View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

European Conference on Information Systems

ECIS 2000 Proceedings (ECIS)

2000

From Data Capture to Code Generation: Tools for
Entity Modeling

Heather Fulford
Loughborough University

David Bowers
University of Surrey

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

Recommended Citation

Fulford, Heather and Bowers, David, "From Data Capture to Code Generation: Tools for Entity Modeling" (2000). ECIS 2000
Proceedings. 67.
http://aisel.aisnet.org/ecis2000/67

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

https://core.ac.uk/display/301348326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/67?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

From data capture to code generation: toolsfor entity modelling

Heather Fulford
BusinessSchod
Loughbarough University
Loughbarough
Leicestershire
LE113TU
UK

Abstract — The entity-relationship approach to conceptual
modelling has long been at the heart of information
systems design. Most automated tools and CASE
environments created to support database design tend to
start at the conceptual modelling stage. Thisassumesthat
somehow the analyst has been able to deduce, from the
initial requirements specification, what entities are to
form part of the system and how they are interrelated.
We bring together in this paper two strands of our
research to present a set of prototype tools to support the
major stages of database design, starting with the tasks of
document analysis and data capture, and progressing
through to code generation. We conclude with a proposal
for an integrated environment for database design.

I. INTRODUCTION

The process of Information Systems Design has been
presented by several authors as one of constructing multiple
models of the system, each one an abstraction of the output of
the previous phase. These successve phases are represented
graphically in Figure 1, adapted from [1]. The result of each
phase, indicated on the left of the figure, is used as inpu for
the next. (The origina figure, in [1], indicaed aso the
feedback required between phases for the overall processto
be succes<ul.)

The Entity-Relationship (ER) approach to conceptual
modelling [2] has long been at the heart of the Conceptual
Modelling phase. Traditionaly in this approach, the analyst
begins examining relevant system documents and extracting
from them constructs, including entities, relationships, and
attributes. Using these basic congructs, the analyst then
draws entity reationship diagrams bath as a meas of
documenting the required system and aso to provide a
graphical expresson of the system requirements to verify
with the dient.

As with the other stages of design, the entity relationship
approach is laborious and expensive, often requiring much
iteration to construct an acceptable cnceptual model. The
information systems and software engineering literature of

David Bowers
Dept. of Computing
Schod of Eledronic Engineering, IT & Mathematics
University of Surrey
Guil dford
GU2 5XH
UK

recent years contains details of a number of efforts to
automate various gages of the approach: programs have been
written to automate the task of capturing entiti es from system
documents, and diagramming tods have been developed for
creating entity relationship dagrams.

Real World

Requirements Analysis

verbal description

Conceptual Modelling

ERD2
<]lo—=c¢€c

conceptual model

Conceptual Schema Design

conceptual schema

Functional Analysis

refined schema

Schema Definition

<] O O C— case
|

physical design |:|

Performance Analysis

Machine Implementation

Figure 1: The Phases of the Design Life Cycle

Typically, Computer Aided Software Engineaing (CASE)
tods have been devdoped to assst with the primarily

graphical phase of Conceptual Moddling using ER modéls.
As suggested by thefirst (“CASE”) outline arow on theright
of Fig. 1, such tods can be limited in their ability to generate
high quelity code (physical schema designs). Thisis largely
because they tend to overlook one of the principal difficulties
asciated with graphicd langueges: it is quite easy in most
such languages to write (or, rather, draw!) models which are
inconsistent or redundant.

In the case of Entity-Relationship modelling, the level of
normalisation of a generated relationa database schema, for
example, depends on the absence of redundancy in the Entity-
Relationship model from which it has been generated. We
have reported elsewhere [3] our development of a prototype
tod, ERD2, which analyses an ER model to identify potential
redundancies, and attempts to resolve these by means of a
dialogue with the user. Having resolved redundancies in the
initiadl modd, it is able then to generate higher quality SQL
code, including several types of constraint and the definition
of appropriateindices. As suggested by the seaond (“ERD2")
arrow in Fig. 1, this prototype etends the support provided
into the later stages of the design process

Most automated tod's and CASE environments tend to start
at the onceptua modedling phase. This asaumes that,
somehow, the analyst has been able to deduce, from theinitial
requirements which they have been given, what entitiesare to
form part of the system, and how they are interrdlated. Often,
theinitial requirements wil | have been provided in the form of
written documents or verbal descriptions, and a large
proportion of the initial task involves reagnising, from text,
the antities, their attributes and the reationships between
them which are required in the system. It is our work on
automating thisfirst phase of the overall process to which we
refer as “entity capture” (indicated by the third, “EC”, arrow
in Fig. 1.) which is presented in this paper.

