
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2000 Proceedings European Conference on Information Systems
(ECIS)

2000

From Data Capture to Code Generation: Tools for
Entity Modeling
Heather Fulford
Loughborough University

David Bowers
University of Surrey

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Fulford, Heather and Bowers, David, "From Data Capture to Code Generation: Tools for Entity Modeling" (2000). ECIS 2000
Proceedings. 67.
http://aisel.aisnet.org/ecis2000/67

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301348326?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/67?utm_source=aisel.aisnet.org%2Fecis2000%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

From data capture to code generation: tools for entity modelling

Heather Fulford
Business School

Loughborough University
Loughborough
Leicestershire

LE11 3TU
UK

David Bowers
Dept. of Computing

School of Electronic Engineering, IT & Mathematics
University of Surrey

Guildford
GU2 5XH

UK

Abstract – The entity-relationship approach to conceptual
modelling has long been at the heart of information
systems design. Most automated tools and CASE
environments created to support database design tend to
start at the conceptual modelling stage. This assumes that
somehow the analyst has been able to deduce, from the
initial requirements specification, what entities are to
form part of the system and how they are interrelated.
We bring together in this paper two strands of our
research to present a set of prototype tools to support the
major stages of database design, starting with the tasks of
document analysis and data capture, and progressing
through to code generation. We conclude with a proposal
for an integrated environment for database design.

I. INTRODUCTION

The process of Information Systems Design has been
presented by several authors as one of constructing multiple
models of the system, each one an abstraction of the output of
the previous phase. These successive phases are represented
graphicall y in Figure 1, adapted from [1]. The result of each
phase, indicated on the left of the figure, is used as input for
the next. (The original figure, in [1], indicated also the
feedback required between phases for the overall process to
be successful.)

The Entity-Relationship (ER) approach to conceptual
modell ing [2] has long been at the heart of the Conceptual
Modelli ng phase. Traditionally in this approach, the analyst
begins examining relevant system documents and extracting
from them constructs, including entities, relationships, and
attributes. Using these basic constructs, the analyst then
draws entity relationship diagrams both as a means of
documenting the required system and also to provide a
graphical expression of the system requirements to verify
with the client.

As with the other stages of design, the entity relationship
approach is laborious and expensive, often requiring much
iteration to construct an acceptable conceptual model. The
information systems and software engineering literature of

recent years contains details of a number of efforts to
automate various stages of the approach: programs have been
written to automate the task of capturing entities from system
documents, and diagramming tools have been developed for
creating entity relationship diagrams.

� � � � � � � � �

� 	
 � � 	 � 	 � � � � � � � � � � �

� � � � 	 � � � � � � � � 	 � � � � �

� � � � 	 � � � � � � � � 	 � � � 	 � � � �

 � � � � � � � � � � � � � � � � �

� � � 	 � � � 	 ! � � � � � � �

" 	 ! � � � � � 	 � � � � � � � �

Machine Implementation

$ % & ' () $ * + % , - . , / 0

+ / 0 + $ - . 1 ' (2 /) $ (

+ / 0 + $ - . 1 ' (* + 3 $ 2 '

% $ 4 , 0 $) * + 3 $ 2 '

- 3 5 * , + ' () $ * , 6 0

C
A

S
E

E
R

D
2

E
C

Figure 1: The Phases of the Design Life Cycle

Typically, Computer Aided Software Engineering (CASE)
tools have been developed to assist with the primaril y

graphical phase of Conceptual Modell ing using ER models.
As suggested by the first (“CASE”) outline arrow on the right
of Fig. 1, such tools can be limited in their ability to generate
high quality code (physical schema designs). This is largely
because they tend to overlook one of the principal diff iculties
associated with graphical languages: it is quite easy in most
such languages to write (or, rather, draw!) models which are
inconsistent or redundant.

In the case of Entity-Relationship modell ing, the level of
normalisation of a generated relational database schema, for
example, depends on the absence of redundancy in the Entity-
Relationship model from which it has been generated. We
have reported elsewhere [3] our development of a prototype
tool, ERD2, which analyses an ER model to identify potential
redundancies, and attempts to resolve these by means of a
dialogue with the user. Having resolved redundancies in the
initial model, it is able then to generate higher quality SQL
code, including several types of constraint and the definition
of appropriate indices. As suggested by the second (“ERD2”)
arrow in Fig. 1, this prototype extends the support provided
into the later stages of the design process.

