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ABSTRACT

The growing importance of real-time computing in numerous applications poses problems for network 

architectures, especially safety-critical Wide Area Networks (WANs). Assessing network performance 

in safety-critical real-time systems is difficult, and suggests the use of both human and technical 

performance criteria because of the importance of both dimensions in safety-critical settings. This 

research proposes a model that considers both technical and human performance in network 

evaluation.

1. INTRODUCTION 

Wide Area Networks (WANs) are important components in safety-critical environments where 

reliable data acquisition and distribution are essential. In such systems, network equipment and 

functions must be closely monitored and controlled to ensure safe operation and prevent costly 

consequences. As networks become more complex, the probability of system failure increases, 

particularly for real-time WANs which contain hundreds of nodes. Examples of such safety-critical 

wide area networks include distributed battle management systems (Mosher, 1997), intelligent 

transportation systems (Andrisano et al., 2000), distributed health care networks (Yamamoto et al., 

2000), global oil and gas exploration and research networks (MacIntyre, 1999), and aviation traffic 

monitoring systems (National Research Council, 1997; Cheng et al., 2000).  

Most large-scale networks depend on hardware, software, human operators and other network 

elements to function correctly. Failure of any of the network elements can bring the entire network 

down and in safety-critical settings, the consequences can be disastrous. A well-known example of 

such failure is the 1990 nationwide AT&T network failure (Kuhn, 1997). This example is not an 

isolated one: according to the Federal Communication Commission (FCC), network failures in the 

United States with impact on more than 30,000 customers happen on the order of one every two days 

and the mean time to repair them is on the order of five to 10 hours (Demeester, et al., 1999).  

In safety-critical settings, the human, environmental, and economic consequences of network failures 

can be staggering. Network reliability is critical in these settings, as failure of a real-time system could 

cause an economic disaster or the loss of human lives (Shin, 1993). Since survivability and reliability 

are crucial in safety-critical systems, careful evaluation of these systems is important. However, few 

evaluation models of real-time safety-critical wide area networks have been developed, a need that 

motivates this research. 
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2. THEROTICAL FOUNDATIONS 

Over the years, networks have been evaluated by different disciplines from different perspectives. 

Mathematical models based on queuing theory, Markov analysis and using well-defined metrics such 

as throughput, response time, and utilization have been used in many network performance 

evaluations (Haverkort, 1998; Bolch, et al., 1998; Higginbottom, 1998). Other metrics utilized include 

network traffic performance (Adie, et al., 1998; Banerjee, et al., 1997), circuit overhead of switches 

(Niehaus, et al., 1997; Da Silva, et al., 1997), and equipment used and network conditions (Da Silva, 

et al., 1997).

Statisticians frequently use statistical distributions to evaluate communication networks as 

distributions allow prediction of system performance measures to a reasonable degree of accuracy 

(Akar, et al., 1998). Technical communication models often consider network traffic over switches, 

routers, bridges and repeaters (Khalil, et al., 1995). Social and organizational communication models 

consider networks of organizations, their patterns of behavior and communication strategies, and 

organizational structures (Monge, et al., 1998; Orlikowski, et al., 1995).

Large-scale system models evaluate networks in terms of two important concepts, reliability and 

survivability. Survivability is defined as the percentage of total traffic surviving some network failure 

in the worst case (Myung, et al., 1999). Reliability is a measure of the system’s ability to provide 

deterministic and accurate delivery of information (McCabe, 1998). In other words, reliability is the 

likelihood that a system will remain operational (potentially despite failures) for the duration of a 

mission (Somani and Nittin, 1997).  

Technical metrics used to evaluate wide area networks include system reliability, availability, system 

usage, Mean Time Between Failures (MTBF) and Mean Time to Repair (MTTR). These measures 

have been suggested by mathematical models, large-scale system models, statistical and technical 

communication models, and are often interdependent. For example, increased use (e.g., an increased 

number of users) of a real-time WAN may result in decreased reliability, decreased network accuracy, 

decreased response time, and increased network workload. Similarly, increased use of a network may 

cause degradation or wearout in the network components, thus leading to lower reliability, erroneous 

data, and perhaps erroneous information. Hence, frequency of network use may not always be a good 

success measure; in fact, it may trigger undesired reliability problems such as increased network 

workload, and decreased response time, which is critically important for safety-critical applications. 