It is widdy acknowledged that automating the task of
capturing entity relationship models from text is a non-trivia
exercise, owing to alarge etent to the inherent complexity of
natural language, and in particular to the @mplex
representation in text of entities, relationships and attributes.

A major objedive of our research has been to design and
develop a todset to extend support to the database designer
through all stages of the information systems design process
from document analysis and data @pture through to code
generation. In seeking to med this objective, we have first
studied the linguistic representation of entities, relationships
and attributes in text, and have been developing an approach
to capturing these mnstructs based on the identification of co-
occurrence patterns and ‘linguistic cues’. As with the ade
generation tod described in [3], o emphasis has been very
much on the provision of toadls to ‘guide’ the analyst through
the task of scanning system documents and providing
‘evidence of rdevant constructs relevant to entity modelling,

rather than an approach which purports to achieve full
automation of the data capture task.

In this paper, we present an overview of our reseach to
date, andindicate how we intendto carry thiswork forward to
the aeaion of an integrated tod set to support each key stage
of the entity modelling approach to information system
design.

The paper is structured as follows. we begin (sedion 1)
with some background cktails about the entity relationship
approach to conceptua modelling, noting some of the
difficulties associated with automating the data Gpture task,
and outlining some of the recent efforts to extract entities
automaticdly from system documents. Next (sedion IIl), we
present an overview of our approach to capturing entities,
relationships, and attributes from text, and illustrate how the
approach works. In sedion IV, we discuss the features of
metaCA SE technology which arerequired to all ow our entity-
capturing approach to ke incorporated in an integrated design
tod. Finadly, in sedion V, some @ncluding remarks are
made about our work to date, and some indications given of
how our work is being further developed to produce a
integrated tod set or workbench to support database designers
throughout the entity moddling approach, from data capture
throughto code generation.

Il. BACKGROUND AND STATEMENT OF PROBLEM

We consider in this sedion the nature of the problem of
data capture for entity modelling and autline some recent
attempts to automate the task.

Entities are genegaly asociated with nouns or noun
phrases in descriptions of required systems [4], attributes
typically with adjedives, and relationships with verbs. A
similar mapping has been suggested for objeds [5], with
verbs being used to define methods.

Thus, one heuristic presented in systems analysis and
database texts, such as [6], [7], [8], is to scan the narrative
descriptions (documents) of a required system for potential
entities, which would appea in the descriptions as nouns.
Thetask, however, isnot as straightforward asit might at first
seam (as a number of authors have noted): for example, not
al nouns in system descriptions are entities. Unfortunately,
nouns can aso represent attributes, and the texts neel to
qualify the heuristic with warnings to this effect. Indedd,
some, such as [9], admit that there is no simple answer to the
question, “what congtitutes an attribute and what constitutes
an entity?’, and that the digtinction depends bath on the
structure of the enterprise being moddled and on the
semantics of the items concerned.

There ae omplexities too m a purdy lingustic level
rendering the identification of entities, attributes and

relationships a difficult undertaking. For example, thereisno
single way of representing nouns in text: nouns may, for
example, comprise single words (e.g. bungalow) or possess
one or more precaling adjedival modifiers (e.g. detached
house, semi-detached howse). Linguistic knowledge alone is
often not sufficient to determine whether an adjedival
modifier represents a ‘one-off’ modification or whether the
modifier is an integral part of the underlying concept.
Consider, for ingance from the domain of ornithology, the
functions of the adjedival modifier great in the foll owing two
phrases. | saw a great seagull yesterday and | saw a great auk
yesterday. In the former case, the adjedival modifier great
simply tells us that the seagull was very large (or perhaps
terrific), whereas in the @se of great auk, the adjedival
modifier is an integral part of the aspedfic concept (i.e. a
particular spedes of bird). The analyst has to apply hisher
own judgment, domain knowledge, and linguistic
understanding in order to be able to distinguish between these
various linguistic representations and to ‘decode’ the system
description appropriately.

