
Association for Information Systems
AIS Electronic Library (AISeL)

Wirtschaftsinformatik Proceedings 2009 Wirtschaftsinformatik

2009

MODEL-DRIVEN DEVELOPMENT OF
SERVICEORIENTED BUSINESS
APPLICATION SYSTEMS
Stefan Kätker
SAP AG, AP Engineering - Process Modeling

Susanne Patig
University of Bern, IWI

Follow this and additional works at: http://aisel.aisnet.org/wi2009

This material is brought to you by the Wirtschaftsinformatik at AIS Electronic Library (AISeL). It has been accepted for inclusion in
Wirtschaftsinformatik Proceedings 2009 by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Kätker, Stefan and Patig, Susanne, "MODEL-DRIVEN DEVELOPMENT OF SERVICEORIENTED BUSINESS APPLICATION
SYSTEMS" (2009). Wirtschaftsinformatik Proceedings 2009. 19.
http://aisel.aisnet.org/wi2009/19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301349378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fwi2009%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi?utm_source=aisel.aisnet.org%2Fwi2009%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009?utm_source=aisel.aisnet.org%2Fwi2009%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/wi2009/19?utm_source=aisel.aisnet.org%2Fwi2009%2F19&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

MODEL-DRIVEN DEVELOPMENT OF SERVICE-
ORIENTED BUSINESS APPLICATION SYSTEMS

Stefan Kätker1, Susanne Patig2

Abstract
The industrial development of real-world business applications that are based on service-oriented
architecture (SOA) is subject to technological and organizational requirements. The paper
describes an approach that tackles these requirements by ideas from model-driven development
(MDD). The approach consists of a metamodel accompanied by modeling guidelines, a governance
process ensuring that these guidelines are kept, and a modeling tool to support model creation and
governance process. The successful application of the presented approach during the development
of SAP’s Business byDesign solution shows that the benefits of MDD in software industry lie
beyond code generation and outweigh modeling effort.

1. Motivation

Application systems rely on service-oriented architecture (SOA) in three ways: 1) as a composite
application for a particular purpose by integrating or extending existing SOA-based systems, 2) by
being a priori and completely designed based on SOA principles or 3) by ex post providing services
as external interfaces to their existing, evolved implementation. The second and third SOA usage
types are perfect starting points for the first one. This paper introduces a methodology that supports
the ‘SOA by Design’ development of application systems in a large, international project setting.
The approach is called the eSOA Modeling Methodology and was developed by SAP AG.
To tackle the organizational and technological requirements of the development context (see
Section 2), ideas from model-driven development were used. Model-driven development (MDD) is
characterized by a tight coupling between the descriptions of a software system (models) and the
system’s implementation [7]: Software development starts from a set of models representing
distinct views on software architecture [5]. These abstract models are successively transformed into
platform-specific ones – with source code at the end. The benefits of applying MDD in software
industry do not only stem from code generation, but also from the models that constitute an easy to
understand lingua franca among the development teams [13].
The eSOA Modeling Methodology consists of a metamodel, a governance process and a tool
environment; all of this is explained in Section 3 and related to the state of the art in Section 4. The
approach has been applied in the development of the application system ‘SAP Business byDesign’
– SAP’s ERP solution for small and medium enterprises, which was designed and implemented by

1 SAP AG, AP Engineering - Process Modeling, Dietmar-Hopp-Allee 16, D-69190 Walldorf, Germany.
2 University of Bern, IWI, Engehaldenstrasse 8, CH-3012 Bern, Switzerland.

171

strictly following SOA. The experience gained in this process is used to evaluate the methodology
(Section 5); some critical points are shown.

2. Requirements of the Software Development Process

In the development process of the SAP ‚Business byDesign’ application system, the following three
groups of requirements had to be considered:
1) Large-scale commercial software development often involves huge, decentralized teams. For

example, more than 800 people from 3 continents participated in the development of SAP
‘Business byDesign’. Managing such a project requires clear boundaries between the
development teams. Moreover, a common language for all developers is needed.

2) The development of a (functionally and technologically) new software system requires meth-
odological support for the whole software lifecycle including requirements engineering, system
design, system implementation, deployment and maintenance. Model-driven development
satisfies these requirements, given that the models exactly match the implementation. This can
be guaranteed by either source code generation form models or organizational means.

