
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2009 Wirtschaftsinformatik

2009

AN INTERACTIVE REMOTE
VISUALIZATION SYSTEM FOR MOBILE
APPLICATION ACCESS
Marcus Hoffmann
Fraunhofer IGD, Darmstadt

Jörn Kohlhammer
Fraunhofer IGD, Darmstadt

Follow this and additional works at: http://aisel.aisnet.org/wi2009

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Hoffmann, Marcus and Kohlhammer, Jörn, "AN INTERACTIVE REMOTE VISUALIZATION SYSTEM FOR MOBILE
APPLICATION ACCESS" (2009). Wirtschaftsinformatik Proceedings 2009. 56.
http://aisel.aisnet.org/wi2009/56

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301349451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2009%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2009%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009/56?utm_source=aisel.aisnet.org%2Fwi2009%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

AN INTERACTIVE REMOTE VISUALIZATION SYSTEM
FOR MOBILE APPLICATION ACCESS

Marcus Hoffmann, Jörn Kohlhammer1

Abstract
This paper introduces a remote visualization approach that enables the visualization of data sets
on mobile devices or in web environments. With this approach the necessary computing power can
be outsourced to a server environment. The developed system allows the rendering of 2D and 3D
graphics on mobile phones or web browsers with high quality independent of the size of the
original data set. Compared to known terminal server or other proprietary remote systems our
approach offers a very simple way to integrate with a large variety of applications which makes it
useful for real-life application scenarios in business processes.

1. Introduction

Looking forward to the growing mobilization of the work force and data access, one focus of
visualization these days is to use known visualization techniques on mobile devices. The main
challenge in mobile computing is limitation of limited hardware resources. At the same time the
data transfer rates have grown in the recent years. It is now possible to establish peer-to-peer data
connections between mobile and portable devices and stationary hardware. Data flat rates for
mobile access using e.g. WiFi or 3G wireless networks become more and more affordable. Looking
further at this evolution, we expect the usage and acceptance of streaming data to mobile devices to
grow in the coming years. Terminal server applications and proprietary remote visualization
solutions tried to address these problems in the past. Nevertheless these technologies aim for
specific solutions and have constraints regarding the flexible integration and functionality porting
to the mobile device.

This paper presents a system that allows the user to interactively use high quality 2D and 3D
graphical content with slim clients like smartphones or PDAs. The visualization system is designed
to connect to a variety of applications on the server side and transmit the pre-calculated
visualization data to a mobile client where the user can interact with the server-sided application in
real-time. The application can use all hardware provided by the server. The mobile client gets
visualization results of highest possible quality regarding to what the server application can
achieve. This objective can be fulfilled through a streaming connection between the mobile client
and the application located on the visualization server. Except the addressing of limited hardware
possibilities of mobile devices another benefit of a remote system that has to be taken into account

1 Fraunhofer IGD, Darmstadt, Germany

641

is a security issue. Transmitting pre-calculated and rendered data to a mobile device without
sending the real application data is a big advantage looking at secure data transmission for
applications handling confidential data on the server side. The data itself is safe behind firewalls
and only used by the application on the server side. The only data sent to the client is the remote
image data.

2. Related Work

2.1. General approaches

Enabling visualization on mobile devices has been a major research topic in recent years. The main
goal of the research in this area was to achieve interactivity on slim devices like Smartphones or
PocketPCs with very limited hardware properties regarding complex calculations. Generally there
are two ways to achieve such visualizations.

The first approach aims at the development of toolkits and algorithms to provide the mobile device
with highly compressed and optimized data for visualization and a framework running on the
mobile device itself to render the received data sets. Here, Pulli et al. [13] or Soetebier et al. [19]
have achieved very interesting results presenting a framework for mobile 3D visualization with
OpenGL ES [12] and M3G [14]. With the approach in M-Loma [9] has targeted the area of
geographic visualization to bring 3D city maps and landscapes to mobile phones and achieved
excellent results in the field of rendering on mobile devices.