A further set of isaues concerns homonyms and synonyms
[8]. Theformer term refersto the same word or phrase being
used — often in different documents — to refer to different
concepts. The latter refers to a Situation that is more
common, but no less confusing, where different words are
used to refer to the same oncept. For the analyst to be sure
that such problems ae resolved corredly, significent
interaction with the client isusudly required.

Whet is clea from discussonsin the literature of the entity
modelling approach is that the task of data apture from
systems descriptions is highly complex, involving the analyst
in a series of judgments and dedsions based on, inter alia,
domain knowledge, linguistic knowledge, client interaction,
experience andintuition.

Moreover, whilst the foregoing dscusson has been
concerned with the identification of entities and attributes
from text, it should be noted that broadly similar approaches
are usualy recommended for the dasdscal objed-oriented
approaches[10], [11]. However, in[12] it is noted that object
oriented requirements anadysis is gill unsatisfactory and
difficult to perform; indeed, the same range of linguistic and
semantic problems sam to arise.

In order to capture antities — a objects — from system
descriptions, some form of system description must exist: this
sugeests the question, where do such descriptions originate?
One posshility is given in [13], which refers to a study of
JSD (Jackson Structured Development) analysts, who were
found to preceade their application of the JSD method by some
form of fact gathering, in order to acquire a detaled
understanding o the required functionality. The study found
that the analysts most frequently employed simple narrative,

thus generating a form of textual description for the required
system.

A particular difficulty with descriptions generated during
the discovery process is noted in [14], which assrts that
customers express their requirements, when describing them
to andysts, in their own terms, asauming implicit knowledge
of their environment. It is then the aaysts task to
comprehend and re-express the requirements in a manner
which al those involved in the aaysis process can
understand. This echoes [15], in which requirements
engineering is said to be,

. a sysematic way of developing requirements
throuch an iterative process of analysing the problem,
modelling the resulting oleservations and checking the
accuracy of the understanding so gained with domain
experts using the model as the baseline of comnunication.”

It is suggested, further, in [16] that the @mnstruction of an
initidl domain (objed) modd can facilitate the exploration of
the vocabulary of the domain. Sincethe dients participating
in the process are unlikely to expresstheir understanding in
terms either of entities or of objects, this again suggests the
generation of some form of verbal description.

Several approaches have been proposed for improving the
requirements engineering process In [13], a problem-solving
approach, involving bath analysts and clients, is suggested.
The technique employed is the systematic exploration of
several informal models or “scenarios’, each of which
addresses a part of the requirements. When each scenario has
been agreal as being acaurate, its description is analyzed,
using the linguistic basis of conceptual graphs, and the results
of the analyses are mnsolidated into a domain knowledge
base and a user fact base.

An dternative approach, which adso emphasises
cooperative eploration of the problem areawith the dient, is
described in [17]. Here, soft systems approaches are used to
enhance the dient's participation in the process By
invalving the client, it is claimed that olhjects which are
sensible ad appropriate to the user will be identified than
would be the case with more traditional data- or process
driven methods.

A third approach, presented in [12], attempts to define a
formal correspondence between lingugic patterns and
conceptual patterns. This is achieved by expressng the
former in terms of predicate logic, the latter in terms of set
theory, and testing the mathematical equivalence of the two
representations.

It is thislast approach which is closest to aur own work on
data capture from system descriptions. We restrict our
attention, in this paper, to data apture for Entity-Relationship

modelling, which might be regarded as a subset of the object
modelling concepts explored in [12]; indeed, the wnstructs of
Entity-Re ationship moddlling are essentially the same as the
static conceptual patternsused in [12].

The focus of our reseach on data cpture has been to
provide tods that ‘guide’ the anayst through the task of data
capture from systems documents, rather than on producing
tods that purport to automate the task fully. This allows the
andyst to apply higher skill and insight to resolving issues
mentioned above, such as homonyms and synonyms, and,
similarly, to address the question noted in [9] of the
digtinction between an attribute axd an entity. Since such
issies depend on domain knowledge and the semantics
required o the system, it is unlikedly that a satisfactory set of
criteria could be devdoped to permit fully automated
resolution.