Most automated tools and CASE environments tend to start
at the conceptual modell ing phase. This assumes that,
somehow, the analyst has been able to deduce, from the initial
requirements which they have been given, what entities are to
form part of the system, and how they are interrelated. Often,
the initial requirements wil l have been provided in the form of
written documents or verbal descriptions, and a large
proportion of the initial task involves recognising, from text,
the entities, their attributes and the relationships between
them which are required in the system. It is our work on
automating this first phase of the overall process, to which we
refer as “entity capture” (indicated by the third, “EC” , arrow
in Fig. 1.) which is presented in this paper.

It is widely acknowledged that automating the task of
capturing entity relationship models from text is a non-trivial
exercise, owing to a large extent to the inherent complexity of
natural language, and in particular to the complex
representation in text of entities, relationships and attributes.

A major objective of our research has been to design and
develop a toolset to extend support to the database designer
through all stages of the information systems design process:
from document analysis and data capture through to code
generation. In seeking to meet this objective, we have first
studied the linguistic representation of entities, relationships
and attributes in text, and have been developing an approach
to capturing these constructs based on the identification of co-
occurrence patterns and ‘ linguistic cues’ . As with the code
generation tool described in [3], our emphasis has been very
much on the provision of tools to ‘guide’ the analyst through
the task of scanning system documents and providing
‘evidence’ of relevant constructs relevant to entity modell ing,

rather than an approach which purports to achieve full
automation of the data capture task.

In this paper, we present an overview of our research to
date, and indicate how we intend to carry this work forward to
the creation of an integrated toolset to support each key stage
of the entity modelli ng approach to information system
design.

The paper is structured as follows: we begin (section II)
with some background details about the entity relationship
approach to conceptual modell ing, noting some of the
diff iculties associated with automating the data capture task,
and outlining some of the recent efforts to extract entities
automaticall y from system documents. Next (section III), we
present an overview of our approach to capturing entities,
relationships, and attributes from text, and illustrate how the
approach works. In section IV, we discuss the features of
metaCASE technology which are required to allow our entity-
capturing approach to be incorporated in an integrated design
tool. Finally, in section V, some concluding remarks are
made about our work to date, and some indications given of
how our work is being further developed to produce an
integrated toolset or workbench to support database designers
throughout the entity modell ing approach, from data capture
through to code generation.

II . BACKGROUND AND STATEMENT OF PROBLEM

We consider in this section the nature of the problem of
data capture for entity modell ing and outline some recent
attempts to automate the task.

Entities are generally associated with nouns or noun
phrases in descriptions of required systems [4], attributes
typically with adjectives, and relationships with verbs. A
similar mapping has been suggested for objects [5], with
verbs being used to define methods.

Thus, one heuristic presented in systems analysis and
database texts, such as [6], [7], [8], is to scan the narrative
descriptions (documents) of a required system for potential
entities, which would appear in the descriptions as nouns.
The task, however, is not as straightforward as it might at first
seem (as a number of authors have noted): for example, not
all nouns in system descriptions are entities. Unfortunately,
nouns can also represent attributes, and the texts need to
qualify the heuristic with warnings to this effect. Indeed,
some, such as [9], admit that there is no simple answer to the
question, “what constitutes an attribute and what constitutes
an entity?” , and that the distinction depends both on the
structure of the enterprise being modelled and on the
semantics of the items concerned.

There are complexities too on a purely linguistic level
rendering the identification of entities, attributes and

relationships a diff icult undertaking. For example, there is no
single way of representing nouns in text: nouns may, for
example, comprise single words (e.g. bungalow) or possess
one or more preceding adjectival modifiers (e.g. detached
house, semi-detached house). Linguistic knowledge alone is
often not suff icient to determine whether an adjectival
modifier represents a ‘one-off’ modification or whether the
modifier is an integral part of the underlying concept.
Consider, for instance from the domain of ornithology, the
functions of the adjectival modifier great in the following two
phrases: I saw a great seagull yesterday and I saw a great auk
yesterday. In the former case, the adjectival modifier great
simply tell s us that the seagull was very large (or perhaps
terrific), whereas in the case of great auk, the adjectival
modifier is an integral part of the a specific concept (i.e. a
particular species of bird). The analyst has to apply his/her
own judgment, domain knowledge, and linguistic
understanding in order to be able to distinguish between these
various linguistic representations and to ‘decode’ the system
description appropriately.