3) As a technological innovation, the new software system should be based on service-oriented
architecture, which means that the software system provides its functionality by interacting
(software3) services. Services reside on the implementation level, i.e., they are (software2) com-
ponents that completely encapsulate the implementation of some functionality [16]. From the
outside, only the description of this functionality (the interface) is visible. Interfaces group the
operations offered by the service and the operation signatures (input and output parameters and
their respective types). During the development of a SOA-based application system, the rather
unstructured functional requirements of varying granularity must be broken down into well-
defined and consistently structured components and interfaces.

These requirements are satisfied by the eSOA Modeling Methodology as follows:
1. Metamodel (see Section 3.1) and content creation guidelines (see Section 3.2)

The metamodel contains all artifacts (metaclasses; see Section 3.1.1) to describe the service-
oriented architecture of a (business) application system, i.e., the software components, their
interfaces and their relationships to other components and to the system environment. The
metamodel is accompanied by content creation guidelines for the identification, design and
implementation of metaclass instances. The various views on software architecture [5] are
realized by arranging the metaclasses into several model types (see Section 3.1.2).

2. Governance process (see Section 3.2):
To ensure that the modeled content is consistent and complies with the guidelines, a central
governance process is required. All models and entities have to pass a review before
implementation. The governance process also covers changes during the development cycle.
Software changes without subsequent model changes and governance approval are not allowed.

3. Modeling tool environment (see Section 3.3):
Metamodel and content creation must be supported by a tool environment that implements all
metaclasses and model types of the eSOA Modeling Methodology. The modeling tools create
the eSOA repository for the modeled contents and include facilities to generate proxy code.

3 We skip this term in the following - for brevity and since it is clear from the context.

172

3. eSOA Modeling Methodology

3.1. Metamodel

3.1.1. eSOA Metaclasses

SAP ‘Business byDesign’ relies on an enriched form of SOA called Enterprise SOA (eSOA, for
short) [16], where the business functionality (business scope) of an application system is completely
and solely exposed via services. The services are provided by business objects and process
components.
Business objects are the metaclasses with the finest granularity; they structure the functionality of
an application system. A Business Object (BO) is a set of entities with common characteristics and
behavior that represents well-defined business semantics [12], [16]. The functionality of business
objects can be accessed via services. Typical business objects are, e.g., ‚sales order’ and ‚customer
invoice’ (see Section 3.1.2).
Each business object belongs to exactly one process component (see Fig. 1). Process components
group business objects and are the building blocks for business processes. A Process Component
(PC), for example, ‚Sales Order Processing’ (see Fig. 3 in Section 3.1.2), is a modular, context
independent, reusable software package that exposes its functionality (which may span several
database transactions) as (compound) services.
Process components are collected into deployment units (see Fig. 1). A Deployment Unit (DU) is a
piece of software – like ‚Customer Relationship Management’ – that can be operated independently
on a separate physical system. Usually, deployment units are jointly shipped. They are decoupled
from each other via enterprise services and process agents (see below). Logical Units of Work are
not created across deployment units.
The exposed services are abstractly described by service operations. A service operation is a
specification of a function (e.g., ‚create sales order’) with a set of message types assigned as its
signature. Semantically related service operations are combined into service interfaces (SI) that
specify the functionality offered (inbound SI) or used (outbound SI) by process components (see
Section 3.1.2, Fig. 3). Depending on the interacting partners, it is distinguished between A2A and
B2B service interfaces, intended for the communication between applications of one business
partner (A2A) or between systems at several business partners (B2B), respectively.
Process Agents (PA) are pieces of software responsible for the interaction between process
components and across deployment units. They relate the sending (outbound PA) or receiving
(inbound PA) of XML messages to changes of the involved business objects (e.g., status update,
creation or deletion of BO instances) and, hence, intermediate between business objects and service
interfaces (see Fig. 1). Fig. 3 in Section 3.1.2 provides an example for the use of process agents.
At the finest level, business objects are structured into (BO) nodes. A business object node repre-
sents a semantically related group of elements that can be treated as a part of the business object.
For example, the business object ‘sales order’ may comprise the nodes ‘sales order item’, ‘price
calculation’ and ‘delivery terms’. Business object nodes are typed by data types.
Fig. 1 shows the abstract syntax (i.e., the constructs and their allowed connections [8], [7]) of the
eSOA metamodel metaclasses as an UML class diagram. This abstract syntax is accompanied by
eSOA Content Creation Guidelines (see Section 3.2) for the identification, design and
implementation of metaclass instances. The concrete syntax of the metaclasses, i.e., their notation
[8], [7], is defined by the eSOA model types, which are described in the next section.

