamlessly, while maintaining a mutual understanding of the challenges and their 
possible solutions on both sides. Among the different requirements which affect existing and future 
enterprise Information Technology (IT) architectures, the two following have a strong impact on 
both applications and research [8, 9, 11]: 

• Achieving a high flexibility of business processes and their underlying IT. 
• The integration of heterogeneous systems. 

 
The Service-Oriented Architecture (SOA) paradigm is an option to support an enterprise 
infrastructure which facilitates the addressed requirements. At the core of SOA is the “service” 
concept, which has to be understood as the technological representation of business functionality 
[8]. By using services as flexible components, business processes can be composed from them, 
abstracting processes from the underlying, mostly monolithic applications and allowing for 
compositions even across organizational boundaries. Such common and relevant scenarios remain 
an important focus of application scenarios and research in this field: cross-organizational, service-
based workflows.  
 
Establishing cross-organizational workflows is based on a trustworthy and dependable service 
exchange between the participating parties. Service Level Agreements (SLAs) are used to define 
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both the responsibilities and requirements of the participants. However, the actually fulfillment or 
non-fulfillment of the SLAs has to be monitored. Ideally, this is done live at runtime to allow for 
reactions to detected deviations from the negotiated quality. In order to reduce further complexity 
and new, costly layers of manual administration, concepts from the field of self-organization 
(sometimes also known under the name of “Autonomic Computing”) can be utilized [10]. 
 
This paper presents cooperation mechanisms for agents to monitor service-based workflows in 
SOAs. These mechanisms are inspired by natural concepts from the field of self-organizing systems 
and extend an existing decentralized monitoring architecture. The rest of the paper is structured as 
follows: Section 2 gives an overview of a common application scenario for monitoring workflows, 
briefly discusses related work, and introduces the monitoring architecture the concept will be built 
on. Section 3 lays the foundation for the presented concept by discussing the key elements of the 
cooperation mechanism. Sections 4 and 5 show the core of the cooperation concept, namely intra- 
and inter-cluster cooperation, which is used to react to deviations from SLAs in different scenarios. 
Section 6 presents important details about the implementation of the cooperation concept. Section 7 
closes the paper with a summary of the key points and an outlook on future work. 
 
2. Scenario and Related Work 
 
2.1. Monitoring and Deviation Handling Scenario 
 
Cross-organizational service-based workflows are commonly described with the following 
scenario: to orchestrate higher level services and business processes, a service requester – i.e., an 
enterprise – integrates third-party services offered by various service providers, e.g., business 
partners. Service Level Agreements are contracted between the two parties, specifying in particular 
the service availability and the service performance by metrics like response time and throughput 
[6]. Figure 1 gives a schematic impression of this setup. 
 

 

Figure 1: Cross-Organizational, Service-Based Workflows 

 
Just as for any contract between clients and providers, the specification of the SLAs alone is no 
guarantee by itself. Thus, the monitoring of their fulfillment during runtime is needed as well and 
the actual service performance and availability have to be compared with the contracted ones, 
because services may, temporarily or permanently, not be able to fulfill the contracted 
requirements. Reasons for these failures are diverse as they can be caused by changes in the 
implementation of the services, overloads due to poor resource planning, crashes and outages of the 
service providers, or improperly negotiated SLAs that cannot be fulfilled by the services [3].  
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On the other hand, the monitoring infrastructure itself may also experience problems. In this case, 
what at first sight was detected as an SLA violation, is none and thus should not be treated as one. 
More detailed information has to be gathered to support decisions for differentiated reactions. 
Based on the gathered monitoring information, deviations from the SLAs or infrastructure problems 
have to be handled accordingly, so that the workflows meet the requirements again. Reactions from 
such violations may include the renegotiation of the SLAs, the invocation of alternative services, 
the creation of new monitoring units, etc. However, in this scenario it is important to identify the 
cause of the problem as specific as possible to react the right way and closest to the failure. 
 
2.2. Related Work 
 
Approaches for monitoring and alignment of service-based workflows can be classified into 
centralized and decentralized ones, and into functional and non-functional monitoring. 
 
Centralized monitoring and alignment means centralized gathering of monitoring data and 
centralized decision making, while the collection of monitoring data itself may be realized in a 
distributed manner by monitoring probes. Baresi and Guinea proposed such an approach, based on 
a central Monitoring Manager [1]. Although the possibility of recovery actions is mentioned, the 
authors did not provide any solution for deviation handling. 
 