The approach to data capture described in this paper draws
on recet work in the areas of corpus linguistics,
computational lexicography and terminology in which
emphasisis placed on observing and studying language in use
in freetext (seefor example [18], [19] and [20]). Spedfically,
our work arose from some exrlier studies we cnducted into
data capture from English texts for knowledge engineeing for
expert system development [21] and for the compilation of
English tedchnical glossries and dictionaries (terminology
extraction). Thisealier work isreported fully in [22]. There
were anumber of features of our ealier work on data Gpture
which led us to consider its applicability to data apture for
entity modelling purposes. These features include the fact
that owr approach, unlike some other existing approaches
(discussed in [22]), is bath domain and text-type independent;
there is no requirement for the input text to be tagged; the
approach does not rely on (computationally intensive)
parsing; we can process $ngle texts or batches of texts; and
the antity capture facility identifies sngle word entities as
well as multi-word entities.

It will be apparent that these features are gpropriate for an
environment where the range of text descriptions is not
predetermined, and could well range from operation manuals
or spedfications for existing systems to informal notes taken
during afact-finding interview.

An overview of our approach, including an illustration of
data capture from a sample system description, is presented in
the next sedion.

1. AN OVERVIEW OF OUR APPROACH TO DATA CAPTURE
In order to construct an Entity-Relationship modd, it is
necessary to identify anumber of constructs. These include:

e Entity typesincluding subtypes
e Attributesincluding identifiers and inherited attributes

e Rdationshipsincluding degree and optiondity

Our research to date has focussed principally on the capture
of entities from system documents, and it is this asped of our
work on which we report in this sdion. More recaitly we
have begun refining our approach to entity capture to
incorporate the identification of subtypes, attributes and
relationships. We give some brief indicaions here of these
refinements.

We illustrate our proposed approach by considering the
following example. The initial description of the system
requirements, given in Figure 2, is typical of a probem
statement, and might have been produced either as part of a
request for a system or as the result of an analyst’s initia
interview.

An Estate Agent’s Database
An Estate Agent is responsible both for arranging sales

of properties and also for managing property rentals.
Properties can be houses, maisonettes, bunglows or
apartments, and contain a number of bedrooms. Each has
a wnique address The dimensions (length and breacth) of
each bedroom, in metres, are to be stored, as are those of
the main living room. For rented properties, the monthly
rent and the minimum rental period, in months are
required, whereas for propertiesfor sale the asking priceis
needed. The owner of every property is to be recorded
also, giving the name and address of the owner. It should
be noted that people may own seveal properties.

Figure2. System Requirements for Estate Agent’ s database.

Applying standard entity modelli ng techniques should yidd
amode of the form in Figure 3. ldentifiers are denoted by
bold attribute names, “crow's feet” are used to spedfy
“many” (i.e, one or more) cardinality, and the cnnedion
between Property for sale, Rental property and Property
indicates that the first two are (exhaustive) partitions of the
last.

property_address bedroom_no

address

living_room_length breadth

living_room_breadth

[Property for

Rental
e property

min_period

| C

asking_ price monthly_rental

Figure 3. Entity-Relationship model derived from descriptionin Fig. 2

It should ke noted that the description of Figure 1 suggests
additional subtypes for property (house, maisonette,
bungdow and apatment), but the simple attribute, type, is
adequate representation in the absence of further
distinguishing properties.

A further complication is asociated with the existence of
an addressattribute for bath property and owner; these must
be reagnized as being dstinct. Thisisatrivial example of a
pair of homonyms.

The doice of identifiers for owner and bedroom, and,
indeed, the introduction of the attribute bedroom _number are
standard assumptions which a skill ed analyst might make, and
which it would be difficult to automate completely. Once
made, such asaumptionsrequire verification with the dient, in
the same way as any suggestion made by an automated tod
would have to be accepted or rejeded.

As noted above, the systems analysis literature encourages
andysts to scan narratives for nouns in order to identify
entities. Taking as our starting point this heurigtic that nouns
are likely to be atities, we have developed a tod for
capturing nouns (candidate entities) from system documents.
This tod, originaly implemented in Prolog, and currently
being refined using a set of macros in Microsoft Word, is
capable of capturing single-word nouns (e.g. burgalow) as
well as multi-word nouns (e.g. estate agent). Our approach to
entity capture relies on an analysis of co-occurrence patterns
in text, the basic premise of the gproach being that an entity
(i.e. a nown) in text is likdy to reside in English texts
preceded by a ‘boundary marker’ comprising a so-called
function word (determiners, pronouns, prepositions,
conjunctions, etc.) or a punctuation mark, and followed by a
boundary marker comprising a function word or punctuation
mark, as simmarized in the following pattern:

Function word/punctuation + ENTITY + function wor d/punctuation

We arrived at this basic premise about the @-ocaurrence
patterns of nounsin text from a caeful study of a seledion of
spedalist and technicd texts gpanning arange of subjed areas
and text types (as reported in [22]), as well as by drawing on
studies of corpus linguistics and term extraction [see for
example X-Sager].