173

Inbound
Process Agent

Outbound
Process Agent

Business
Object

Inbound
Operation

Message
Type

Deployment
Unit

Process
Component

Business
Object Node

Data Type

Inbound
Compound

Service
Interface

Outbound
Operation

Outbound
Compound

Service
Interface

1..*

1..*

1..* 1..*1..*1..*

1
1

leads to changes

1..*
1..*

triggers

1..*
1..*

0..1
1

uses

1..*

1..*
*

1..*

*

*

1 1

1..* 1..*
1..3 1..31 1

Fig. 1. Abstract Syntax of the Main eSOA Metamodel Artifacts.

3.1.2. eSOA Model Types

This section explains the main eSOA model types. According to ANSI/IEEE [2], they cover the
structural (PC Models, BO Models), behavioral (Integration Scenario Models, PC Interaction
Models) and context (Integration Scenario Models) viewpoints on software architecture. The model
types are illustrated by the scenario „Sell from stock”, which describes the fulfillment of a sales
order for material from stock (Fig. 2 to Fig. 4).

Fig. 2. Sample Integration Scenario Model for ’Sell from stock‘ (© SAP AG).

174

Integration Scenario Models (see Fig. 2) are the first ones created. They spring from the functional
requirements and describe the realization of a business process by eSOA. An integration scenario
consists of deployment units, process components and the necessary interactions among them. It is
distinguished between direct interactions by local function calls, service interactions that amount to
message exchange via the SAP Exchange Infrastructure (XI), and other interactions – executed by,
e.g., remote function calls. All types of interactions are represented by arrows. Process components
that do not belong to SAP ‘Business byDesign’ are also depicted. For example (see Fig. 2), the
processing of sales orders is a typical task of customer relationship management and often the result
of a sales quote. Each placed sales order corresponds to a purchase order at the customer. Thus, the
DU ‚Customer Relationship Management’ consists of two PC (‚Sales Quote Processing’ and ‚Sales
Order Processing’) that directly interact, whereas messages with the customer’s systems must be
exchanged via service interactions. Service interaction is also necessary to transfer the sales order’s
data to invoicing, as the PC ‚Customer Invoice Processing’ belongs to another DU.
Each PC is described by a Process Component Model (see Fig. 3). This model type shows the
business objects and process agents belonging to some PC, its service interfaces and all process
components using the inbound service interfaces. Process Component Models do not represent
process flow logic, but architecture relevant ‘uses’ and ‘realized by’ relationships. Service
interfaces placed above or below (to the right of) a BO group asynchronous (synchronous)
interactions.

Fig. 3. Sample Process Component Model (© SAP AG).

Fig. 3 shows the Process Component Model of the PC ‚Sales Order Processing’ from Fig. 2. The
operations to create, change or cancel instances of the BO ‚Sales Order’ are grouped into the same

175

service interface since they can be asynchronously invoked by the same PC ‚Purchase Order
Processing at Customer’. A process agent (a technical artifact) connects the SI to the BO.
The Process Component Interaction Model (see Fig. 4) can be seen as an extended view on the
information contained in Process Component Models: It shows the service choreography and the
messages exchanged between exactly two process components for a specific business goal and the
involved business objects, process agents, interfaces, operations and message types. This model
type is only generated for service interactions. Fig. 4 shows the corresponding service interaction
between the PC ‚Customer Invoice Processing’ and the PC ‚Sales Order Processing’, which
exchange special message types for customer invoices (request and issued confirmation).

Fig. 4. Sample Process Component Interaction Model (© SAP AG).

