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ABSTRACT  

Due to the tremendous growth in e-learning in recent years, there is a need to address the issue of attrition in online courses. 

Predictive modeling can help identify students who may be “at-risk” to drop out from an online course.  This study examines 

various categorical classification algorithms and evaluates the accuracy of logistic regression (LR), neural networks 

(Multilayer Perceptron), and support vector machines (SVM) models to predict dropout in online courses. The analyses with 

LR, MLP, and SVM indicated that current college GPA is the strongest predictor of online course completion. 
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INTRODUCTION 

The issues of student retention and dropout are important in traditional face-to-face programs as well as in e-learning 

programs.  It is important to identify at-risk students – or those students who have a greater likelihood of dropping out of a 

course or program – as it can allow instructors and advisors to proactively implement appropriate retention strategies. Online 

enrollments have been growing at rates far in excess of the total higher education student population (Allen & Seaman, 

2007).  A report on e-learning exhibits that 93.5% of 1539 institutions of higher education surveyed believe that the demand 

for e-learning is growing, and 90.3% of those institutions expect their online enrollment to grow (Allen & Seaman, 2008).  

Due to tremendous growth in e-learning in recent years, there is a strong need to address the issue of attrition in online 

courses. 

There are studies that have investigated the role of academic and non-academic variables in student retention in face-to-face 

programs, such as high school GPA and ACT scores – both of which were found to be good predictors of retention rates in 

face-to-face programs (Lotkowski et al., 2004; Campbell and Oblinger, 2007).  Some research specific to e-learning retention 

rates indicated that females tend to be more successful at online courses than males (Rovai, 2001; Whiteman, 2004). 

However, another study showed that gender had no correlation with persistence in an e-learning program (Kemp, 2002). 

Some studies have pointed out the relevance of age as a predictor of dropout rates in e-learning (Whiteman, 2004; Muse, 

2003). Diaz, though, found that online students were older than traditional face-to-face students, but there was not a 

significant correlation between age and retention (Diaz, 2000). External variables such as self-motivation, effective time 

management, and technical preparation were also found to have an effect on the retention of online students (Diaz, 2000). A 

study conducted by Park (2007) showed that age, gender, ethnicity, and financial aid eligibility were good predictors of 

successful course completion. The study conducted by Yu (2007) tied earned hours with student retention in online courses.  

 

Many studies that were conducted to identify high-risk students used statistical models based on logistic regression (Willging 

and Johnson, 2004; Hopkins, 2008; Pittman, 2008; Araque et al., 2009; Newell, 2007). The rationale for using logistic 

regression (LR) in the retention problem is that outcome is typically binary (graduated or not graduated) and probability 

estimates can be calculated for combinations of multiple independent variables (Pittman, 2008). Neural networks have also 

been used in classification problems of identifying academically at-risk students. Herzog (2006) and Campbell (2008) 

compared neural networks with regression to estimate student retention and degree-completion time. One study showed both 

logistic regression and neural networks were similar in performance in predicting graduation (Campbell, 2008); however it 

was not meant specifically for online students and did not study course level completion/dropout. This study compares the 
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predictive accuracy of logistic regression, Multilayer Perceptron (MLP), and support vector machines (SVM) models to 

predict dropout in online courses by analyzing data from Student Information Systems (SIS). 

CLASSIFICATION MODEL 

The prediction regarding whether a student will complete or drop a course can be categorized as a binary classification 

model. A literature review can help identify constructs and variables important to course completion or dropout. Since 

superfluous variables can lead to inaccuracies, it is important to remove them. Stepwise selection is a common approach for 

removing superfluous variables. 

To build a classification model, the following questions should be carefully addressed: 

• Which classification algorithms are appropriate in relation to problem characteristics?  

• How is the performance of selected classification algorithms evaluated? 