The second major approach is to outsource the calculations for visualization to a server and
transmit the completed results in form of images or video streams to the thin client. Engel et al. [4],
B.O. Schneider and I. M. Martin [17] or SGI’s VizServer [18] have shown methods how to
visualize complex 3D data on mobile devices with the focus on special applications or systems a
few years ago. Other approaches described by Teler and Lischinski [22] or Soumyajit et al. [20]
especially in the area of 3D remote rendering use distributed image-based transmission of parts of
the 3D scene and re-arrange the images and imposters on the client-side to complete the 3D scene
with pre-rendered images from the visualization server. However, these approaches target either
special data structures and data sets or special applications where they integrate their remote
functionality. Our approach aims for a more generalized solution in the remote visualization area to
be able to use one system for a number of different applications instead of implementing
specialized and proprietary solutions for each different application. Basically it does not require a
specific application or server solution to work with. The application only needs the capability to
capture the content that is targeted for remote visualization and an interface to listen to incoming
interaction events. For some development frameworks (QT [15], MFC [10], Java [6]) this
functionality is provided within a plug-in library, for others generalized methods to input the
captured image data into the plug-in for further processing and transmission to the mobile client are
provided.

2.2. Yet another Remote Desktop Application?

A variety of virtual network computing (VNC) applications [16] [24] was developed in the recent
years to gain remote workers access to workstations from everywhere. For every popular operating
system different applications are available such as the Microsoft Windows remote desktop [10] or
RealVNC [24] for windows and Linux operating systems. The VNC applications provide access to
the complete desktop of the remote workstation. This paper describes a more sophisticated
approach. Basically, our system will not give the mobile user access to the complete desktop with

642

all its functionality and access to critical system parts. Only the relevant parts of the application
will be visualized for the transmission to the client-side and only these parts are available for
interaction. Which parts this will be can be defined by the administrator that integrates the
application with the remote system. Another issue with VNC visualization is included by the use of
OpenGL or other 3D content visualization on the server environment for different reasons. Either
they gain access to different users at the same time but having problems with hardware accelerated
visualization technologies or they gain access to one remote user per session being able to use
hardware features for the remote visualization. The reason for the problems in hardware
acceleration for different users at the same time lies in the fact that such solutions make use of
software emulated graphics adapters. These emulators do typically not support hardware
accelerated features as needed for e.g. OpenGL. Terminal server solutions are some kind of similar
to VNC solutions but terminal server solutions are optimized for special programs on the server and
the client side. Furthermore real application data is transmitted between the client and server side
which makes the application vulnerable for hacking or spy attacks. Since the only data this solution
transmits is image data from the server to the client and proprietary interaction data from the client
back to the server which only can decode the remote server we have achieved to have a very robust
solution looking at security issues.

3. System Concept

The basic concept of this visualization system is the outsourcing of all calculations necessary for
the visualization to a server environment. Instead of transmitting the data to the mobile client and
doing the visualization calculations on the mobile device the visualization application is running on
the server. The thin client only has to render 2D image data and capture interaction from the client
user. The interaction data is then transmitted back to the server environment for post processing and
adaptation of the current visualized scenes. Figure 1 shows the basic communication pipeline
between the application itself and the mobile clients on the other side using the render server in
between. On the server side, at least two programs are running. The first one is the application
itself which contains all the visualization functionality and technologies which has to be provided
for the mobile client. Since the application is running on the server side of the overall system it can
make use of all hardware advantages the server provides. Therefore very complex calculations and
visualizations can be done using the latest hardware features on the server side.

Figure 1: The complete communication pipeline.

3.1. Render server

The render server component consists of three major parts: the network interface, the image
processing engine and the application interface. Basically, the system provides a one to one
connection from the mobile client to the remote application. However, more than one mobile client
will be able to connect to the same remote enabled application. All clients connected to one
instance of the application will see the same visualization and each mobile client will see the same
interaction and remote steering from all connected devices.

643

To provide different views to different users it is possible to start multiple instances of the
application on the server side and connect each different mobile participant to a different instance
of the remote enabled application. Then, every mobile user will have its own visualization not
shared with others and can interact with it independently. Figure 2 shows the render server’s
architecture, its components and how the components communicate with each other.

Figure 2: The render server system layout

3.1.1. Network Interface

The network interface handles the network communication between the render server and the
mobile client. At its current state it supports two options: Communication over TCP/IP for LAN,
wireless LAN or 3G connections and the communication over Bluetooth for short distance
connections. Both protocols are integrated into the mobile client application and the render server
and can be used. The first part of the network interface is the client manager. It provides a server
socket that is listening for incoming connection requests of mobile clients. It handles the
connection procedure and the management of multiple clients. This management includes the
correct routing of the different clients to their according application instances for remote
visualization. The second part is the worker area for connections to the different clients. This part
of the network interface takes care of the creation of the network stream from the compressed
image data incoming from the image processor. The network connection to the client runs in its
own thread which grabs the image data from a buffer provided by the image processing engine
every time the client asks for a new image. Another thread is running in the network interface for
incoming interaction request. Here, all commands incoming from the mobile client are decoded and
sent back to the application interface. The application then grabs the commands from the interface.
Every application can then interpret the commands individually.