Other important performance measures for networks include message delay, variance of delay, 

message loss and overflow (Adie et al., 1998; Bolch, et al., 1998; Higginbottom, 1998). Delay is the 

amount of time from the moment a message arrives until its service is complete. Loss ratio is the ratio 

between the total number of messages lost and the total number of messages arriving. Overflow 

probability is the probability that the number of messages in a network buffer exceeds a certain 

threshold. Two other message characteristics--peak and mean traffic--have also been utilized as 

metrics. Mean traffic is simply the average number of messages generated in a unit of time. Peak 

traffic represents the highest rate of traffic generated. If the service rate is equal to or higher than the 

peak rate, no messages will be buffered, and the loss ratio will be equal to zero. If the service rate is 

lower than the mean arrival rate, the queue will lead to unacceptable levels of delay, loss ratio, and 

overflow probability.  

Metrics such as the processing delay at each node, the capacity of each link, and round trip 

propagation delay--the time it takes a bit to travel along the media at the speed of light--have also been 

used as performance criteria (Bournas, 1995), as have the average queue length of messages awaiting 

service, utilization, throughput, node delay, and end-to-end delay metrics (Chirchir and Kamal, 1995). 

Finally, redundancy is a metric that is often considered in network evaluations. A network should be 

able to accomplish its objectives satisfactorily despite failures of individual network components. For 
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real-time networks to survive failures, designers must often incorporate redundancy, which can 

involve assigning more hardware and software components (Berman and Kumar, 1999). However, 

redundancy may increase network complexity and increase network usage, especially in applications 

where network survivability is crucial. 

In engineering and business models, WANs have been evaluated from the customer point of view, 

using such criteria as cost, connectivity, bandwidth/speed, data integrity, availability, reliability, and 

security (Hemrick, 1992). Business models consider network performance as a means of enhancing 

the performance of an enterprise (Yang et al., 2001) because network managers are interested in fully 

functional, high performance, and secure networks that provide resilient services (Rudd, 2000). High-

performance enterprise networks can help an enterprise operate more efficiently and improve its 

competitive capability. Thus, economic aspects are always important (Yang et al., 2001). 

From an organization’s point of view, however, networks are seen as an investment. Jurison (1996) 

argues that success measures of interest to managers are those that can be measured and expressed 

quantitatively, especially in monetary terms, because such measures can be used for justifying 

information technology investments. Thus, organizations are usually interested in knowing cost 

savings, reliability, accuracy, flexibility, timeliness of data, decision support applications, isolation, 

integration, user involvement, security, and back-up requirements (Axelrod, 1982). Finally, 

psychological and sociological models of network performance assess optimal communication 

structures, improvement of decision making, the impact of communication networks on organizations 

and their performance, and distribution of decision making rights over the network using such metrics 

as the time taken to correctly solve a problem, the number of messages used for each problem, and the 

number of errors (Jehiel, 1999; Mackenzie, 2000).  

Thus, network evaluation has been considered in different ways by different disciplines over the past 

forty years. Many of these evaluations focus on network technical performance, or an organization’s 

performance when using a network, or individual users’ performance when using a network. Few 

evaluations, however, consider both social and technical impacts of network performance, both of 

which are key in safety-critical large-scale systems. Because humans and technology cooperatively 

perform tasks in network-centered safety-critical large-scale systems, the model proposed in the next 

section for performance evaluation of safety-critical WANs in real-time settings encompasses both 

social and technical dimensions. We now describe the model and its theoretical underpinnings. 