The following criteria should be considered to choose appropriate classification algorithms: the nature of the prediction 

(whether both class labels and probability of class membership are needed), nature of independent variables (continuous, 

categorical, or both), and the algorithmic approach (black box or white box). Both statistical and machine learning algorithms 

have been used to build classification models to identify class membership (for example, whether a student completed or 

dropped the course). Logistic regression, discriminant analysis, and logit analysis are common statistical algorithms used to 

predict categorical dependent variables. Logistic regression is appropriate if the independent variables are a mix of 

continuous and categorical variables.  Discriminant analysis is appropriate when independent variables (or predictors) are 

continuous and evenly distributed; while logit analysis is suitable when all of the independent variables are categorical. The 

following machine learning algorithms are commonly used in classification models: neural networks, decision trees, and 

support vector machines (SVM). SVM assigns class labels (0 or 1) but it does not provide probability of class membership. In 

decision trees, continuous variables are implicitly discretized by the splitting process and loose information along the way 

(Dreiseitl et al., 2003). Since the proposed model uses a mix of continuous and categorical independent variables, LR, MLP, 

and SVM are better suited to perform binary classification.  

The classification models are evaluated using two criteria: discrimination and calibration. Discrimination is used to 

demonstrate how well two classes (0 or 1) are separated, while calibration provides the accuracy of probability estimates. 

Common measures of discrimination include: accuracy, precision, specificity, and sensitivity. Sensitivity measures how often 

we find what we are looking for, while specificity measures how often we find what we are not looking for. Accuracy 

measures how well a binary classification test correctly identifies or excludes a condition. Precision measures the proportion 

of the true positives against all the positive results. In a ROC (receiver operating characteristic) analysis, sensitivity (for 

example, presence of course completion) is plotted against 1-specificity (absence of course completion) for each possible 

decision threshold. Accuracy can be measured by the area under the ROC curve, so its values for both logistic regression and 

MLP models are used as a basis of comparison.  The performance of each model is assessed by measuring the area under the 

ROC curve and classification tables.  MLP can be prone to overfitting, so a cross-validation strategy should be deployed. The 

model should be tested on a separate dataset to provide an unbiased estimate of generalization error.  

 

 METHODOLOGY  

A literature review was conducted to identify constructs and variables from the Student Information System linked to online 

course dropout. The following constructs were identified for their role in course completion: academic ability, financial 

support, academic goals, and demographics. Each construct is mapped to their respective variables (see table 1).  Stepwide 

regression was performed to determine the appropriateness of each selected independent variable. The sensitivity of each 

independent variable was analyzed to predict a binary, dependent variable:  Course Completion Status (CCS). A de-identified 

dataset of 269 students was gathered from undergraduate online courses taught in Spring 2009 at a small Midwest university 

in the United States.  The data were analyzed using LR, MLP, and SVM. The accuracy of the three models was compared on 

the basis of the classification matrix and the area under the ROC curve.  

 

Dependent Construct  Dependent Variable   Data Type 

Course Completion  • Course Completion Status   Categorical (course completed=1, 

Dropped=0) 

Independent Construct  Independent Variable(s)   
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Table 1: Constructs and Variables 

DATA ANALYSIS  

The study used logistic regression, MLP, and SVM analyses to analyze independent variables to predict a binary, dependent 

variable:  Course Completion Status (CCS). The CCS variable is the indicator of whether a grade was posted at the end of the 

course (CSS=1), or whether the student withdrew before course completion (CSS=0). All 269 cases were included in Binary 

LR, MLP, and SVM analyses. Table 2 shows the variable coding for categorical independent variables.  