A further set of issues concerns homonyms and synonyms
[8]. The former term refers to the same word or phrase being
used – often in different documents – to refer to different
concepts. The latter refers to a situation that is more
common, but no less confusing, where different words are
used to refer to the same concept. For the analyst to be sure
that such problems are resolved correctly, significant
interaction with the client is usually required.

What is clear from discussions in the literature of the entity
modell ing approach is that the task of data capture from
systems descriptions is highly complex, involving the analyst
in a series of judgments and decisions based on, inter alia,
domain knowledge, linguistic knowledge, client interaction,
experience, and intuition.

Moreover, whilst the foregoing discussion has been
concerned with the identification of entities and attributes
from text, it should be noted that broadly similar approaches
are usually recommended for the classical object-oriented
approaches [10], [11]. However, in [12] it is noted that object
oriented requirements analysis is still unsatisfactory and
diff icult to perform; indeed, the same range of linguistic and
semantic problems seem to arise.

In order to capture entities – or objects – from system
descriptions, some form of system description must exist: this
suggests the question, where do such descriptions originate?
One possibilit y is given in [13], which refers to a study of
JSD (Jackson Structured Development) analysts, who were
found to precede their application of the JSD method by some
form of fact gathering, in order to acquire a detailed
understanding of the required functionality. The study found
that the analysts most frequently employed simple narrative,

thus generating a form of textual description for the required
system.

A particular diff iculty with descriptions generated during
the discovery process is noted in [14], which asserts that
customers express their requirements, when describing them
to analysts, in their own terms, assuming implicit knowledge
of their environment. It is then the analysts’ task to
comprehend and re-express the requirements in a manner
which all those involved in the analysis process can
understand. This echoes [15], in which requirements
engineering is said to be,

“ … a systematic way of developing requirements
through an iterative process of analysing the problem,
modelling the resulting observations and checking the
accuracy of the understanding so gained with domain
experts using the model as the baseline of communication.”

It is suggested, further, in [16] that the construction of an
initial domain (object) model can facilitate the exploration of
the vocabulary of the domain. Since the clients participating
in the process are unlikely to express their understanding in
terms either of entities or of objects, this again suggests the
generation of some form of verbal description.

Several approaches have been proposed for improving the
requirements engineering process. In [13], a problem-solving
approach, involving both analysts and clients, is suggested.
The technique employed is the systematic exploration of
several informal models or “scenarios” , each of which
addresses a part of the requirements. When each scenario has
been agreed as being accurate, its description is analyzed,
using the linguistic basis of conceptual graphs, and the results
of the analyses are consolidated into a domain knowledge
base and a user fact base.

An alternative approach, which also emphasises
cooperative exploration of the problem area with the client, is
described in [17]. Here, soft systems approaches are used to
enhance the client’s participation in the process. By
involving the client, it is claimed that objects which are
sensible and appropriate to the user wil l be identified than
would be the case with more traditional data- or process-
driven methods.

A third approach, presented in [12], attempts to define a
formal correspondence between linguistic patterns and
conceptual patterns. This is achieved by expressing the
former in terms of predicate logic, the latter in terms of set
theory, and testing the mathematical equivalence of the two
representations.

It is this last approach which is closest to our own work on
data capture from system descriptions. We restrict our
attention, in this paper, to data capture for Entity-Relationship

modell ing, which might be regarded as a subset of the object
modell ing concepts explored in [12]; indeed, the constructs of
Entity-Relationship modell ing are essentially the same as the
static conceptual patterns used in [12].

The focus of our research on data capture has been to
provide tools that ‘guide’ the analyst through the task of data
capture from systems documents, rather than on producing
tools that purport to automate the task full y. This allows the
analyst to apply his/her skill and insight to resolving issues
mentioned above, such as homonyms and synonyms, and,
similarly, to address the question noted in [9] of the
distinction between an attribute and an entity. Since such
issues depend on domain knowledge and the semantics
required of the system, it is unli kely that a satisfactory set of
criteria could be developed to permit full y automated
resolution.

