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Abstract 

Epidemics inevitably result in a large number of deaths and always cause considerable social and 

economic damage. Epidemic surveillance has thus become an important healthcare research issue. In 
2009, Ginsberg et al. observed that the query logs of search engines can be used to estimate the status 

of epidemics in a timely manner. In this paper, we model epidemic surveillance as a classification 

problem and employ query statistics from Google to classify the status of a dengue fever epidemic. 

The query logs of twenty-three dengue-related keywords serve as observations for machine learning 
and testing, and a number of machine learning models are investigated to evaluate their surveillance 

performance. Evaluations based on a 5-year real world dataset demonstrate that search engine query 

logs can be used to construct accurate epidemic status classifiers. Moreover, the learned classifiers 
generally outperform conventional regression approaches. We also apply various machine learning 

models, including generative, discriminative, sequential, and non-sequential classification models, to 

demonstrate their applicability to epidemic surveillance. 

Keywords: Text Mining, Classification, Query Log Analysis. 
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1 INTRODUCTION 

In the last decade, the world has witnessed several serious epidemics, such as SARS, H5N1, and 

H1N1. Epidemics are characterized by a large number of deaths and widespread transmission; and 
they always cause considerable social and economic damage. Epidemic surveillance is thus important 

in every country to prevent the spread of deadly diseases. Normally, epidemic surveillance is 

performed by a country‟s center for disease control (CDC), which collects various epidemic-related 

data, such as the number of infections and over-the-counter drug sales, from different medical 
organizations. The data are aggregated to determine the status or level of the epidemic to help 

governments take the necessary precautions to prevent the disease spreading further. However, a 

major problem with the surveillance mechanism is that the data aggregation process is time-
consuming (Eysenbach 2006). For example, in Taiwan, the CDC usually takes about a week to 

aggregate data, so the resulting precautions and prevention measures may not be appropriate 

responses to the current status of the epidemic. 

Eysenbach (2006) observed that people generally use search engines to seek health information or 
assess an epidemic‟s status. Indeed, the query logs of epidemic-related keywords are consistent with 

the development of epidemics. Figure 1 shows the number of dengue fever infections reported by 

Taiwan‟s CDC and the query frequency of the keyword “dengue” on Google Insight
1
 on a weekly 

basis from 2005 to 2008. The number of infections, an important indicator of an epidemic‟s status, is 

used by many CDCs. A large number of infections means that the intensity of the epidemic is severe. 

The results in Figure 1 demonstrate that the query frequency of epidemic-related keywords and an 
epidemic‟s status are highly correlated; that is, when people search with epidemic-related keywords 

frequently, the epidemic is usually severe, and vice versa.  

 

Figure 1. The query frequency of the keyword “dengue” and the number of dengue infections 

A number of researchers have proposed using query logs for epidemic surveillance (e.g., Eysenbach 
2006; Ginsberg et al. 2009; Polgreen et al. 2008). The query frequencies of epidemic-related 

keywords are modeled by regression equations to predict the number of infections or the status of an 

epidemic. In this paper, we model epidemic surveillance as a classification problem and assess the 

surveillance performance of two types of machine learning models, namely, generative and 
discriminative classification models. To model the correlation between the query frequencies of 

epidemic-related keywords and the evolution of an epidemic, we employ the following state-of-the-art 

sequential and non-sequential classification models: naïve Bayes (NB) (Manning et al. 2008), 
                                                        

1 http://www.google.com/insights/search/ 
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maximum entropy (ME) (Berger et al. 1996), support vector machine (SVM) (Steinwart and 

Christmann 2008), hidden Markov models (HMM) (Markov 1913), maximum entropy Markov 
models (MEMM) (MaCallum et al. 2000), and conditional random fields (CRFs) (Lafferty 2001). 

Evaluations based on a 5-year real world dataset show that machine learning models together with 

query logs generally outperform conventional regression-based surveillance approaches.  

The remainder of this paper is organized as follows. Section 2 contains a review of related works on 
epidemic surveillance. In Section 3, we model epidemic surveillance as a classification problem and 

resolve it with a number of machine learning models. We evaluate the surveillance performance of 

various approaches in Section 4. Then, in Section 5, we summarize our conclusions and consider 
avenues for future research. 