Table | bdow provides a summary of the possble
permutations of co-ocaurrence patterns (taken from the
sample ‘estate agent’ systems description presented above).

TABLE|
CO-OCCURRENCE PATTERNS FOR ENTITY CAPTURE

Boundary marker Entity Boundary marker
an edtate agent is
of bedrooms
bungalows or
mai sonettes

Implementing our approach was quite straightforward from
a computationa point of view since bath function words and
punctuation can be thought of asa dosed set: we could easily
compile a ligt of such items for use by our program. Using
thislist of function words and punctuation, the program scans
a given text highlighting as candidate entities items which
reside between function words and/or punctuation.

In common with other programs for noun identification
(discussed in [22)]), the output from our co-ocaurrence pattern
approach to entity capture typicall y contains a certain amount
of noise. In order to keep this noise to a minimum, we filter
our output using a stoplist (again, in common with other
approaches to noun identification). This stoplist was created
foll owing a study of the theoreticd and empirical literature of
spedalist and technicd writing (see for example [23]) and
comprises commonly occurring words and phrases that are
typically used in technicd writing. Thelist includes reporting
verbs (eg. to note, to state, to say), and phrases (sometimes
referred to colledivey as ‘linking words) that are used to
‘refer back to points which have dready been stated or
forward to points which will be made later’ [20Q]. It further
contains a mlledion of other general linking expressons,
such as consequently, in addition to, a number of, and for
example, and some frequently occurring verbs.

Applying our co-occurrence pattern approach to the estate
agent system description (presented above) would yield the
following (candidate entities marked in bdd):

An Estate Agent is responsible both for arranging sales
of properties and also for managing property rentals.
Properties can be houses, maisonettes, bungalows or
apartments, and contain anumber of bedrooms. Each has
aunique addess The dimensions (length and breadth) of
each bedroom, in metres, are to be stored, as are those of
the main living room. For rented properties, the monthly
rent and the minimum rental period, in months, are
required, whereas for properties for sale the asking price
is needed. The owner of every property is to be recorded
also, giving the name and address of the owner. It should
be noted that people may own several properties.

Comparing the candidate entities highlighted in the above
text with those presented in the entity relationship diagram
(Figure 3) reveals that all of the entities represented in the
diagram are proposed as candidates except for property for

sale. This entity is missed from our approach because it isa
(rather rare) example of a nominal expresson containing a
function word (for). Note that our approach aso proposes a
number of attributes as candidate aitities (e.g. houses,
bungdows, and maisonettes), thus illustrating the problems
cited in the literature (and referred to in sedion |1 above) of
distingushing between entities and attributes. We ewvisage
that the preliminary work we have undertaken on attribute
capture (outlined briefly below) will go some way to
addressng thisisaue.

It will be seen from the above ill ustration that our approach
incorredly proposes as entity candidates responsible and
people, the latter being a synonym for owner. Clealy, an
andyst could easily apply higher judgment and knowledge to
filter such anomalies from the outpuit.

When developing aur co-ocaurrence pattern approach to
noun identification for knowledge engineaing and
terminology extraction purposes, we devised a framework for
evaluating its auccess (reported in [22]). We ae now
applying this framework to an evaluation of the approach
within the ntext of capturing entities from system
documents.

We believe that this framework has appli caion beyond the
evaluation of our own approach to entity capture, and hence
represents a significant part of our contribution to the aea of
entity capture. We present here a brief summary of our
framework, and then, using this evaluation framework,
suggest how our approach to entity capture performs.

Asreported in full in [22], in order to eval uate the success
of our noun identification program in the ntext of
terminology extraction and knowledge engineaing, we
sdeded dacuments from several subject domains and asked a
domain expert from each domain to scen the documents
manually marking the technicd (domain) terms (which are
largely nouns). The output of each expert was deamed to be
reliable and thus was used as our datum. We then compared
the output of each expert with the noun candidates proposed
by our noun identification program. As a further evaluation
measure, we aalyzed the manual scanning output of
terminology extraction experts (who are typically not domain
experts), and compared this with the output of the domain
expertsas well as with that of the program.