The approach to data capture described in this paper draws
on recent work in the areas of corpus linguistics,
computational lexicography and terminology in which
emphasis is placed on observing and studying language in use
in free text (see for example [18], [19] and [20]). Specificall y,
our work arose from some earlier studies we conducted into
data capture from English texts for knowledge engineering for
expert system development [21] and for the compilation of
English technical glossaries and dictionaries (terminology
extraction). This earlier work is reported full y in [22]. There
were a number of features of our earlier work on data capture
which led us to consider its applicabilit y to data capture for
entity modell ing purposes. These features include the fact
that our approach, unlike some other existing approaches
(discussed in [22]), is both domain and text-type independent;
there is no requirement for the input text to be tagged; the
approach does not rely on (computationally intensive)
parsing; we can process single texts or batches of texts; and
the entity capture facility identifies single word entities as
well as multi-word entities.

It wil l be apparent that these features are appropriate for an
environment where the range of text descriptions is not
predetermined, and could well range from operation manuals
or specifications for existing systems to informal notes taken
during a fact-finding interview.

An overview of our approach, including an il lustration of
data capture from a sample system description, is presented in
the next section.

III . AN OVERVIEW OF OUR APPROACH TO DATA CAPTURE

In order to construct an Entity-Relationship model, it is
necessary to identify a number of constructs. These include:

• Entity types including subtypes
• Attributes including identifiers and inherited attributes

• Relationships including degree and optionality

Our research to date has focussed principall y on the capture
of entities from system documents, and it is this aspect of our
work on which we report in this section. More recently we
have begun refining our approach to entity capture to
incorporate the identification of subtypes, attributes and
relationships. We give some brief indications here of these
refinements.

We ill ustrate our proposed approach by considering the
following example. The initial description of the system
requirements, given in Figure 2, is typical of a problem
statement, and might have been produced either as part of a
request for a system or as the result of an analyst’s initial
interview.

An Estate Agent’s Database
An Estate Agent is responsible both for arranging sales

of properties and also for managing property rentals.
Properties can be houses, maisonettes, bungalows or
apartments, and contain a number of bedrooms. Each has
a unique address. The dimensions (length and breadth) of
each bedroom, in metres, are to be stored, as are those of
the main living room. For rented properties, the monthly
rent and the minimum rental period, in months, are
required, whereas for properties for sale the asking price is
needed. The owner of every property is to be recorded
also, giving the name and address of the owner. It should
be noted that people may own several properties.

Figure 2. System Requirements for Estate Agent’ s database.

Applying standard entity modelli ng techniques should yield
a model of the form in Figure 3. Identifiers are denoted by
bold attribute names, “crow’s feet” are used to specify
“many” (i.e., one or more) cardinality, and the connection
between Property for sale, Rental property and Property
indicates that the first two are (exhaustive) partitions of the
last.

Property

Property for
sale

Rental
property

BedroomsOwner
contains

owns

address

address

name property_address bedroom_no

breadthtype

min_periodmonthly_rentalasking_ price

living_room_length

living_room_breadth
length

Figure 3. Entity-Relationship model derived from description in Fig. 2

It should be noted that the description of Figure 1 suggests
additional subtypes for property (house, maisonette,
bungalow and apartment), but the simple attribute, type, is
adequate representation in the absence of further
distinguishing properties.

A further complication is associated with the existence of
an address attribute for both property and owner; these must
be recognized as being distinct. This is a trivial example of a
pair of homonyms.

The choice of identifiers for owner and bedroom, and,
indeed, the introduction of the attribute bedroom_number are
standard assumptions which a skilled analyst might make, and
which it would be diff icult to automate completely. Once
made, such assumptions require verification with the client, in
the same way as any suggestion made by an automated tool
would have to be accepted or rejected.

As noted above, the systems analysis literature encourages
analysts to scan narratives for nouns in order to identify
entities. Taking as our starting point this heuristic that nouns
are likely to be entities, we have developed a tool for
capturing nouns (candidate entities) from system documents.
This tool, originally implemented in Prolog, and currently
being refined using a set of macros in Microsoft Word, is
capable of capturing single-word nouns (e.g. bungalow) as
well as multi-word nouns (e.g. estate agent). Our approach to
entity capture relies on an analysis of co-occurrence patterns
in text, the basic premise of the approach being that an entity
(i.e. a noun) in text is li kely to reside in English texts
preceded by a ‘boundary marker’ comprising a so-called
function word (determiners, pronouns, prepositions,
conjunctions, etc.) or a punctuation mark, and followed by a
boundary marker comprising a function word or punctuation
mark, as summarized in the following pattern:

Function word/punctuation + ENTITY + function word/punctuation

We arrived at this basic premise about the co-occurrence
patterns of nouns in text from a careful study of a selection of
speciali st and technical texts spanning a range of subject areas
and text types (as reported in [22]), as well as by drawing on
studies of corpus linguistics and term extraction [see for
example X-Sager].