2 RELATED WORK 

The most widely used surveillance method was developed by Serfling (Serfling 1963). The method, 

which is used by many CDCs, is based on a natural phenomenon whereby the development of 

epidemics normally follows a seasonal pattern. For instance, in the northern hemisphere, influenza 
usually starts to affect people in the fall. Serfling thus estimated epidemic-related statistics like the 

proportion (or number) of deaths from pneumonia and influenza (P&I) or the proportion (or number) 

of physician visits for influenza-like illnesses (ILIs). Both are important indicators of an influenza 
outbreak‟s severity, and are derived by the following periodic regression model: 

    ,52/2cos52/2sin 0 tt ttty           ( 1 ) 

where yt is the epidemic-related statistic at timestamp t; the parameter μ0 is a weekly base number of 

epidemic-related statistics; εt is a random noise factor whose mean is zero and variance is σ
2
; θ 

describes a secular trend of epidemics; and the sine-wave component αsin(2πt/52)+βcos(2πt/52) 

models the annual recurrence of epidemics. Basically, the equation formulates a sinusoid, which has a 
52-week cycle, to capture the seasonal regularity of epidemics. Given a sufficient amount of 

epidemic-related statistics and the corresponding timestamps, the values of the parameters μ0, θ, α, β, 

and σ
2
 can be acquired by minimizing the squared difference between the estimated and real statistics 

(Serfling 1963). Then, the derived parameters and the regression model are used to predict the 

statistics and trend of epidemics for future timestamps.  

Rath et al. (2003) proposed using a hidden Markov model to represent a time series of ILIs. The 

model characterizes ILI distributions during epidemic and non-epidemic periods by Gaussian and 
exponential distributions respectively. The reported evaluation results show that the proposed model 

can reduce the number of cases of false epidemic detection, and that machine learning-based 

surveillance approaches are promising.  

In recent years, the accessibility of query information through many search engine services (e.g., the 

Google Insight service) has enabled researchers to utilize the query logs of web searches for epidemic 

surveillance (Eysenbach 2002; Eysenbach 2006; Ginsberg et al. 2009; Polgreen 2008). The idea of 
using query logs for epidemic surveillance was proposed by Eysenbach (2002). Subsequently, 

Eysenbach (2006) investigated the correlation between the usage of epidemic-related terms queried on 

Google and the intensity of epidemics, and found that search engine query logs are effective 

surveillance indicators. Polgreen et al. (2008) modeled the relationship between searches on Yahoo! 
and the intensity of influenza outbreaks in the United States. They counted the frequency of queries 

containing influenza-related terms on a daily basis and divided the count by the total number of 

searches. The normalized frequencies of the queries in one week were then averaged to construct the 
following linear model: 

,210 pxtt tsC            ( 2 ) 

where Ct is the epidemic-related indicator (e.g., ILI or P&I) at timestamp t (measured in weeks); st-x is 
the average frequency of a query at timestamp t-x; and x is a lagging factor measured in weeks. To 
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determine an appropriate lag, Polgreen et al. examined 11 possible values for x (ranging from 0 to 10) 

and compared the R
2
 value for each model. More recently, Ginsberg et al. (2009) searched Google 

databases and selected 45 query terms out of 50 million common queries as indicators for an influenza 

surveillance model. The authors developed a linear regression model that accurately correlates the 

log-odds of ILI-related physician visits with the log-odds of the selected query terms. 

While the above studies demonstrate that query logs are promising sources of data for epidemic 
surveillance, to the best of our knowledge, no work has demonstrated their effectiveness in 

sophisticated machine learning approaches. In this paper, we define epidemic surveillance as a 

classification problem, and investigate the effectiveness of query logs for epidemic surveillance under 
two types of machine learning classification models, namely, generative models and discriminative 

models.  

3 CLASSIFICATION MODELS FOR EPIDEMIC SURVEILLANCE 

3.1 Problem Definition 

As mentioned earlier, we define epidemic surveillance as a classification problem. Let C = {c1, c2, …, 

cK} be a set of status classes of an epidemic defined by the CDC; Q = {q1, q2, …, qM} be a set of 

epidemic-related query terms we are interested in; and random variable st
C represent the status of 

the epidemic at timestamp t. Given an observation vector Ot = <o1,t, o2,t, …, oM,t> in which oi,t is the 

query frequency of qi at t downloaded from Google Insight, the most likely status of the epidemic at 

time t would be: 

).|(maxargˆ
1

tkt
Kk

OcsPc 


        ( 3 ) 

To categorize the status of the epidemic, we must first model the distribution of P(ck|Ot); when there 

is no ambiguity, P(ck|Ot) is used instead of P(st=ck|Ot). Normally, discriminative models or generative 

models are used to compute the distribution (Nallapati 2004). Discriminative approaches model the 
posterior probability P(ck|Ot) directly, or they construct a confidence function g(ck|Ot) that scores the 

confidence to derive the observation vector Ot from the given class. By contrast, generative 

approaches model the conditional probability P(Ot|ck) and the prior probability P(ck) indirectly, and 
estimate the posterior probability P(ck|Ot) in terms of Bayes‟ theorem (Hogg and Tanis 2005). 