Our evaluation framework comprised five measures of
comparison:

1. Match: an item sdeded by a domain expert was also
proposed as a candidate by our program;

2. Truncation; an item sdleded by a domain expert was
‘shortened’ (truncated) by our program, and hence only
partialy identified;

3. Expansion: an item sdeded by a domain expert was
‘lengthened’ (expanded) by our program, and hence only
partialy identified;

4. Undergeneration: an item sdeded by a domain expert
was hot proposed as a candidate by our program;

5. Overgeneration: an item not sdeded by a domain
expert was proposed as a candidate by our program.

An illustration of this evaluation framework is presented in
Table Il below.

TABLEII
EVALUATION FRAMEWORK FORENTITY CAPTURE

Comparison Item selected by Candidate proposed by
domain expert entity capture program
Match bungalow bungalow
Truncation property for sale property
Expansion property sales managing property
sles
Under generation name
Overgeneration metres

Within a terminology extraction context, our noun
identification program consistently proposed corredly 80% of
the items sleded by a domain expert. Further, the program
partialy identified (i.e. truncated or expanded) the remaining
20% of items ®leded by a domain expert. In common with
over noun identification programs, our program substantially
overgenerated (i.e. the output contained a cetain amount of
noise). Whilst we ae investigating means of reducing this
noise to a minimum, we believe it is preferable for the
program to overgenerate rather than undergenerate. In the
context of entity capture, for instance it is arguably better for
the program to propose too many items as entities (which the
andyst can the diminate using hisher domain knowledge,
experience linguistic knowledge, intuitions and judgments),
than it is for the program to undergenerate, thereby leaving
the analyst no gption but to go back to the original documents
and scan them manudly to identify the items missed by the
program.

The results of our evaluation within a terminology extraction
context held true across sibjed domains and text types.
Given the dose rrespondence between technical terms
(largely nouns) and entities (also largely nouns), we believe
that similar results can be expeded from the program used in
an entity capture mntext (with the proviso already alluded to
that the entity-attribute distinction is addressed).

We turn our attention now to some preliminary work we
have undertaken to identify sub-types of entities and attributes
in system documents. Again, this work builds on some erlier
reseach undertaken in the cmntext of knowledge engineeaing
and expert system development, and it draws on the literature
of linguistics in which the linguistic devices used for
representing semantic relationships are discussed (see for
example [24], [25]). In this ealier work, we investigated
means of tracking, in text, the lexical-semantic relationships
holding between noun terms, including reationships of
hyponymy (X isakind of Y), and part-whole reationships.

Taking the hyponymy relationship as an expresson of
types and subtypes has alowed us to extend this work to
include the capture of entity subtypes. Using the basic frame:
X is akind o Y as a sarting point for the hyponymy
relationship, we have cllated a number of ‘linguigtic cues
which are used in text to denote this relationship. Such cues
include type of, sort of, and so an. We have written a
program which seaches text and hghlights portions of text
containing the aies, the aim being to guide the anaysts to the
‘rich’ portions of the system description in which relevant
dataare likely to be found.

Continuing our studies of language in use in text, we ae
currently investigating the adoption of the ‘linguistic aue
approach’ to the apture of attributes from system documents.
As noted ealier, it is acknowledged in the literature that
distingushing attributes from entities in text is a complex
task. Like entities, attributes are often represented by nouns.
The analyst’'s task is to dedde which nouns are entities and
which are attributes of entities. Again, this task typically
involves the application of domain knowledge, experience
intuition and judgment. Hence, as noted in the literature, the
automation of thistask isfraught with dfficulties. Whilst we
are by no means claming to have solved the probem of
attribute @pture, we bdieve that our existing work on
identifying linguistic aues can be used to begin to tackle this
isale.

Having studied a number of system descriptions and
examined the items an anadyst might sded as attributes of
entities, we have begun to colled a set of linguigic aues
which seam often to be used to ‘point’ to the presence of
attributes in a sentence These include words and phrases
such as each, every, of the, and of a. Identifiers might be
captured by searching for such linguistic aues as unique, only,
sole, and so on.