3.2. Content Creation and Governance Process

There is no central ‘modeling department’ within SAP AG; instead, the modeling (called content
creation in the following) is a task of the developers. Decentralized content creation is facilitated by
the eSOA Content Creation Guidelines that accompany the eSOA metamodel as well as centralized
methodology coaching: The subject matter experts in the development teams are assisted by eSOA
Modeling Methodology experts, who help them in applying the content creation guidelines.
The content creation guidelines control the identification, design and implementation of metaclass
instances and models; a few examples are given in the following: The identification of metaclass
instances puts the eSOA metaclass definitions into particular content entities. For example, business
objects are defined according to industry standards, e.g., the ones for B2B communication from
RosettaNet [11], or industry best practices. The formation of process components follows an
outside-in business view: In general, a process component represents the software realizing a
business process that is typically executed in one department. A deployment unit is a collection of
process components and corresponds to the smallest unit of software distribution. Deployment units
are determined by thinking about customer’s deployment scenarios (e.g., central accounting, line-
of-balance-oriented production and regionally distributed sales) and business process outsourcing.
Service interactions and the message types exchanged are organized in patterns (e.g. ‚notification’,
‚information distribution’, ‚query response’), which are strictly derived from the transaction
patterns of the UN/CEFACT modeling methodology [14].
Design issues covered by the content creation guidelines include, for example, naming rules, the
determination of identifiers, modeling restrictions (e.g., a BO node data type must be either a global
data type or a data type composed out of global and aggregated data types) and technical

176

restrictions (e.g., multi-valued attributes are not allowed for BO nodes). The content creation
guidelines also provide code skeletons for the implementation of the metaclasses.
Finally, the PIC (Process Integration Content) governance process is SAP’s central approval and
quality assurance procedure for the modeled eSOA contents. Its tasks consist in 1) checking the
conformance of the models to the eSOA content creation guidelines, 2) approving exceptions from
these guidelines, 3) assuring identical semantics as well as reuse of the modeled entities across
development teams and throughout SAP ‘Business byDesign’ and 4) managing model changes.
Thus, the process increases the consistency of the modeled contents.
In detail, the PIC governance process comprises several phases (see Fig. 5). PIC0 focuses on the
definition of process integration aspects, i.e., the service orchestration between components: First,
the functional requirements are structured into business objects, process components and
deployment units by applying the eSOA content creation guidelines. PIC01 approves cut, semantics
(i.e., appropriate definition) and naming of the identified entities. Then, the constituents of the
Integration Scenarios Models (process components and their interactions) are defined and
confirmed by PIC02. Thirdly, each interaction between process components is detailed by Process
Component Models and Process Component Interaction Models (PIC03). The phases PIC1 to PIC3
are concerned with data modeling: Business objects, their nodes and data types as well as service
signatures are defined. Fig. 5 relates the PIC governance process to the process of modeling.

Fig. 5. SAP Process Integration Content (PIC) Governance Process.

Only those modeled entities that have passed the PIC governance process are released for imple-
mentation and listed in the eSOA Repository (ESR), a central directory of all elements that embody
eSOA [16]. For business objects and service interfaces, proxy coding is generated (see Fig. 5).
If either subsequent functional requirements or unforeseen implementation issues call for deviations
from the modeled entities, first, the affected models have to be adjusted. Then, the PIC governance
process must be passed anew (now as a change process), before implementation can be started.

177

3.3. Modeling Tool Environment

To efficiently realize MDD in large software development projects, an appropriate tool
environment is important. Not only modeling must be supported, but also the governance process.
Therefore, key features of such a tool environment include: Close integration with the eSOA
repository, high usability and specific adaptation to the modeling methodology to make modeling
efficient, status management for the models and their entities to track the approval status in the
governance process, versioning and release management like for source code. Reports should check
automatically if abstract syntax and content creation guidelines have been kept. These checks
ensure consistency and quality of the modeled contents.
Owing to the development cooperation between SAP and IDS Scheer, the ARIS tool [1] was used
to implement the eSOA Modeling Methodology. The close integration with SAP’s eSOA
Repository as well as the flexible reporting and configuration capabilities of ARIS proved to be
very useful. However, ARIS provides only the tool basis to implement the eSOA Modeling
Methodology (see Fig. 6); the ARIS modeling methodology featuring event-driven process chains
is not a part of the eSOA Modeling Methodology.

Fig 6. A Process Component Interaction Model in the ARIS Modeling Tool.