3. THEORETICAL MODEL 

The different literatures surveyed illustrate that network evaluation has been considered from several 

perspectives --technical, social, organizational, psychological and commercial. In safety-critical 

settings, where network failures can have catastrophic effects and networks provide an important 

social and technical infrastructure, utilizing performance criteria that reflect the differing requirements 

that such networks must meet is important [So and Durfee 1996]. For instance, real-time safety-

critical WAN’s must meet stringent response, availability, reliability, survivability, accuracy and 

redundancy requirements; thus, use of technical performance criteria can provide some measure of the 

network’s ability to meet those requirements. Similarly, real-time WAN’s in safety-critical settings 

must also meet critical communication, decision-making, problem-solving and organizational 

effectiveness requirements; as a result, social, psychological and organizational network performance 

criteria can also be used to measure the social and organizational effectiveness of the network 

infrastructure. Finally, in many cases, real-time WAN’s in safety-critical settings must also satisfy 

demanding commercial and economic requirements, as befitting their industrial hosts. Thus, 

commercial and economic performance criteria can provide measures of the network’s ability to 

satisfy its economic and resource requirements. These requirements suggest important performance 
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criteria for use in evaluating real-time WAN’s in safety-critical settings. In such evaluations, 

technical, social, organizational, psychological, commercial and economic evaluation criteria provide 

a means of measuring the performance of the network, and of addressing the social, technical and 

economic challenges faced by real-time WAN’s. 

Figure 1. Proposed Model

Figure 1 illustrates the proposed evaluation approach. Three types of performance are of interest in 

evaluating WANs in real-time safety-critical settings: the performance of the network P (N); the 

human performance of those using the network --both operator and user-- HP (N); and the 

performance of the system and organization P (S), as seen in Figure (1). Real-time networks interact 

with humans, the environment, and other technologies, and interactions between these different 

elements may contribute to network failures. Hence, in addition to traditional technical performance 

considerations, the Figure 1 WAN evaluation model considers human factors and environmental 

considerations. This is because human error and acts of nature are among the major sources of failures 

in networks (Kuhn, 1997).

As discussed earlier, technical variables (T), such as network reliability, accuracy, response time and 

utilization, certainly impact network performance P (N), as do social, psychological and 

organizational variables (S), commercial and economic variables (E), human performance with the 

network HP (N), or system and environmental variables (SE) such as hardware failures, software 
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failures and acts of nature, and interactions (I) between the network and its working environment 

(Figure 1). Network performance, therefore, is a function of technical variables such as reliability, 

accuracy, response time and utilization; social, psychological and organizational variables such as 

communication type, frequency, and timeliness of decisions; commercial and economic variables such 

as cost and security; human performance with the network; as well as a function of system and 

environmental variables, such as acts of nature or power failures; and interactions between the 

network and its physical and execution environment. Network performance can be assessed using a 

variety of mathematical, statistical, engineering system, large-scale system, and business models, as 

explained in Section 2, and the relationships between the network performance factors can be 

expressed in the following way: 

P (N) = f (T +S+E+SE +I + HP (N)) 

where P(N) = performance of the network,  

                        T= technical network variables,  

  S= social, psychological and organizational variables, 

  E= commercial and economic variables,    

  SE = system and environmental variables,  

I = interactions between the network and its working environment, and  

HP (N)= human performance with a network.  

Note that in Figure 1, technical variables (T) also influence commercial and economic variables such 

as cost and social, psychological and organizational variables (S), such as accuracy, communication 

and system usage. These are indirect effects on network performance P(N), and the impact vectors in 

Figure 1 for these variables are shown as dotted lines. 

In turn, network performance P (N) influences human performance with the network HP (N) as well 

as the performance of the system that the network serves P (S). Individual (I) and group (G) variables 

such as user knowledge and skills, vigilance and workload, also influence human performance with 

the network HP (N), as seen in Figure. 