We bdlieve that our approach to entity capture based on the
andysis of co-occurrence patterns represents a feasible means
of providing support to anaysts engaging in entity modédlli ng.
Furthermore, we believe that this approach could be
significantly enhanced by the development of our ‘linguistic
cue approach to capturing entity subtypes, attributes and
identifiers. We intend to investigate this latter area of work

within the scope of a further research project, and to
incorporate dso an approach to identifying relationships
holding between entities.

In the next sedion, we discussour provision of CASE tod
support to the next phase of system design, and indicate how
we plan combine this work with the data cpture work
outlined above.

IV. PROVIDING CASE TOOL SUPPORT

It was noted in sedion | that we have devel oped already a
prototype CASE tod that addresss the later phases of the
design process [3]. By combining the work we describe in
this paper with that tod, support would be avail able for all six
phases of the processdepicted in Fig. 1. The entity capture
techniques, however, are provided currently in atod separate
from the CASE environment.

CASE tods normally function by supporting one or more
forms of diagrammatic inpu, deriving textual, tokenised or
frame-based representations of the objects represented
diagrammaticdly, and manipulating the resulting text-based
representations to generate wde.

In our approach to capturing entities, not only do we start
with (arbitrary) text, but the output of the process is also,
esentidly, text. Whilg this might suggest that the
diagrammatic representation could be obviated completdly, it
is the diagrammatic form which is most readily
comprehended, and which is normally used, therefore, to
verify the onstructed model with the dient.

Further, it has been noted abowe that the entity capture
technique will tend to overgenerate. In addition, there may be
severa refinements which a skilled anayst would wish to
incorporate into a mode based on documentation and
description alone — not least to ensure wmpleteness (what
system is ever fully documented?). Such interaction with a
CASE environment is likely to require rather more freedom
than isnormally avail able in a “traditiona” CASE tod which
supports a spedfic method.

The mmbination of using text as a garting point and the
requirement for a high leve of interaction with a tod
incorporating “automatic” entity capture suggests that, rather
than incorporating the entity capture technique diredly into
existing CASE tods, it will be necessary to develop a new
environment. The facilities required — the abilities to
generate, dynamicdly, graphical representations from text-
based descriptions, and to support dialogues with the (tod)
user to control such generation — are readily supported by
meta-CASE tods, such as Lincoln Software's Tod buil der
[26], which we have used to develop the tod reported in [3].
The fundamenta features of the meta-CASE environment
which arerdlevant here aeafully object-based representation
for every concept, with the ability to generate diagram objeds

from text, or viceversa, and a @mputationally complete
language and user interface which will alow construction of
arbitrary control processes.

We have used Todbuilder dso to construct a design
environment which supports input in a number of formats,
including retural language and structured English [27]. Thus,
we have demonstrated one mechanism for inputting raw text
into a structured CASE environment, and this could readily be
exploited to provide a input mechanism for an entity capture
tod.

Finally, it should be noted that the generation of an ER
diagram from a list of entities, attributes and relationships is
itsef non-trivial. In[28], an ealy approach to this problem is
described, and that paper notes the extreme mplexity of
capturing sufficient semantic information, or, inded,
aesthetic rules, to allow the aitomatic generation of an “ided”
diagram. Fortunately, however, one of the essentid features
of a CASE tod, often referred to as “rubber banding”, is the
ability to retain (and stretch) connedions between diagram
dements even if they are moved. Thus, it would be
straightforward for an anadyst to improve the layout of
diagrams which had been generated automatically.

V. CONCLUDING REMARKS AND FURTHER WORK

We have shown that we have provided support for each
phase of the information system design process and we have
noted that the meta-CASE environment we have used to
generaterelated CASE tods provides the facilities required to
build a fully integrated tod to provide support throughout
the entiredesign process Thisis aibjed of a further reseach
projed proposal, which will addressisaies such as:

- therefinement of data @pture techniques

- aninvestigation of view integration isaues

- building an integrated tod (text to generated code)

Whilst we have @ncentrated on Entity-Reationship
modelling, and, in separate work, on the generation of code
for Relationship databases, it was noted above that similar
techniques are appropriate also for the design of objed
oriented systems.

Further, the data capture techniques we have explored in
the mntext of generating entity relationship modd s could, we
believe, be more widdy employed. One obvious posshility
would be in the analysis of legacy code, in order to support
reverse engineaing. Consideration of legacy code suggests
that dynamic as well as static properties might be amenable to
capture. Thisimpliesthat similar techniques could be applied
aso to behaviour moddling within olject-oriented
environments.