In the following sub-sections, we introduce a number of state-of-the-art generative and discriminative 

classification models for machine learning-based epidemic surveillance. We also investigate, 
sequential classification models, i.e., HMM, MEMM, and CRFs, to determine whether the trend of 

epidemics can be used to categorize an epidemic‟s status. For each classification model, we compile a 

training dataset comprised of a sequence of epidemic statuses < 1, 2, …, N>2, where i
C, and the 

corresponding observation vectors < 1, 2, …, N> to acquire the model parameters. 

3.2 Generative Models 

 Naïve Bayes (NB): NB resorts the assumptions of positional independence and conditional 

independence (Manning et al. 2008) to Bayes‟ theorem and expands P(ck|Ot) as follows: 

,)|()(maxarg

)|()(maxarg

)|(maxargˆ

1
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1

1

1
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       ( 4 ) 

                                                        
2 Released by the CDC, Taiwan 
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where the model parameters P(ck) and P(om,t|ck) can be acquired from the training dataset by using 

maximum likelihood estimation (MLE) (Manning et al. 2008). 

 Hidden Markov Model (HMM): HMM is a classic sequential classification model. It 

classifies a sequence of observations <O1, O2, …, OT> by computing the following probability:  

,)|()|()(),...,,|,...,,(
1

1

11112121 





T

t

ttttTT sOPssPsPOOOsssP        ( 5 ) 

where stC denotes the status of an epidemic at time t; and P(s1), P(st+1|st), and P(Ot+1|st+1) are model 

parameters that represent the initial state probability, the state transaction probability, and the 
observation probability respectively. As the epidemic statuses in the training dataset are available in 

this research, the model parameters can be acquired directly by using MLE (Chen et al. 2005; Chen et 

al. 2009). HMM classifies a sequence of observations by searching for a status series <s1, s2, …, sT> 
that maximizes the probability. Usually, Viterbi‟s algorithm (Viterbi 1967) is implemented to improve 

the search efficiency.  

Unlike HMM, the classification of NB only depends on the given observation vector, as shown in 

Equation 4. The NB model ignores the trend of an epidemic because it is assumed that epidemic 
statuses are independent of each other. HMM, by contrast, considers the trend of an epidemic by 

incorporating the probabilities of the state transitions (i.e., P(st+1|st)) and the initial state (i.e., P(s1)) 

into the classification. 

3.3 Discriminative Models 

 Support Vector Machine (SVM): SVM is a state-of-the-art discriminative model that has 

achieved superior classification performances in various application domains (Steinwart and 
Christmann 2008). Theoretically, SVM is a binary classification model that classifies an observation 

Ot into a positive class or a negative class based on the following equation: 

))(()( bOWsignOf t

T

t  ,           ( 6 ) 

where   is a kernel function that maps Ot to a high-dimensional kernel space, W is a weight vector 

in the kernel space, and b is the intercept of a decision hyperplane. When f(Ot) = 1, Ot is assigned to 
the positive class; otherwise, Ot belongs to the negative class. Given a training dataset, the model 

parameters W and b can be derived by solving the following constrained optimization problem: 





N

t

t

T
CWW

12

1
min  ,           ( 7 ) 

such that  

t(W
T
 ( t) + b) ≥ 1 – εt and εt ≥ 0,  t{1,…,N},           ( 8 ) 

where C is a regularization term that controls overfitting; and εt is a slack variable of mis-
classification for a training example.  

To apply SVM to our multi-class epidemic surveillance problem, we adopt a popular and efficient 

multi-class classification strategy called one-against-one (Hsu and Lin 2002). The strategy first 

constructs K(K-1)/2 SVM models, each of which is a binary classifier against a pair of the status 
classes. To classify an observation Ot, each classifier performs a binary classification on the 

observation, which is then assigned to the majority class selected by the classifiers. 