Human performance with a network is thus influenced by the network’s performance as well as by 

individual and group variables such as individual or group’s knowledge or skills, workload, stress, 

experience with networking, and /or fatigue. Human performance with a network also influences the 

network’s performance, and can be assessed using a variety of psychological, sociological, 

organizational, human factors, and communication models. These relationships can be expressed as:

HP (N) = f (P (N) + I +G)
where HP (N) = human performance with a network, 

P (N) = performance of the network, 

I = individual performance variables, and  

G = group performance variables.  

Similarly, in Figure 1, social, psychological and organizational variables (S) influence individual (I) 

and group (G) variables such as workload, stress, and fatigue. 

Finally, overall system performance for the systems that host real-time WANs is influenced by the 

performance of a network P(N) as well as by human performance with the network HP(N), as in P (S) 

= P(N) + HP (N), 

where P (S)= performance of the system, 

P (N)= performance of the network, and 

HP (N)= human performance with a network. 
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System performance can be assessed using large-scale, socio-technical and safety-critical system 

models,         as well as by examining the system and organizational structures, policies, performance, 

behavior and culture.

It is obvious that systems success is both a social and technical accomplishment, but success/failure is 

far more complex than totaling up a number of factors. Differences in the various elements of the 

proposed model in order to evaluate the system as a success or failure will be accommodated in 

forthcoming research. 

In the following section, we describe use of the Figure 1 model in evaluating an operational real-time 

WAN.

4. RESEARCH METHODOLOGY 

4.1 Research Vehicle

There are two sets of subjects for this research: an operational wide area network (WAN) for the 

network performance evaluation, the operators who utilize the network for the human performance 

evaluation.

The vehicle for this study is an operational WAN known as the Continuous Operational Real-Time 

Monitoring System (CORMS). CORMS was designed and built by the U.S. National Oceanic and 

Atmospheric Administration (NOAA), and was implemented in April 1998. CORMS’s purpose is to 

provide a 24 hour/day monitoring and quality control of water level and meteorological data from 

around the US to ensure the availability and accuracy of tide and water current observations that are 

used for navigation and safety of life and property decisions. To do this, CORMS takes input from 

two NOAA systems, the Physical Oceanographic Real Time System (PORTS) and the National Water 

Level Observation Network (NWLON). PORTS collects meteorological (wind, weather, tide current, 

etc.,) and environmental data from San Francisco, New York, Tampa Bay, Houston/Galveston, 

Chesapeake Bay, and Narragansett Bay in the United States. NWLON, which collects water-level 

data, is comprised of 189 water level gauges located around the coastal United States, including 

Alaska, Hawaii, and U.S. territories in the Pacific, and Great Lakes. 

The PORTS meteorological data and the NWLON water level data is gathered continuously via the 

CORMS network and transferred in real-time to the CORMS server at NOAA headquarters in Silver 

Spring, Maryland. 6 minute sample data from the real-time NWLON and PORTS data is monitored 

continuously in 24/7 mode by 6 watchstanding operators who monitor the CORMS data and displays 

and determine what actions are necessary if the accuracy of any of the measured parameters is deemed 

to be questionable (NOAA, 1999).

Since this paper focuses on establishing a technical baseline only, the human factors are not elaborated 

in the theoretical background. However, in forthcoming evaluation, the focus will be placed on the 

human factors. Thus, the forthcoming evaluation will focus on network monitoring watchstanders 

monitoring a Visual Display Terminal and responding based on the information displayed and 

behavioral patterns of 24x7 watchstanders. The purpose of the operator performance evaluation was to 

determine how technical variables such as network reliability and response time and individual and 

group variables such as workload and vigilance level influence operators’ performance with the 

network under study. 
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4.2 Procedure 

Hypotheses, variables, their operationalizations and measurements for evaluating a safety-critical real-

time WAN were developed following the model in Figure 1, as seen in Table 1. Network performance 

was to be evaluated by utilizing well-defined and well-known network performance metrics such as 

reliability, availability, and response time. The appropriate statistical tests and mathematical analyses 

were run on collected data, and the results of the mathematical analyses and statistical tests were used 

to evaluate the hypotheses.  