REFERENCES

[1] D.Bowers, From Data to Database, 2" ed., London: Chapman & Hall,
1993 p11.

[2] P. Chen, “The entity relationship modd: towards a unified view of
data” ACM Trans. on Database Systemsval. 1 (1), 1976

[3] D. Bowers, “Database schema improvement techniques for CASE
tools’, Proc. UKAIS 2000 April 2000

[4] R.Rock-Evans, Data Analysis, Sutton: IPC BusinessPress, 1981, p10.

[5] R. Abbott, “Program design by informal English description’,
Comnunications of the ACM Vol 16 (11), pp. 882-894, 1983

[6] M. Lek, D. Deeks, Systems Analysis Techniques, Hemel Hempstead:
Prentice Hall Europe, 1998 p76.

[7] D.Bowers, From Data to Database, 2" ed., London: Chapman & Hall,
1993 p52.

[8] T. Connally, C. Begg, Database Systems: a practical approach to
design, implementation and management, 2™ ed., Harlow: Addison
Wedey Longman, 1999 p231

[9] A. Silberschatz, H. Korth, S. Sudershan, Database System Concepts, 3"
ed., Singapore: McGraw-Hill, 1997, p29.

[10] G. Booch, “Object Oriented Development”, IEEE Transactions on
Sdtware Engineeing, val. 12 (2), pp. 211-221, 1986

[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Objed-
Oriented Modeling andDesign, Engewood Cliffs: Prentice-Hall, 1991,
pp. 21-47.

[12] N. Jurigto, J. Morant, A. Moreno, “A formal approach for generating oo
specifications from natural language”’, Journal of Systems and Sdtware,
vol. 48 (2), pp. 139-153 1999

[13] P. Loucopoulos, R. Champian, “Concept acquisition and analyss for
requirements specification”, Sdtware Engineeing Journal, val. 5, pp
116124, 1990.

[14] 1. Sommerville, P. Sawyer, Requirements Engineering: a good practice
guide, Chichester: John Wiley & Sons, 1997, p64.

[15] W. Rzepka, Y. Ohno, “Introduction: special issue on regquirements
engineering’, IEEE Comp., vol. 18 (4), 1985

[16] M. Fowler, K. Scott, UML Distilled: Applying the standad Objec
Modelling Languagg, Addison Wed ey Longman, 1997, p19.

[17] Y. Liang, D. West, F. Stowdl, “An approach to object identification,
selection and specification in dojed-oriented analysis’, Info Systems
Journal, val. 8 (2), pp. 163180, 1998

[18] J. M. Sinclair, Corpus, concordance, collocation, Oxford University
Press 1991

[19] K. Aijmer , B. Altenberg, English corpus linguistics: studies in honou
of Jan Svartvik, Longman, 1991

[20] J. Sager, A practical course in terminology processng, John Benjamins
Publishing Co., 1990

[21] H. Fulford, S. Griffin, K. Ahmad, “Resources for knowledge transfer
and training: the exploitation of domain documentation and database
technology”, Procealings of the 6™ Internationa Conference on Urban
Storm Drainage,2, J. Marsalek and H. C. Torno (eds), Seapant
Publishing, 1993

[22] H. Fulford, Term acquisition: a tex-probing appoach, Doctoral thess,
University of Surrey

[23] J. C. Sager, D. Dungworth, P. F. McDonald, English spedal languags,
principles and practice in science and tednology, Oscar Brandstetter
Verlag KG. 1980 p. 199

[24] J. Lyons, Semantics, Cambridge University Press, 1977

[25] D. A. Cruse, Lexcal semantics, Cambridge University Press, 1986

[26] Lincoln Software Ltd., Todlbuilder User Manud, Macclesfield, 1998

[27] H. Fulford, L. B. Work, D. Bowers, “Tools for information systems
teaching: making a case for metaCASE”, Procesadings of the 7" Annud
Conference on the Teaching d Computing, S. Alexander and U.
O'Reilly (eds), University of Ulster, 1999

[28] P. Feldman, “A diagrammer for the automatic production of entity type
models’, Proc. 3" British Nationa Conference on Databases, pp57-70,
1984

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	From Data Capture to Code Generation: Tools for Entity Modeling
	Heather Fulford
	David Bowers
	Recommended Citation

	Microsoft Word - Ecis.doc

	search: search