 Maximum Entropy (ME): ME, also known as multi-class logistic regression, computes the 

probability of a status ck , given an observation Ot , as follows: 

 
j

tkjjOZtk OcfwOcP
t

)),(exp()|(
)(

1
,          ( 9 ) 
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where fj is a binary feature function defined by domain experts, and wj is its weight. A binary function 

returns 1 (or true) when a specific condition exists between ck and Ot. For example, a feature function 
of epidemic surveillance returns true when o1,t = 15 and st = c1. One advantage of ME is that domain 

experts can specify arbitrary feature functions to examine any potential relationships between status 

classes and observations. We introduce the feature functions used for evaluations in Section 4. Z(Ot) = 

∑
K

i=1exp(∑jwj*fj(ci,Ot)) is a smoothing factor used to normalize the output within the range [0,1]. 
Given a training dataset, the weights of the feature functions can be derived by conditional maximum 

likelihood estimation (Jurafsky and Martin 2008). 

 Maximum Entropy Markov Model (MEMM): MEMM is a sequential classification model 

that augments ME by considering the status transitions in a classification. It classifies a sequence of 
observations by computing the following probability: 

,),|(),...,,|,...,,(
1

12121 



T

i

tttTT OssPOOOsssP           ( 1 0 ) 

where stC denotes the status of an epidemic at time t. The probability P(st|st-1, Ot) is modeled by ME 

as follows: 

)),,(exp(),|( 1),(
1

1 1   


j

tttjjOsZttt sOsfwOssP
tt

. 
         ( 1 1 ) 

Unlike ME, the feature functions of MEMM incorporate the previous status st-1 into classification. For 

instance, a feature function in MEMM is true when o1,t = 15 and st = c1, given that st-1 = c2. The 

corresponding normalization factor Z(st-1,Ot) is represented as follows:  

   
k

i
j

ttijjtt sOcfwOsZ
1 11 )),,(exp(),( .          ( 1 2 ) 

The weights of feature functions can be acquired by using the same training approach as that used for 

ME. Once again, the Viterbi algorithm is used to classify the best status sequence efficiently 

(McCallum et al. 2000). 

 Conditional Random Fields (CRFs): In this paper, we adopt linear-chain CRFs, which 

compute the probability of a status sequence given a series of observations as follows: 

)),,...,,,,(exp(                                

),...,,|,...,,(

1

211
1

2121




 



T

t j

TttjjZ

TT

tOOOssfw

OOOsssP

,

 
       

( 1 3 ) 

where wj is the weight of the feature function fj acquired from the training data, and Z is a smoothing 

factor that normalizes the output within the range [0,1]. Unlike MEMM, the feature functions of CRFs 

consider the whole sequence of observations <O1, O2, …, OT>. This resolves a limitation of MEMM, 
i.e., some statuses in a status sequence are determined completely by their previous statuses if the 

latter have distinct observation degrees (Bottou 1991). CRFs solve this problem by using a single 

distribution definition to consider all the observations in a status sequence (Lafferty 2001). In CRFs, 

domain experts can define two types of feature functions, namely, transition feature functions and 
status feature functions. The outputs of transition feature functions depend on the previous status st-1 

and the current status st, whereas status feature functions only consider the current status. In the next 

section, we introduce the selected feature functions. Once again, the Viterbi algorithm is employed to 
search for the best status sequence. 
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4 PERFORMANCE EVALUATIONS 

4.1 Evaluation Dataset and Performance Metrics 

The prevalence of dengue fever in Taiwan causes numerous deaths as well as considerable social and 
economic damage. In this paper, we assess the performance of machine learning models in the 

surveillance of dengue epidemics. Taiwan‟s CDC classifies dengue fever‟s status into five levels: 

minimal, low, moderate, high, and intense, based on the number of dengue infections reported in one 
week. Table 1 shows the definition of each level.  