Table 1. Hypotheses, Dependent Variables, and Metrics 
# Hypotheses Dependent Variable  Variable Operationalization Measurement 

1 1a:Increased use (# of users) of 

real-time WAN will result in 

decreased network reliability. 

1b:Increased use (# of users) of 

real-time WAN will result in 

decreased network accuracy. 

1c:Increased use (# of users) of 

real-time WAN will result in 

decreased network response 

time.  

1d:Increased use (# of users) of 

real-time WAN will result in 

increased network workload. 

Network reliability 

Network accuracy 

Network response time 

Network workload 

1) Type, and time of 

breakdowns.

2) Correctness of data. 

3) Time taken to obtain 

response.

4) How much traffic is 

flowing from a given 

source to a given 

destination network. 

1) MTBF, MTTR, 

Availability (%). 

2) Probability of 

detecting error. 

3) Mean response 

time. 

4) Flow volume in 

bytes. 

2 2a:In safety-critical and real-

time settings, increased 

network redundancy will result 

in increased network workload  

2b:In safety-critical and real-

time settings, increased 

network redundancy will result 

in  increased cost,  

2c:In safety-critical and real-

time settings, increased 

network redundancy will result 

in increased usage,  

2d:In safety-critical and real-

time settings, increased 

network redundancy will result 

in increased network reliability. 

Network workload 

Network cost of spare 

resources

Network usage 

Network reliability 

1) How much traffic is 

flowing from a given 

source to a given 

destination network. 

2) Spare resource units 

utilized.

3) Level of system use. 

4) Type, and time of 

breakdowns.

1) Flow volume in 

bytes. 

2) Capital 

expenditure.

3) Frequency of 

network use by an 

operator.

4) MTBF, MTTR, 

Availability (%) 

Hypothesis 1: Increased use of a real-time WAN will negatively impact on WAN performance. 

Large-scale network performance usually deteriorates as the number of users and operators who 

utilize the network increase. For instance, network response time slows when an increased numbers of 

users want to get response from the system simultaneously. WAN usage was measured in this research 

by the number of users and operators who utilize the network. 

In this study, WAN performance was measured using reliability, accuracy, response time, and 

network workload metrics. For the CORMS system, reliability was measured by type and time of 

communication breakdowns, using Mean Time Between Failures (MTBF), Mean Time To Repair 

(MTTR), and availability as the three main metrics.  Correctness of network data is especially 
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important for safety-critical networks. Network accuracy was measured by correctness of data using 

the probability of detecting inaccurate data by the network. Network response time, crucial in safety-

critical applications, was measured by collecting mean response time data. Finally, network workload 

was measured by assessing how much data traffic was flowing from a data source to a destination 

using data registered every six minutes by the equipment in each station.  Thus, these hypotheses 

assess the impact of network usage on network performance. 

Hypothesis 2: In safety-critical and real-time settings, increased network redundancy will result 

in decreased network performance, and increased cost.

In safety-critical settings, redundancy may be employed to decrease mean time to repair, to ensure 

continuous flow of data, and to increase availability percentage; however, it may have some 

drawbacks such as increased equipment cost. Redundancy in this study was measured by the amount 

of monetary resources allocated and utilized for the redundant equipment (etc., hardware, software). 

In this study, network performance was measured using network workload, cost, usage, and reliability. 

For the CORMS systems, network workload was operationalized by calculating the amount of data 

traffic in bytes flowing from each station to the CORMS system. Network cost was measured by the 

capital expenditure spent for redundant resource units. Similarly, network usage was measured by 

assessing how often the network was used by operators and users. Finally, network reliability was 

measured using MTBF, MTTR, and availability, as in hypothesis 1. 

4.3 Current status 

The literature review is concluded, and the proposed model, hypotheses, dependent variables, and 

their operationalizations to evaluate subjects have been defined. Currently, data collection and survey 

administration are in progress, as is analysis of the collected data. Results will be available for 

conference presentation. 
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