To cope with scalability and performance problems in large-scale SOAs, centralized approaches are 
limited. Solutions have been proposed for distributed monitoring based on mobile agent 
technology. Most of the proposals for distributed monitoring are intended for network management, 
like [4]. But the agent technology has also been proved to be suitable for automated and 
decentralized monitoring of services. The AMAS.KOM architecture has been developed for this 
purpose [12, 13]. In the AMAS.KOM architecture (cf. Figure 2), service calls are redirected by 
proxies to agents which act as monitoring units. Agents are then used as proxies for services, 
monitoring them, checking the fulfillment of SLAs, and being able to take countermeasures in an 
autonomic fashion. 
 

 

Figure 2: Simplified Overview of the AMAS.KOM Architecture 

 
The generation of Monitoring and Alignment Agents (MAA) is automatically done based on the 
workflow description and the corresponding business requirements. This generation is realized 
through a transformation of the workflow description and the business requirements into monitored 
instances of the workflow. The transformation process contains four steps: 
 

Client 

Proxy Monitoring Factory 

Agent Agent Agent 

Web Service Web Service 

751



 

Figure 3: Workflow Transformation Steps 

 
In the Annotation step, the business requirements are described for the complete workflow in a 
single policy document in machine-readable format. In the Modification and Splitting step, 
requirements for each service of the workflow are derived from the global policy document. The 
MAAs are created during the Generation step based on these derived requirements. As this step is 
especially relevant for the understanding of the architecture and the presented concept, more details 
are necessary: An MAA associated with an SLA for a given Web Service is generated and started 
by the central Monitoring Factory for the first call to this Web Service with the given SLA. The 
required configuration parameters are passed during the agent construction, i.e., which Web Service 
to monitor, the used SLA, specifications for handling deviations, etc. The content of the request to 
the Web Service itself is then sent to the Monitoring Agent subsequently. For further calls to the 
same Web Service with the same SLA, the reference to the responsible agent will be retrieved and 
then the request will be sent to the agent. Finally, the agents are distributed in the infrastructure 
during the Distribution step. 
 
The AMAS.KOM architecture has been designed to support automated monitoring and alignment 
of service-based workflows. Currently, monitoring capabilities have been integrated into the agents, 
which now work individually, forwarding service calls, and checking the fulfillment of the 
contracted SLAs. In order to increase the architecture’s abilities to react autonomously to different 
types of deviations, cooperation mechanisms among the agents can be considered the next 
necessary step. The current AMAS.KOM architecture is enhanced by integrating these cooperation 
mechanisms into the monitoring agents. Details of this concept are described in the following. 
 
3. Cooperation Concept Overview  
 
3.1. Hybrid Architecture – Agent Clusters 
 
A Web Service may be monitored by several agents at the same time, each monitoring the 
fulfillment of a contracted SLA. It seems therefore natural to group all the agents monitoring a 
given Web Service into an Agent Cluster. An overview of the overall cluster concept is provided in 
Figure 4. 
 
An Agent Cluster consists of the agents monitoring a specific Web Service and therefore 
corresponds to this Web Service. While each individual agent of the cluster is in charge of 
monitoring the fulfillment of a given SLA by the Web Service, a cluster of agents cooperating 
together by exchanging monitoring information has a better and more detailed view of the 
monitored Web Service. Therefore, such a cluster of cooperating agents has special diagnosis 
capabilities and can distinguish a Web Service crash from a simple inability to fulfill the contracted 
SLA, or from problems actually occurring inside the agent infrastructure. Consequently, it can 
determine suitable reactions to overcome the current problems and execute them in an autonomic 
way, e.g. invocation of alternative Web Services, SLA renegotiation, delegation of the monitoring 
to other agents, or other reactions. 
 

   1. Annotation    2. Modification  
     and Splitting 

  3. Generation    4. Distribution 
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Figure 4: Overview of the Cooperation Concept 

 
As a result, the Agent Cluster associated with a given Web Service is responsible for the 
monitoring of this Web Service and for the handling of many different types of deviations. 
 