 

Number of infections Level 

# of instances = 0 minimal 

1 <= # of instances <= 2 low 

3 <= # of instances <= 7 moderate 

8 <= # of instances <= 26 high 

27 <= # of instances intense 

Table 1. Classification of dengue fever infections 

We collected information about dengue infections from Taiwan‟s CDC for a 5-year period (2004 to 

2008) and identified their weekly statuses for evaluation. Twenty-three Chinese keywords related to 

dengue, aedes aegypti, fever, symptoms, disease, prevention, viruses, hemorrhagic fever, vaccine, 

mosquito, lamp for killing mosquitos, and mosquito incense coils were selected manually from a 
Taiwanese dengue prevention brochure as observations for the classification models. Then, we 

downloaded the query statistics of the keywords searched in Taiwan during the evaluation period 

from Google Insight for machine learning and testing. Google discretizes the frequency of queries into 
101 levels (i.e., from 0 to 100). However, the range is too broad, so many levels do not have any 

training observations and produce zero probability in a classification. To alleviate this data sparseness 

problem, we further normalize the range into 11 levels (i.e., from 0 to 10) by partitioning the statistics 
provided by Google into equal deciles. The resulting evaluation dataset contains 260 epidemic 

statuses, each of which is associated with an observation vector of the normalized statistics of the 23 

keywords.  

To determine whether the query logs of search engines are effective indicators for epidemic 
surveillance, we compare the classification models described in Section 3 with Serfling‟s method and 

Polgreen et al.‟s linear regression approach. As we have 23 observation keywords, we redefine the 

latter model as follows: 

,)(
23

1

240 p

q

xtqt tsC
q

  


           ( 1 4 ) 

where βq is the coefficient (or weight) of a query term q, and q‟s lagging factor (i.e., xq) is determined 

by using Polgreen et al.‟s method. For each compared method, we use 5-fold cross-validation 
(Manning et al. 2008) to derive credible results. That is, we evaluate the performance of each method 

over five runs. In each evaluation run, the statuses and the observations for one year are selected for 

testing, and the remaining data is used for training the model parameters. Then, the results of the 5 

evaluation runs are averaged for comparison. The evaluation metrics are macro/micro-average 
accuracy and one-step accuracy. The former estimates the fraction of status classifications that are 

correct, while the latter disregards one-step errors and treats them as correct classifications. As the 

distributions of the status classes are very non-uniform in the evaluation runs, a simple 
misclassification in a small class could cause a huge variation in the macro-average performance. In 

contrast, the micro-average is insensitive to class sizes and is thus appropriate for evaluating the 

overall performance of each method. 
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To evaluate ME and CRFs, we use the open source tools MaxEnt3 and CRF++4 respectively. An 

advantage of these tools is that feature functions can be specified simply through feature template 
definitions. For ME, the set of feature functions defined by our template forms the Cartesian product 

of current epidemic statuses and normalized keyword statistics. The set of functions thus considers 

every possible relationship between status classes and observation keywords. For MEMM and CRFs, 

the functions are further extended by considering all possible previous epidemic statuses. For SVM, 
LIBSVM5 is employed and the polynomial kernel is selected because of its superior classification 

performance.  

4.2 Classification Accuracy Evaluations 

Table 2 shows the micro-average classification accuracy and one-step accuracy scores derived by the 

compared models. For each machine learning model, one-tail paired t-tests are applied to determine 
whether the model together with the query logs outperforms Serfling‟s method and Polgreen et al.‟s 

method significantly. Tables 3 and 4 list the t-values of the statistical tests. As shown in Table 2, all 

the machine learning models outperform Serfling‟s method and Polgreen et al.‟s method. However, 

for ME and MEMM, the improvement over Serfling‟s method is not statistically significant with a 
90% confidence level, as shown in Table 3. The significant improvements of the machine learning 

models over Polgreen et al.‟s method indicate that sophisticated machine learning models are more 

appropriate than conventional linear regression approaches for epidemic surveillance. Among the 
models, HMM achieves the best classification performance; its micro-average accuracy rate and one-

step accuracy rate reach 48.46% and 88.85% respectively. Figure 2 shows that the HMM 

classification results align with the true dengue statuses. As the HMM model classifies the status of 
dengue accurately, it captures the development of dengue correctly. The accuracy of Serfling‟s 

method is 26.54%. The inferior performance is due to the effect of global warming because the 

temperature and humidity appropriate for dengue epidemics change year by year (Tsai and Liu 2005). 

This climate variability makes the periodic model ineffective.  