3.1.2. Image processing engine

In this engine the encoding of the captured raw image data into a stream able image or video format
is done. Furthermore the capture functionality for selected application frameworks and technologies
is integrated here. The image processing engines provides a number of different algorithms used to
compress images like JPEG, J2K, PNG, GIF, Motion JPEG etc. Chapter 4 discusses in detail the
utilization of image-based transfer in comparison to video streaming. The image processing engine
can be extended by additional compression algorithms. The engine provides the current state of the
visualization within a buffer. This buffer is updated for each change of the content in the
application. Then, a new image will be encoded and stored into the buffer. From that buffer, the

644

network interface will grab the image and encode it into a network stream that is sent to the mobile
client.

3.1.3. Application interface and integration

This is the interface for the visualization application to communicate with the render server or the
mobile client on the other side of the network pipeline respectively. The application has to use this
interface to the render server because it provides the application with all functionality that is
necessary for the remote connection. This basic interface makes it is very simple to connect new
applications to the render server functionality. The render server’s application interface consists of
two parts that must be connected with the application:

The first part is the capturing functionality. Here, the application makes use of algorithms
integrated into the render server interface to capture either the complete application window or only
certain parts of the application. For a number of popular development frameworks like Java, QT,
MFC or OpenGL context widgets image grabbers are integrated into the application framework of
the render server to alleviate the integration of the remote system for the user. The interface is
designed in a way that it can be extended with more functionality regarding the grabbing of content
from an application. The application can also decide to capture the content by itself and supply only
raw image data. In this case, the image processing engine will be provided with the captured raw
image data for further processing. The other facility of the application interface is a command
interface which is triggered every time the mobile client sends an interaction request. This request
is only an undetermined command coming from the mobile client and routed through the render
server to the application interface. In the current version, the application does the command
message handling, interpret the command and trigger the according functionality inside. In
summary, it can be stated that the effort to integrate the remote visualization functionality into
existing applications is kept very low. The developer only has to decide which part needs to be
exposed to remote users and let the interface capture this part.

3.2. Mobile client

The mobile client was realized using the Java Micro Edition (JME) [5] to maximize the
compatibility on different devices. Almost all currently available mobile devices are able to
interpret JME applets. Furthermore, such applets can easily be integrated into a website. Hence,
one mobile application can be used to connect to a large number of different remote applications
using a large number of different mobile devices. This was one of the main goals of our work – to
be able to have a generalized solution for mobile visualization without having too much effort to
adapt every new application to the clients or, even worse, to the device it will be used on. Simply
spoken, the mobile client does nothing else than rendering 2D images to its screen device and
sending back interaction commands to the render server using the Java API. More specifically, the
mobile client contains the following components: The network component, the user interface and
the mobile control component. An architectural overview of the mobile client is illustrated in Figure
3. The network component contains the functionality to connect to the render server, receive the
image stream and send out interaction and acknowledge commands to the render server. The send
and receive functionality is running in different threads to be able to asynchronously send out
commands to the visualization application on the server side. The mobile control part of the client
captures all events coming from the mobile device and converts them into network commands.
These commands are sent to the server asynchronously. Currently, the set of commands that can be
sent from the client to the server is pre-defined. The user interface can be designed independently
from the application on the server side. All the client need is an area for 2D image rendering for the

645

remote data. Additional interaction functionality can be integrated using interface elements like
menus or buttons. The render server can capture the complete application on the server side and
visualize it on the mobile client. In this case it is sufficient to capture mouse and key events for
steering the application.

Figure 3: Mobile client architecture

Each time the mobile client has finished the rendering of a 2D image it sends out a flag to the
render server for synchronization. This flag signals the render server to send the next image or pack
of multiple images. This is necessary to keep the mobile application synchronized with the
application connected with the render server. Since the render server can encode and send images
very fast, the bottleneck of the whole system lies on the mobile client side. Most of the mobile
clients have either very limited hardware resources or only access to bandwidth-limited networks.
Taking these conditions into account the render server should never send more image data then
necessary. To prevent the server from producing unnecessary network traffic it waits for the flag
from the client to update the image stream.