4. Relationship of the eSOA Metamodel to Standards

Although the eSOA Modeling Methodology was invented to support the development of a
company-specific form of SOA, the resulting service-oriented application systems will probably be
integrated in landscapes of heterogeneous software systems. For that reason, conformance to
standards is important. Especially standards for the description of software architectures (ANSI/
IEEE 1471-2000 [2]), general modeling standards (UML [8]) and standards related to (web)
services (WSDL [15], SCA [10]) must be kept. Process modeling standards like the Business
Process Modeling Notation (BPMN [6]), event-driven process chains (EPC [1]) or UML activity
diagrams [8] are, however, not relevant, since software architecture, which the eSOA Modeling
Methodology describes, is only concerned with structural aspects of software systems and general
interaction possibilities (as opposed to particular interactions) [5].
In fact, the eSOA metamodel can largely be expressed as an UML profile. By accepting loss of
some internal information, eSOA models can also be transformed into a SCA-compliant represen-
tation. More detailed descriptions of these mappings can be found in [4]. The main advantage of our
approach is the precise mapping from the eSOA models to SAP’s application architecture.

178

The eSOA definitions of service interfaces and operations agree with the standard Web Service
Description Language (WSDL) 2.0. This conformance is relevant to external invocations of the
services provided by SAP ‘Business byDesign’. WSDL 2.0 characterizes services by interfaces that
contain at least one operation; the signature of an operation consists of messages [15]. The
transformation from WSDL to proxy code is straightforward.

5. Evaluation of the eSOA Modeling Methodology

The eSOA Modeling Methodology was applied during the development of the service-oriented
application system SAP ‘Business byDesign’: The functional requirements were decomposed into
business objects and services and aggregated to process components and deployment units before
actual coding started. Table 1 shows the according numbers of eSOA entities.

Table 1. Numbers and Usage of Models (March 2008)

Model Type Model Constituents Model Usage beyond
 DU PC BO PA O MT Documentation
Name Counts 20 130 373 622 651 579
Integration Scenario Models 28 X X Derivation of end-user test cases
PC Models 115 X X X Generation of PC Interaction

Models, Consistency Checks
PC Interaction Models 211 X X X X X Activation of a service interaction

during configuration generates
entries in SAP XI

BO Models 373 X Derivation of operation
signatures; Generation of
provider classes, interfaces and
proxies

Abbreviations: BO: Business object, DU: Deployment unit, MT: Message type, O: Operation, PA: Process agent, PC:
Process component, X: Model type uses metaclass instances

The creation of the models causes effort. The effort shows up in the numbers of models and their
entities (see Table 1) and in the phases of the governance process (see Fig. 5) that must be passed
before implementation and in case of changes. Although this effort is significant, our experience is
that it pays off through the usage of the models over the whole software lifecycle (see Table 1): The
eSOA metamodel provides clear guidance and a common language to formalize the gathered
functional requirements in a way that immediately leads to a service-oriented system design.
System specification is structured according to the eSOA metaclasses and model types (for
example, specifications are written per process component or integration scenario); development
teams are formed around process components and deployment units. In implementing the system,
provider classes, interfaces and proxies have been automatically generated from the Business
Object Models in the eSOA Repository. End-user test cases are derived from Integration Scenario
Models; tests related to data and message types can also be generated. In order to derive the
technical configuration of a particular customer system during deployment, Process Component
Integration Models are used to automatically create interaction-specific configuration entries for
enterprise service interactions in SAP’s Exchange Infrastructure (XI). Software maintenance
requires deep knowledge of the system and its integration; the service and support teams gain this
knowledge form the modeled content. Finally, the common language coined by the eSOA
metamodel drives development efficiency throughout the entire software lifecycle.
Two critical points of the eSOA Modeling Methodology can be identified; the first one is the
governance process. Though it is mandatory for quality assurance, it should not be overstated.
Governance must balance out rigid quality checks and room for innovation and exceptions. The PIC

179

In dieser Publikation wird auf Produkte der SAP AG Bezug genommen. SAP, R/3, xApps, xApp, SAP NetWeaver, Duet, PartnerEdge, ByDesign, SAP
Business ByDesign und weitere im Text erwähnte SAP-Produkte und -Dienstleistungen sind Marken oder eingetragene Marken der SAP AG in
Deutschland und anderen Ländern weltweit. Business Objects und das Business-Objects-Logo, BusinessObjects, Crystal Reports, Crystal Decisions, Web
Intelligence, Xcelsius und andere im Text erwähnte Business-Objects-Produkte und -Dienstleistungen sind Marken oder eingetragene Marken der Business
Objects S. A. in den USA und anderen Ländern weltweit. Business Objects ist ein Unternehmen der SAP. Die SAP AG ist weder Autor noch Herausgeber
dieser Publikation und ist für deren Inhalt nicht verantwortlich. Der SAP-Konzern übernimmt keinerlei Haftung oder Garantie für Fehler oder
Unvollständigkeiten in dieser Publikation.