Parameter Coding Frequency 

Gender  Female (0) 208 

Male (1) 61 

Degree Seeking Status Not Degree Seeking (0) 11 

Degree Seeking (1) 258 

Financial Aid Status No Financial Aid (0) 54 

Financial Aid (1) 215 

Table 2: Categorical Variables Coding 

 

The logistic regression analysis (table 3) shows that Current College GPA (p-value or sig.=0; Wald=16.81) is the strongest 

predictor of course completion. Financial Aid Status (p=.024; Wald=5.12) and Degree Seeking Status (p=.084; Wald=2.99) 

are also strong predictors; while age (p=0.856) and HS_GPA (p=0.731) are found to be weak predictors at 95% CI. The 

dataset indicates that online courses have a higher percentage of non-traditional or adult learners, thus ACT Score and High 

School GPA may not be good predictors of course completion for older learners. The Wald estimates provide the importance 

of each variable in the model. The Wald estimates for current College GPA, Financial Aid Status, and Degree Seeking Status 

are significantly higher than other independent variables, thus they appear to be stronger predictors of online course 

completion. The Exp(B) provides odd ratios. Since Current College GPA is a numerical variable, an increase in one point in 

GPA has a 3.68 times (or 368%) increase in online course completion (95% CI ranging from 1.97 to 6.88). The analysis 

indicates that a degree seeking student has a 3.18 times (or 318%) greater likelihood of completing an online course. 

Multicollinearity can create bias in logistic regression, so it is important to check for it. The correlation matrix and standard 

error (SE) are examined for each variable to spot multicollinearity. SEs (as shown in table 3) are low, implying that 

multicollinearity does not exist and the model is stable. The analysis shows the prediction accuracy is highest (Hosmer-

Lemeshow goodness of fit = 0.734) when all independent variables are included to predict the binary dependent variable. 

Table 4 is the classification table, which provides information about the overall accuracy to predict students having online 

course completion using logistic regression model. It provides overall 72.9% accuracy with a predicted probability of 0.5 or 

greater.  The sensitivity is 93.3%, which indicates that the logistic regression model is 93.3% accurate in identifying true 

positives; however it has low specificity (18.9%), indicating that this model needs improvement in identifying actual 

negatives (or dropouts). The area under the ROC curve (AUROCC) is another measure of accuracy of a predictive model. It 

measures discrimination - the ability of the test to correctly classify those with and without course completion. AUROCC 

Academic Ability • ACT Comp Score (ACT_Comp)  

• High school GPA (HS_GPA)   

• Current College GPA (Current_GPA) 

 Continuous 

Financial Support • Financial Aid Status (Fin_Aid)  Categorical (Financial Aid=1, No 

Financial  Aid=0) 

Academic Goals • Credit Completed  (Cred_Hours_Compl)   

• Previous Drops (Past_Drops) 

• Degree Seeking Status (DegSkngStat) 

 Continuous 

 Continuous 

 Categorical (Degree Seeking=1, Not 

Degree Seeking=0) 

Demographics  • Gender 

• Age  

 Categorical (Male=1; Female=0) 

 Continuous 
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ranges from 0 to 1 and values near 0.5 would mean the model is as good as flipping a coin. The AUROCC is 0.727 (as shown 

in table 5), which means that this model will assign almost 73% higher probability to students with course completion. The 

AUROCC shows that predicted probability has at least one tie between the positive actual state group and the negative actual 

state group, so bias cannot be completely ruled out. 

 
B S.E. Wald df Sig. Exp(B) 

95% C.I.for EXP(B) 

Lower Upper 

Step 1 HS_GPA .128 .373 .118 1 .731 1.137 .547 2.362 

ACT_Comp -.040 .049 .672 1 .412 .961 .873 1.057 

Current_GPA 1.305 .318 16.819 1 .000 3.688 1.977 6.881 

Cred_Hours_Compl .003 .004 .625 1 .429 1.003 .996 1.010 

Past_Drops -.047 .071 .428 1 .513 .954 .830 1.098 

Fin_Aid(1) .816 .361 5.128 1 .024 2.263 1.116 4.586 

DegSkngStat(1) 1.158 .669 2.993 1 .084 3.184 .857 11.824 

Gender(1) .504 .372 1.831 1 .176 1.655 .798 3.432 

Age .008 .045 .033 1 .856 1.008 .924 1.100 

Constant -4.421 1.927 5.265 1 .022 .012   

Table 3: Regression Table 

Observed Predicted 

Course Completion Status Percentage 

Correct Dropped Completed 

Course Completion Status Dropped 14 60 18.9 

Completed 13 182 93.3 

Overall Percentage   72.9 

Table 4: Classification Matrix for Logistic Regression Modela 

 

Area Std. Error Asymptotic Sig. 