3.2. Distributed Approach Inside the Agent Cluster Based on Monitoring Agents 
 
The agents forming an Agent Cluster are basically all Monitoring Agents. A Monitoring Agent is in 
charge of monitoring the fulfillment of a given SLA by the Web Service. Web Service calls 
associated with a given SLA are redirected by proxies to the corresponding agent. This Monitoring 
Agent acts as a proxy for the Web Service, forwarding the requests to the Web Service, while 
monitoring it and checking the fulfillment of the associated SLA. Monitoring Agents are also 
capable of cooperation (cf. Section 4) and of taking countermeasures in an autonomic fashion. 
 
For tasks other than monitoring, such as the diagnosis of SLA violations based on the monitoring 
information from the different agents, the execution of countermeasures, or cluster management, it 
was first considered to add task-specialized agents into the Agent Clusters. For example, adding 
one “Diagnosis Agent” aggregating the monitoring information from the monitoring agents of the 
cluster and which is therefore capable of diagnosis. However, such an approach would require the 
presence of a multitude of task-specialized agents per cluster, and thus per Web Service, imposing 
a lot of overhead on the architecture. Moreover, such specialized agents with central functions 
would constitute critical points-of-failure inside the cluster. 
 
Since the number of Monitoring Agents per cluster (equal to the number of agreements contracted 
by the associated Web Service) is limited, there is no need for specialized agents, e.g., aggregating 
the monitoring information. An “n to n” communication pattern inside the Agent Cluster is fully 
scalable, and much more robust. Our proposal is therefore a distributed approach inside the Agent 
Cluster, based solely on Monitoring Agents and on their cooperation, as described in Section 4. 
 
3.3. Elected Cluster Leader 
 
For some tasks in the cluster, which cannot be decentralized, an agent is elected among the 
Monitoring Agents: the Cluster Leader. Once elected, the Cluster Leader still performs its regular 
duties just as any Monitoring Agent, but it also takes extra responsibilities in addition. 
 
The Cluster Leader is especially the interface of the Agent Cluster for the agents of other clusters. 
It is in charge of the incoming communication from other Agent Clusters. If another Web Service 
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crashes, an agent monitoring this service will try to delegate its requests to an alternative Web 
Service. For this purpose, the latter agent may contact the corresponding Cluster Leader and ask for 
treating its requests. The Cluster Leader is responsible for receiving these requests and to forward 
them. It has to decide whether to accept such requests or not, according to the performance and 
other monitoring criteria of the Web Service it monitors. The Cluster Leader treats those external 
requests by delegating them to the Monitoring Agents of its cluster. 
 
Electing an agent among the Monitoring Agents of the cluster for taking extra responsibilities is a 
robust way of dealing with central non-critical functionalities like treating requests from other 
Agent Clusters. Details on how the Cluster Leader is elected and how it can be replaced in case of a 
failure are described in Section 4. 
 
4. Intra-Cluster Cooperation  
 
4.1. Exchange of Monitoring Information 
 
The communication pattern for the exchange of monitoring information between the agents inside a 
cluster is inspired by the self-organization mechanism Stigmergy, a communication style observed 
in nature, especially in ant colonies [2, 10]. Stigmergy is a form of indirect communication between 
agents by modifying their environment. It is a self-organization mechanism enabling very simple 
agents to create complex structures, like ants creating foraging networks or building nests only by 
releasing pheromones. Likewise, Monitoring Agents exchange their information in a distributed 
way by releasing positive and negative feedback in the Agent Cluster. After a Web Service call, a 
Monitoring Agent releases negative feedback if it detects an SLA violation or experiences a failure, 
and releases a positive feedback otherwise. Feedback consists typically of simple messages and 
may contain some information like the response time of the last service call, possibly the content of 
the service request, and in the case of a negative feedback whether it refers to a SLA violation or a 
failure. 
 
The other agents of the cluster modify their behaviors according to received negative feedback. In 
turn they check the Web Service if they have not done so lately and release feedback. While 
sending and receiving feedback, agents update their perception of the monitored Web Service (the 
Web Service’s “reputation”). In order to avoid a chain reaction of feedback releases, agents do not 
react to further negative feedback after a certain time. A Monitoring Agent reacts to negative 
feedback from other agents in the cluster with top priority since such feedback may suggest 
forthcoming problems for the agent itself. 
 