3.3. Security issues

Most of the applications to be used with the remote clients are located behind firewalls. Therefore,
it is necessary to establish a communication instance in front of the firewall to be able to establish a
secure connection to the render server plug-in of the application in the back of the firewall. For that
reason a small Java application was developed which is running on a server in the so-called
demilitarized zone (DMZ). This server is running in front of the firewall and will be able to accept
most incoming connection and communication attempts, but it is not able to send data through the
firewall to the secure area. In the secure area another server is running. An implicit advantage of
remote visualization systems in general is the fact that only image data is transmitted. Even if an
attacker would hijack the communication between the client and the render server he would only
get rendered images from the application on the server side. The raw – and possibly confidential –
data is located behind a firewall on a server that can not be accessed. Since the communication
protocol uses proprietary commands that can be defined by the user it is very hard to tunnel the
firewall using our remote protocol.

4. Discussion

This chapter will discuss our approach to stream interactive visualization data from the client to the
server. First of all, the remote client gets its data image by image. This means that the server grabs

646

the content and saves every image into a buffer. From the buffer a server thread creates a network
command that will be transmitted to the remote client. An obvious alternative that comes to mind is
to use a video stream. There are three reasons why we do not use a video stream. The first thing to
take into account is the ability of the client to decode data. Decoding of video streams requires
CPU power that is a scarce resource on mobile hardware. Especially taking into account that the
device does not only have to listen to the video stream but furthermore has to mange interaction
commands from the user makes such a solution even less useful. The second issue is the ability of
the server to encode video streams in real-time. We have tested several encoders for different video
streams like e.g. MJpeg or Mpeg4 [8]. These tests clearly showed that a standard computer will not
be able to encode a video stream in real-time from an image chain provided frame-by-frame The
best result reached frame rates of around 2 to 5 when using software encoders and the latest
standard CPU hardware available. Even the use of multi-core CPUs does not give any advantages
to the frame rate that can be provided by the server, because the image compression for a network
stream can not be parallelized to be more efficient. The third point to take into account is mainly a
synchronization issue and this is the major reason for deciding against video stream based
visualization. Video streams with high compression rates typically consist of enclosed sequences of
images. Within these sequences, single images are compressed using techniques that differ from
format to format. But generally on the decoder side these sequence blocks must be decoded at once
because the single images inside the sequence have certain dependencies on their parents.
However, the current sequence has to be completely processed by the client before the client can
react to the latest interaction. Therefore the user would have the experience that the remote
visualization does not react immediately to its interaction requests. Especially when navigating in
3D scenes with fluent animations it makes a huge difference if a camera movement appears in real-
time to the user when he started it or if the user has to wait a second until his interaction appears on
the remote device. In summary, for our application scenario an on demand single image
transmission is the most adequate solution.

We have tested a variety of compression formats like jpeg (with different quality settings from 30%
up to 100% quality), png, bmp or zip on a dual core processor machine. Here, the jpeg and png
compression have proved to be the most useful for the proposed system. Most mobile devices are
able to decompress jpeg or png using their hardware resources which makes the decompression
procedure very fast on the client side. On the server side png requires more CPU resources than
jpeg but none of these two compression methods takes the CPU to its limits when not exceeding
image sizes of around 1024x768 pixels. This scalability issue is obviously a minor problem on
smartphones or very slim devices with small displays but has to be considered when talking about
remote solutions for web environments. Approaches to address especially the support of large
solutions are described in chapter 6 in the future work part.

The hardware requirements on the server side for the support of a large number of simultaneous
users are the biggest scalability challenge. After all, the more independent visualizations the user of
such a system wants to provide, the more instances of the application have to run on the server
simultaneously and the more hardware performance is required to achieve reasonable frame rates.
This is, of course, hardly a new problem, but rather a well-known issue that has been researched
intensively by the network and service management community [1]. Depending on the application,
the number of clients and the request rate it is possible to find the most cost-effective solutions.
One major scenario for our application is to connect multiple remote clients to the same
visualization. In that scenario only one application runs on the server side and multiple users are
connected to that single server application. Since the render server buffers the captured images, this
buffer can be used to broadcast the current image to every connected client, which causes only low
additional server load.