 

Model Accuracy One-step Accuracy 

Serfling‟s method (1963) 26.54% 75% 

Polgreen et al.‟s method (2008) 24.23% 70.38% 

Naïve Bayes 46.15% 83.46% 

HMM 48.46% 88.85% 

SVM  37.69% 88.08% 

ME 31.54% 67.62% 

MEMM 30% 67.31% 

CRFs 40% 80.77% 

Table 2. The classification accuracy and one-step accuracy rates of the compared models 

It is interesting to note that, although a number of researchers (e.g., Goutte et al. 2004; Nallapati 2004) 
have demonstrated that discriminative models are superior to generative models in terms of data 

classification, the generative models (i.e., NB and HMM) outperformed the discriminative models in 

our experiment. After investigating this result, we concluded that the relatively inferior performance 
of discriminative models is due to the criterion applied by our feature selection function. In this paper, 

to accord with the conditional independence assumption of generative models and ensure that 

comparisons are fair, the selected feature functions do not examine the correlations between the 
observation keywords. This restricts the power of discriminative models because domain experts are 

encouraged to consider various relationships between observations to derive representative feature 

functions for classification. Additionally, Ng and Jordan (2001) suggest that discriminative models 

are inferior to generative models if the size of training data is not large enough. To assess the validity 
of this conjecture, we are designing sophisticated feature functions and performing further 

experiments on a large evaluation dataset. 

                                                        
3 http://maxent.sourceforge.net/ 
4 http://crfpp.sourceforge.net/ 
5 http://www.csie.ntu.edu.tw/~cjlin/libsvm/ 
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Model t-value 

Naïve Bayes 3.64*** 

HMM 2.92*** 

SVM 2.00* 

ME  0.66 

MEMM 0.36 

CRFs 3.65*** 

*, **, ***, ****, and ***** represent one-tail paired t-tests with α=0.1, 0.05, 0.025, 0.01, and 0.005 

respectively 

Table 3. One-tailed paired t-test analyses of the machine learning methods’ improvement over 
Serfling’s method 

 

Model t-value 

Naïve Bayes 3.61*** 

HMM 3.73*** 

SVM 4.55**** 

ME  2.33** 

MEMM 2.72** 

CRFs 4.65***** 

*, **, ***, ****, and ***** represent one-tail paired t-tests with α=0.1, 0.05, 0.025, 0.01, and 0.005 

respectively 

Table 4. One-tailed paired t-test analyses of the machine learning methods’ improvement over 

Polgreen et al.’s method 

 

Figure 2. The classification results of HMM aligned with the true dengue statuses 

 

Model Accuracy One-step Accuracy 

Serfling‟s method (1963) 46.85%  100%  
Polgreen et al.‟s method (2008) 38.74%  84.68%  
Naïve Bayes 56.76%  88.29%  
HMM 61.26%  92.79%  
SVM  39.64%  90.09%  
ME 31.53%  63.06%  
MEMM 35.14%  66.67%  
CRFs 37.84%  71.17%  
Table 5. The classification accuracy and one-step accuracy of the compared models when a 

dengue epidemic becomes serious 

A surveillance model should be able to make correct status predictions when a monitored epidemic 

becomes serious. In our 5-year dataset, more than half (57.3%) of the dengue statuses are minimal, 
low, or moderate. To evaluate the surveillance performance of the compared models when a dengue 
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fever outbreak becomes serious, we removed the minimal, low, and moderate statuses from the 

dataset. Table 5 shows the classification accuracy of the compared models. Once again, HMM 
achieves the highest accuracy (61.26%); and the generative models outperform the discriminative 

models and the regression approaches. 

To summarize, the superior performance of the machine learning models demonstrates that the query 

logs of search engines can be used to construct accurate epidemic surveillance systems. The learned 
models generally outperform the conventional regression approaches. In practice, as search engine 

query logs are readily available through online Web services, surveillance methods that employ 

machine learning models and query logs can provide timely and accurate epidemic information earlier 
than CDCs. For instance, in this study, the estimated statuses of a dengue epidemic are consistently 

one week ahead of Taiwan‟s CDC surveillance reports. 

4.3 Effectiveness of Epidemic Trend in Classification 

The sequential models HMM and MEMM augment NB and ME by considering previous epidemic 

statuses in the classification. We compare the performances of the four models to determine whether 

an epidemic‟s trend is an effective factor in epidemic surveillance. As shown in Table 2, HMM gains 
from the epidemic trend as it outperforms NB, but MEMM is the less accurate than ME. Nevertheless, 

the t-test statistics shown in Table 6 indicate that the performance differences between the sequential 

and non-sequential models are not statistically significant. This indicates that the trend of an epidemic 
is of little help in machine learning-based epidemic surveillance. Sequential machine learning models 

are only effective when time series (or sequential) data implies sequential patterns. For instance, 

MEMM is effective in information extraction because the syntactic structure of sentences provides 
valuable patterns for named entity identification (McCallum et al. 2000). However, as shown in 

Figure 3, epidemics usually spread rapidly, so information about the previous status is of little help in 

predicting the current status of an epidemic. 