4.2. Handling of SLA Violations 
 
After Monitoring Agent detects a deviation from the requirements, it releases negative feedback in 
its cluster. After that, it correlates the monitoring results from the other agents that it has received 
as feedback, updates its perceived reputation of the service, performs a simple diagnosis and 
determines whether the detected SLA violation actually comes from an inability for the Web 
Service to fulfill these requirements, a service crash, a problem in the agent infrastructure, or an 
isolated accident. Based on this simplistic diagnosis, the agent decides to delegate the monitoring 
of its SLA to another agent in the cluster, or to an alternative Web Service. Delegation to an 
alternative Web Service is performed when the agent perceives that the original service is unable to 
fulfill the contracted SLA, the mechanism is explained in Section 5. 
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In the case when its latest service call has failed, the Monitoring Agent first needs to get the result 
of that request as soon as possible. It requests this result from another agent in the cluster or an 
alternative Web Service. The choice of the agent in the cluster or the alternative Web Service to 
delegate to is based on the current perception of these (see agent reputation in Section 4.3 and 
service reputation in Section 5). In the cases of both a simple SLA violation and failure, Monitoring 
Agents may need to delegate to other agents or alternative Web Services for treating their further 
requests and fulfilling the SLAs. Such delegations must not be requested as in the case of a failure. 
Instead, the Monitoring Agents send calls for proposals to other agents in the cluster or to Cluster 
Leaders of alternative Web Services, which in turn reply with refusals or proposals, specifying their 
ability to fulfill the given SLA. Based on the received proposals and the current perception of the 
other agents or Web Services, the requesting agents decide on which services they delegate to. If no 
proposal is satisfying, i.e. better than the current Web Services, they decide to go on with the 
current configurations, and possibly ask for the renegotiation of the SLAs. 
 
4.3. Management of the Agent Cluster 
 
The delegation model inside the Agent Cluster, in particular the choice of the Monitoring Agent to 
delegate to (see Section 4.2), is based on the “reputation” of the agents. The reputation of an agent 
describes its reliability and its eagerness to cooperate, for example by accepting requests or calls 
for proposals from other agents and by always releasing feedback. The reputation model we 
propose for agent reputation is the Certified Reputation model, developed by Huynh et al. [5]. This 
is a promising distributed model which therefore does not need any central agent for managing the 
reputations. 
 
Besides the choices of the delegating agents, agent reputation is used for the election of the Cluster 
Leader: the agent in the cluster with the best reputation is elected – if several agents have the same 
reputation, it is chosen randomly among the best, e.g., taking the one with the smallest id number. 
Since agents are fundamentally selfish, taking care of their own interests first, their wish for 
becoming the Cluster Leader and their fear of being excluded from the cluster are good incentives 
to make them cooperate and to build a good reputation. 
 
The self-management of the Agent Cluster is realized by a heart-beat mechanism centralized at the 
Cluster Leader. The latter sends heart-beats periodically to the agents in the cluster, in order to 
notify them of its presence. After receiving heart-beats from the leader, the other agents reply by 
sending heart-beats back. If an agent fails to receive a heart-beat from the leader, it launches an 
election. In this way, although there is initially no foreseen leader in the cluster, an election is 
immediately launched. By receiving heart-beats from the other agents, the Cluster Leader is aware 
of the presence of all the other agents in the cluster, and is able to detect if an agent does not 
respond anymore. In this case, the leader tries to delegate the tasks of the faulty agent to another 
agent in the cluster, or in case of necessity asks for the generation of a new agent in the cluster 
which will overtake the tasks of the faulty one. 
 
5. Inter-Cluster Cooperation  
 
When a Monitoring Agent diagnoses that the Web Service it monitors has crashed or is unable to 
fulfill the contracted SLA, it may decide to delegate its service requests to an alternative Web 
Service. An alternative Web Service is a service that implements equivalent functionalities to the 
original one, but with better Quality of Service characteristics. A list of these alternatives has to be 
previously defined manually by the client during the SLA negotiation so that it is then given to the 
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agent in its policy file. In the future, these equivalent Web Services could be discovered and 
retrieved automatically using semantics.  
 