647

5. Application Areas

Due to the flexibility of the introduced system, the fields of application are numerous. The generic
client implementation and the usage of the JME platform allow the client application to be ported to
a variety of mobile devices as well as used in a web browser. The simplicity and flexibility of the
render server interface allows the integration of the technology into a large variety of applications
in the computer graphics area.

Figure 4: The application FinMotion and a game client with captured graphics content on a mobile phone.

The render server application interface was integrated into three completely different applications:
One written in C++ using the QT platform that uses a scatter plot visualization of financial data
called FinMotion [23], one gaming application using OpenGL rendering, and a Java application
that visualizes cloth simulation in 3D and in real-time [7]. Especially the gaming application and
the cloth simulation application make exhaustive use of hardware resources on the server side. The
cloth simulation tool, which is already integrated into a CAD software for the garment industry,
runs on computers with at least dual core CPUs and the latest graphics hardware.

Figure 5: The applications Virtual Try On [7] and FinMotion [23] in the mobile web browser client visualized as
remote applications. The cloth simulation application was slightly adapted to enhance the functionality while the
scatter plot application is captured as a complete application window.

648

All three applications are connected to our remote visualization system by integrating the render
server’s application interface. On the client side, the same mobile client with only small
modifications is used for all applications. As the mobile client is written with JME it can be used on
a mobile phone as well as in a desktop environment. For the mobile client only the graphics content
of the applications was captured, for the web version either the complete application (for
FinMotion) or the rendering part of the application (for the cloth simulation). All applications run
on the mobile client and can be used interactively. The game client allows a landscape walkthrough
and basic interactions with the character, the cloth simulation allows to chose different garment
setups that are simulated in real-time on the server side and visualized on the mobile client. In
FinMotion only the functionality of browsing through the financial data sets is mapped onto the
mobile client for smartphones, while the complete application functionality is available in the web
browser version. Again, all different applications written with different toolsets or languages are
integrated into our remote visualization system with low effort all using the same render server and
all using the same remote client.

5.1 Business Impact

General trends in the field of mobile technologies show that bandwidth and coverage of available
connection networks were continuously increasing for many years. It can also be anticipated that
this trend will continue and accelerate in the coming years with technologies like WiMAX and LTE
[1]. Providing a visualization technology that enables the user to remotely access data sources and
applications will enable new workflow concepts independent from office locations and times.

We see our technology emerging from a flat rate evolution that will provide cost-effective and
high-bandwidth access to business resources. The technology itself can provide the necessary
graphics functionality of a remote workplace of the future that not only depends on voice and email
access but also on the remote availability of visual information. The possibility to use applications
from everywhere and to remotely make informed decisions will certainly save cost and time, and
will support decision making processes for a variety of businesses and work flows.

6. Conclusion and Future Work

This paper introduces a system for remote visualization of graphical content. Our approach enables
the integration of the technology in a variety of applications. Thus, with low additional effort
application contents can be made available in mobile and web environments. This paper discusses
the architecture of the system and its components, the necessary data formats and transmission
techniques, and has shown several integration scenarios.

Regarding future work, we plan to include a better policy management in the render server to
handle interaction requests from different users for the same visualization. Currently, the most
recent interaction request is executed. Furthermore, the command set used for interaction between
the mobile client and the server application is pre-defined. In the future, we will develop an
interaction system that allows the definition of generic commands that will be interpreted later in
the application that is connected to the render server on a mobile client. Another planned
enhancement is the support for DirectX applications. DirectX provides options for widget capturing
that can extend the existing interface and improve the overall performance of the capturing
algorithms. Furthermore, a client-side DirectX implementation could improve the performance
especially for the web clients. Finally, there are ways to improve the transmission of the image data
by splitting the images into parts that are frequently updated and parts that are updated very rarely.

649

Those rarely updated parts of the overall image can be transmitted on demand. Parts of the
application that are continuously updated have to be transmitted permanently.

Acknowledgment

We thank the Heinz-Nixdorf-Stiftung in Paderborn, Germany for funding the research project
TRAVO, which formed the basis of this technology.

7. References

[1] 3GPP LONG TERM EVOLUTION. http://en.wikipedia.org/wiki/3GPP_Long_Term_Evolution
[2] COMMUNICATIONS MAGAZINE, IEEE. Volume 45, Issue 4, April 2007
[3] J. DIEPSTRATEN, M. GORKE, T. ERTL, Remote line rendering for mobile devices, 2004, In IEEE Computer

Graphics International (CGI)’04
[4] K. ENGEL, O. SOMMER, AND T. ERTL. A Framework for Interactive Hardware Accelerated Remote 3D-

Visualization. In Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym ’00, pages 167–177,291,
May 2000.