Asymptotic 95% Confidence 

Interval 

Lower Bound Upper Bound 

.727 .034 .000 .661 .793 
 

Table 5: Area Under ROC Curve for Logistic Regression 
 

The Multilayer Perceptron (MLP) is a function of independent variables that minimizes the prediction error of 

dependent variables. The study employs a cross-validation strategy of 70% training set and 30% testing set. The model 

uses one hidden layer with hyperbolic tangent function.  The case processing summary shows that 193 cases were 

assigned to the training sample and 76 to the testing sample. The MLP classification table (see table 6) shows that 

72.5% of the training cases are classified correctly, corresponding to the 27.5% of incorrect cases. The testing sample is 

used to validate the model. In the testing set, 75% of cases are correctly classified by the model. In other words, the 

model is correct about three out of four times. The model works better to identify students with course completion 

(98.2%) and has a low rate of identifying dropouts (5.3%). The AUROCC for MLP is 0.677, which means this model 

will assign almost 68% higher probability to subjects with course completion. 
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Sample Observed Predicted 

Training Dropped 7 48 12.7% 

Completed 5 133 96.4% 

Overall Percent 6.2% 93.8% 72.5% 

Testing Dropped 1 18 5.3% 

Completed 1 56 98.2% 

Overall Percent 2.6% 97.4% 75.0% 

Dependent Variable: Course Completion Status 

Table 6: MLP Classification Matrix 

 

 Importance Normalized Importance 

Financial Aid Status .017 6.0% 

Degree Seeking Status .055 19.1% 

Gender  .057 19.7% 

High School GPA .064 22.0% 

ACT Comp Score .175 60.2% 

Current College GPA .290 100.0% 

Credit Hours Completed .045 15.3% 

Previous Course Withdrawals .235 80.9% 

Age .063 21.7% 

Table 7: Independent Variable Importance in MLP 

 

SVM are a supervised set of machine learning algorithms that have been used in binary classification, pattern recognition, 

regression, and time-series forecasting. They can produce a binary classifier through a non-linear mapping of input vectors 

into the high-dimensional feature space. The poly-kernel SVM algorithm with a 70% training set and 30% testing set 

provides 75.3% accuracy and the AUROCC of 0.5% (and RMSE=0.49). The relative importance of attribute weight is 

highest for current college GPA (0.22). 

 

CONCLUSION 

The data analysis indicates that the models are somewhat comparable in overall accuracy for predicting online course 

completion/dropout: MLP and SVM models classified 75% cases accurately, and their accuracy was higher than the logistic 

regression model (accuracy of 72.9%). The logistic regression performed slightly better in AUROCC (.727 compared to 

0.677 in MLP and 0.5 in SVM). Both the LR and MLP models were found to be weak in predicting true negatives (dropout): 

18.9% in LR compared to 5.3% in the testing set of MLP. The lower accuracy in predicting true negatives may be due to the 

small dataset used in the study (n=269). Neural networks require larger datasets for better classification accuracy. The SVM 

classification accuracy may be improved by feature selection and proper model parameters, so it would be helpful to limit 

input features. All models gave varied importance to independent variables to classify the binary outcome; however they 

indicated that the current college GPA is the strongest predictor of online course completion. Age and gender were found to 

be weak predictors of online course completion, which is contrary to some studies mentioned previously. The models provide 

a relative importance of each analyzed variable, which can be used to designate a risk score to students based on their 

probability to drop out. It would be helpful to construct an early alert system using the risk score so that retention personnel 

could rank and contact the “at risk” students proactively to reduce attrition. There is a need to include additional variables 

such as course characteristics, technology preparedness, and course usage (or activity in Learning Management Systems), in 

addition to a larger dataset, to improve the predictive accuracy of the models – which will be addressed in future work. 
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