Monitoring Agents delegate requests to alternative Web Services by contacting their associated 
Cluster Leaders. In the case when service requests have failed in their own clusters, the Monitoring 
Agents still need to obtain the results for the current requests as soon as possible. For this purpose, 
they request the Cluster Leaders of the alternative Web Services for the results to these current 
requests. The Cluster Leaders treat these requests by delegating them inside their own clusters. 
Afterwards, as well as in the case of simple SLA violations without failure, Monitoring Agents may 
need to delegate to alternative Web Services for treating their further requests while respecting the 
SLAs. Such delegations must not be requested as in the previous case. Instead, the Monitoring 
Agents send calls for proposals to the Cluster Leaders of the alternative Web Services, which in 
turn reply with refusals or proposals, specifying the overall “reputations” (see 4.1) of their Web 
Services. Based on the received proposals, the requesting agents decide on which services they 
delegate to. If no proposal is satisfying, i.e. better than the current Web Services, they decide to go 
on with the current configurations, and possibly ask for the renegotiation of the SLAs. 
 
The inter-cluster cooperation is now limited to sending requests or calls for proposals to Cluster 
Leaders by Monitoring Agents of other clusters. Other cooperation mechanisms, such as 
communication between the leaders of the different clusters, are currently under investigation. 
 

 

Figure 5: Schematic Overview of the Different Deviation Handling Scenarios and their Interrelations 

To sum up the essence of Section 4 and 5, Figure 5 gives a schematic overview of what deviation 
handling scenarios can be handled by the proposed collaboration mechanisms. 
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6. Implementation 
 
The AMAS.KOM architecture and the extensions presented in this paper are implemented using the 
JADE framework, an Open Source Java framework for agent development, which is compliant with 
the FIPA specification (Foundation for Intelligent Physical Agents) [7]. For Web Service 
deployment Apache AXIS is used, thus the architecture supports the following common Web 
Service standards: WS-BPEL 2.0 for workflow description, WSDL 1.1 (Web Service Description 
Language) for the description of Web Service interfaces, SOAP 1.2 as protocol for the exchange of 
XML messages, REST as architectural style for service communication, and WS-Policy and WS-
SecurityPolicy as policy formats. 
 
The discussed enhancements of the AMAS.KOM architecture consist of adding cooperation 
capabilities to the monitoring agents. The implementation of these mechanisms is mainly realized 
by adding new behaviors to the existing agents, using the class Behaviour of the JADE framework. 
 
The JADE framework provides the necessary tools for agent development in Java. However, it has 
to be emphasized that agent development is not identical to object development. One special 
feature of agent computing is the autonomy of the agents. Autonomic agents cannot be accessed 
like objects, but they can only be accessed by sending messages to them in the FIPA ACL format 
(Agent Communication Language). For example, the Monitoring Factory consequently has to 
forward the content of the Web Service requests to the agents as ACL messages, and receives the 
responses in return as ACL messages as well. Such a communication between objects and agents is 
provided by the JADE framework, using a GatewayAgent. 
 
During the implementation, special attention is paid to the proper definition of new behaviors in 
JADE in order to allow their future enhancements.  
 
7. Conclusions and Future Work 
 
In this paper, cooperation mechanisms for monitoring and deviation handling agents were 
presented. Cooperation is built around the idea of special domains, called Agent Clusters, where a 
set of autonomous agents is monitoring a service for different aspects and reacts to detected 
problems. Coordination is achieved by the election of a Cluster Leader, which has responsibilities 
both within the cluster (intra-cluster cooperation) and between clusters (inter-cluster cooperation). 
This setup makes it possible for the agents to detect deviations and to react to them in a timely 
manner and according to pre-defined specifications. The concept is an extension of the existing 
AMAS.KOM architecture, building on its code base using agent technology from the JADE 
framework. 
 
Future work aims at refining the concept further, especially detailing inter-cluster cooperation to 
allow for more functionality here and to approach a wider range of deviation scenarios.  
 
Furthermore, the WS-Re2Policy language has to be integrated to have a more flexible and dynamic 
means to specify what is to be monitored and how should be reacted to deviations [14]. Concerning 
the implementation, special care has be taken to ensure the maintainability and extensibility of the 
architecture, e.g., to extend the criteria to be monitored or to extend the available reaction 
possibilities. 
 
Another very important aspect is the evaluation of the concept and its implementation. Here, issues 
such as the imposed communication overhead have to be analyzed and weighed against the benefits 
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of automated monitoring and deviation handling. Due to page restrictions, results for these issues 
will be presented and discussed in our next publications. 
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