governance process was refined several times to ensure that it does not become the bottleneck of
development efficiency, but still guarantees consistent content of high quality.
Secondly, the eSOA Modeling Methodology is architecture-driven. The created models are not well
suited to explain business experts how business processes are realized. Experience showed that
even in developing composite applications more business context is required to manage service
integration. This can be achieved by combining service interaction and process flow as proposed by
BPMN and the related execution language BPEL. Therefore, our future research is directed to
extending the eSOA Modeling Methodology by a BPMN-based process flow description.

6. Conclusion

This paper has presented an approach for the model-driven development of SOA-based business
application systems in a huge industrial setting. In domains other than business applications, both
metamodel and content creation guidelines of the eSOA Modeling Methodology must be adapted.
The eSOA Modeling Methodology belongs to the development paradigm of SAP’s ‘Business by-
Design’ application system. As a result, the complete functional content of ‘Business byDesign’ is
described by models with a one-to-one correspondence to source code. The models form an easy to
understand common language across various functional and organizational areas. In a project
involving more than 800 developers, such a language raises development productivity
The modeled content opens up opportunities to design and document other aspects of the software
system as well, such as configuration constraints, process flow and end-user interfaces. All this can
only be realized if metamodel, content creation guidelines, governance process and modeling tool
are treated as a single, integrated topic, as done by the eSOA Modeling Methodology.

7. References
[1] IDS Scheer, ARIS Software, http://www.ids-scheer.com/en/aris.
[2] IEEE, IEEE Recommended Practice for Architectural Description of Software-Intensive Systems. IEEE Std 1471-
2000. Recognized as an American National Standard (ANSI), Approved 2000-09-21.
[3] JOHNSTON, S.K., UML 2.0 Profile for Software Services, http://www.ibm.com/ developerworks/
[4] KÄTKER, S., PATIG, S., Model-Driven Development for Service-Oriented Software Systems. Preprint No. 208,
Institut für Wirtschaftsinformatik der Universität Bern, Bern, 2008.
[5] KRUCHTEN, P.B., The 4+1 View Model of Architecture, in: IEEE Software Vol. 12, No. 6 (1995).
[6] OMG, Business Process Modeling Notation, Version 1.1, formal/2008-01-17 http://www.bpmn.org/
[7] OMG, Model-driven Architecture, Guide Version 1.0.1, omg/2003-06-01, http://www.omg.org/
[8] OMG, Unified Modeling Language: Superstructure, Version 2.1.2, formal/2007-11-02, http://www.omg.org/
[10] OSOA, Service Component Architecture Assembly Model V1.00, http://www.osoa.org/
[11] RosettaNet: http://www.rosettanet.org/
[12] SEUBERT, M., Business Objects und objektorientiertes Prozeßdesign (in German), in: Becker, J., Rosemann, M.,
Schütte, R. (Hrsg.), Entwicklungsstand und Entwicklungsperspektiven der Referenzmodellierung, S. 46-64.
Arbeitsbericht Nr. 52, Universität Münster, Institut für Wirtschaftsinformatik 1997.
[13] STARON, M., Adopting Model Driven Software Development in Industry – A Case Study at Two Companies, in:
Nierstrasz, O. et al. (Hrsg.), MoDELS 2006, LNCS Vol. 4199, pp. 57 – 72. Springer, Berlin 2006.
[14] UN/CEFACT, UMM User Guide; http://www.unece.org/cefact/umm/umm_index.htm.
[15] W3C, Web Services Description Language (WSDL) Version 2.0, Part 1: Core Language. http://www.w3.org/
[16] WOODS, D., MATTERN, T., Enterprise SOA – Design IT for Business Innovation, O’Reilly, Beijing 2006.

180

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2009

	MODEL-DRIVEN DEVELOPMENT OF SERVICEORIENTED BUSINESS APPLICATION SYSTEMS
	Stefan Kätker
	Susanne Patig
	Recommended Citation

	Microsoft Word - Erste Seiten 246_Band1.doc