[5] JAVA PLATFORM, MICRO EDITION (JAVA ME). http://java.sun.com/javame/index.jsp
[6] JAVA TECHNOLOGY. http://java.sun.com/
[7] K. KHAKZAR, R. BLUM, J. KOHLHAMMER, A. FUHRMANN, AN. MAIER, AX. MAIER. Interactive

Product Visualization for an In-store Sales Support System for the Clothing Retail. In: HCI International 2007.
Proceedings and Posters [DVD-ROM]: With 8 further Associated Conferences. Berlin, Heidelberg, New York :
Springer Verlag, 2007, LNCS 4557, pp. 307-316.

[8] MOVING PICTURES EXPERTS GROUP. http://www.chiariglione.org/mpeg/
[9] M. NURMINEN. M-Loma – A Mobile 3D City Map. Proceedings of the eleventh international conference on 3D

web technology, 2006
[10] MICROSOFT FOUNDATION CLASSES (MFC). http://msdn.microsoft.com/en-

us/library/d06h2x6e(VS.80).aspx
[11] Microsoft Remote Desktop Protocol (RDP).

http://www.microsoft.com/technet/prodtechnol/Win2KTS/evaluate/featfunc/rdpfperf.mspx
[12] OpenGL ES. http://www.khronos.org/opengles/
[13] K. PULLI, T. AARNIO, K. ROIMELA, J. VAARALA. Designing Graphics Programming Interfaces for Mobile

Devices, IEEE Computer Graphics and Applications Volume 25, Nr 6, 2005
[14] K. PULLI, T. AARNIO, T. MIETTINEN , K. ROIMELA, J. VAARALA. Mobile 3D Graphics with OpenGL ES

and M3G. San Francisco : Elsevier, Morgan Kaufmann, 2008. (The Morgan Kaufmann Series in Computer
Graphics). - ISBN 978-0-12-373727-4

[15] QT. http://trolltech.com/products/qt/
[16] T RICHARDSON, Q STAFFORD-FRASER, K R WOOD, A HOPPER, Virtual network computing. IEEE

Internet Computing 1998
[17] B.O. SCHNEIDER, I. M. MARTIN. An Adaptive Framework for 3D Graphics over Networks, Computers &

Graphics, Vol. 23, No. 6, 1999.
[18] SILICON GRAPHICS, Inc. OpenGL Vizserver 3.0 – Application-Transparent Remote Interactive Visualization

and Collaboration, 2003. http://www.sgi.com/.
[19] SOETEBIER, H. BIRTHELMER, J. SAHM. Client-Server Infrastructure for Interactive 3-D Multi-User

Environments. In: Skala, Vaclav (Ed.) ; European Association for Computer Graphics (Eurographics): Journal of
WSCG Volume 12 No. 3, 2004. Proceedings. Plzen : University of West Bohemia, 2004, S. 387-394.

[20] SOUMYAJIT DEB, P. J. NARAYANAN. RepVis: A Remote Visualization System for Large Environments.
Proceedings of the Workshop on Computer Vision, Graphics and Image Processing (WCVGIP), Feb. 2004,
Gwalior, India, pp. 54--57.

[21] S. STEGMAIER, M. MAGALL ´ON, AND T. ERTL. A Generic Solution for Hardware-Accelerated Remote
Visualization. In Proceedings of EG/IEEE TCVG Symposium on Visualization VisSym ’02, 2002.

[22] E. TELER D. LISCHINSKI, Streaming of Complex 3D Scenes for Remote Walkthroughs, Computer Graphics
Forum, 2001, pp. 17-25

[23] T. TEKUSOVÁ, J. KOHLHAMMER. Applying Animation to the Visual Analysis of Financial Time-Dependent
Data. IEEE International Conference on Information Visualization (IV), 11. 2007, Zurich, Switzerland, pp. 101-
108

[24] VIRTUAL NETWORK COMPUTING OVERVIEW. http://en.wikipedia.org/wiki/Virtual_Network_Computing

650

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	AN INTERACTIVE REMOTE VISUALIZATION SYSTEM FOR MOBILE APPLICATION ACCESS
	Marcus Hoffmann
	Jörn Kohlhammer
	Recommended Citation

	Microsoft Word - Erste Seiten 246_Band1.doc