 

Model t-value 

HMM vs. NB 0.98 

MEMM vs. ME 0.78 

*, **, ***, ****, and ***** represent one-tail paired t-tests with α=0.1, 0.05, 0.025, 0.01, and 0.005 

respectively 

Table 6. The paired t-test analyses of sequential and non-sequential models 

 

Figure 3. The number of dengue infections in 2007 
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5 CONCLUSION AND FUTURE WORK 

The query logs of search engines can be used as effective indicators in epidemic surveillance. As 

query logs are readily available through online Web services, they can provide timely and accurate 
information about an epidemic. Previous works have modeled the statistics of query logs linearly to 

predict the status of epidemics; however, to the best of our knowledge, no work has evaluated their 

effectiveness using machine learning models. In this paper, we model epidemic surveillance as a 

classification problem and assess the effectiveness of query logs using state-of-the-art machine 
learning models. Evaluations based on a 5-year real world dataset demonstrate that query logs can be 

used to construct accurate epidemic status classifiers. Moreover, the learned classification models 

outperform the classic regression-based methods of Serfling and Polgreen et al. Contrary to 
expectations, our experiment results show that generative models are superior to discriminative 

models. Interestingly, incorporating the trend of an epidemic into machine learning models is of little 

help in epidemic surveillance.  

Broadly speaking, query logs can be considered as a kind of Web 2.0 data, because Internet users can 
freely access query information or contribute their opinions when performing Web searches. In the 

future, we will employ query logs and machine learning models to investigate social and economic 

phenomena. For example, we will analyze the query logs of economic-related terms to predict 
business cycles or forecast the sales of a new product. The analyses would help us realize the 

capability of this kind of collective intelligence for predicting the outcomes of the above phenomena. 

In addition, we will develop a keyword selection mechanism to investigate the correlation between 
query terms and the evolution of a social issue to identify representative observation keywords 

automatically. We will also consider various feature functions to examine the performance of 

discriminative models further. 
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Berger, A.L., Della Pietra, V.J., and Della Pietra, S.A. (1996). A Maximum Entropy Approach to 
Natural Language Processing. Computational Linguistics, 22 (1):39-71. 

Chen, C.C., Chen, M.C., and Chen, M.S. 2005. LIPED: Hmm-based life profiles for adaptive event 

detection. In Proceedings of KDD ‟05, 556–561. 
Chen, C.C., Chen, M.C., and Chen, M.S. 2009. An Adaptive Framework for Event Detection Using 

HMM-based Life Profiles. ACM Trans. on Information Systems (TOIS), Vol 27, Issue 2, Article 

No. 9. 
Eysenbach, G. (2002). Infodemiology: The epidemiology of (mis)information. Am J Med, 113:763-

765. 

Eysenbach, G. (2006). Infodemiology: tracking flu-related searches on the web for syndromic 

surveillance. AMIA Annu Symp Proc, 244-248.  
Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., and Brilliant, L. (2009). 

Detecting influenza epidemics using search engine query data. Nature, 457:1012-1015. 

Goutte, C., Cancedda, N., Gaussier, E., and De j́ean, H. (2004). Generative vs Discriminative 
Approaches to Entity Extraction from Label Deficient Data. In proceedings of JADT 2004, 10–12. 

Hsu, C.W. and Lin, C.J. (2002). A comparison of methods for multi-class support vector machines. 

IEEE Transactions on Neural Networks, 13(2):415-425. 
Hogg, R.V. and Tanis, E.A. (2005). Probability and Statistical Inference (7ed Edition). Prentice Hall. 

Jurafsky, D., and Martin, J.H. (2008). Speech and Language Processing (2nd Edition). Prentice Hall. 

1448



Lafferty, J., McCallum, A., and Pereira, F. (2001). Conditional random fields: Probabilistic models for 

segmenting and labeling sequence data. In Proceedings of ICML 2001, 282-289. 
McCallum, A., Freitag, D., and Pereira, F. (2000). Maximum entropy Markov models for information 

extraction and segmentation. In Proceedings of ICML 2000, 591–598. 

Morbidity and Mortality Weekly Report (MMWR). http://www.cdc.gov/mmwr/ 
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