Table I below provides a summary of the possible
permutations of co-occurrence patterns (taken from the
sample ‘estate agent’ systems description presented above).

TABLE I

CO-OCCURRENCE PATTERNS FOR ENTITY CAPTURE
Boundary marker Entity Boundary marker

an estate agent is

of bedrooms .

, bungalows or

, maisonettes ,

Implementing our approach was quite straightforward from
a computational point of view since both function words and
punctuation can be thought of as a closed set: we could easil y
compile a li st of such items for use by our program. Using
this li st of function words and punctuation, the program scans
a given text highlighting as candidate entities items which
reside between function words and/or punctuation.

In common with other programs for noun identification
(discussed in [22]), the output from our co-occurrence pattern
approach to entity capture typicall y contains a certain amount
of noise. In order to keep this noise to a minimum, we filter
our output using a stopli st (again, in common with other
approaches to noun identification). This stopli st was created
following a study of the theoretical and empirical literature of
speciali st and technical writing (see for example [23]) and
comprises commonly occurring words and phrases that are
typically used in technical writing. The list includes reporting
verbs (e.g. to note, to state, to say), and phrases (sometimes
referred to collectively as ‘ linking words’) that are used to
‘ refer back to points which have already been stated or
forward to points which will be made later’ [20]. It further
contains a collection of other general li nking expressions,
such as consequently, in addition to, a number of, and for
example, and some frequently occurring verbs.

Applying our co-occurrence pattern approach to the estate
agent system description (presented above) would yield the
following (candidate entities marked in bold):

An Estate Agent is responsible both for arranging sales
of properties and also for managing property rentals.
Properties can be houses, maisonettes, bungalows or
apartments, and contain a number of bedrooms. Each has
a unique address. The dimensions (length and breadth) of
each bedroom, in metres, are to be stored, as are those of
the main living room. For rented properties, the monthly
rent and the minimum rental period, in months, are
required, whereas for properties for sale the asking price
is needed. The owner of every property is to be recorded
also, giving the name and address of the owner. It should
be noted that people may own several properties.

Comparing the candidate entities highlighted in the above
text with those presented in the entity relationship diagram
(Figure 3) reveals that all of the entities represented in the
diagram are proposed as candidates except for property for

sale. This entity is missed from our approach because it is a
(rather rare) example of a nominal expression containing a
function word (for). Note that our approach also proposes a
number of attributes as candidate entities (e.g. houses,
bungalows, and maisonettes), thus illustrating the problems
cited in the literature (and referred to in section II above) of
distinguishing between entities and attributes. We envisage
that the preliminary work we have undertaken on attribute
capture (outlined briefly below) will go some way to
addressing this issue.

It wil l be seen from the above ill ustration that our approach
incorrectly proposes as entity candidates responsible and
people, the latter being a synonym for owner. Clearly, an
analyst could easil y apply his/her judgment and knowledge to
filter such anomalies from the output.

When developing our co-occurrence pattern approach to
noun identification for knowledge engineering and
terminology extraction purposes, we devised a framework for
evaluating its success (reported in [22]). We are now
applying this framework to an evaluation of the approach
within the context of capturing entities from system
documents.

We believe that this framework has application beyond the
evaluation of our own approach to entity capture, and hence
represents a significant part of our contribution to the area of
entity capture. We present here a brief summary of our
framework, and then, using this evaluation framework,
suggest how our approach to entity capture performs.

As reported in full in [22], in order to evaluate the success
of our noun identification program in the context of
terminology extraction and knowledge engineering, we
selected documents from several subject domains and asked a
domain expert from each domain to scan the documents
manually marking the technical (domain) terms (which are
largely nouns). The output of each expert was deemed to be
reliable and thus was used as our datum. We then compared
the output of each expert with the noun candidates proposed
by our noun identification program. As a further evaluation
measure, we analyzed the manual scanning output of
terminology extraction experts (who are typicall y not domain
experts), and compared this with the output of the domain
experts as well as with that of the program.

Our evaluation framework comprised five measures of
comparison:

1. Match: an item selected by a domain expert was also
proposed as a candidate by our program;

2. Truncation: an item selected by a domain expert was
‘shortened’ (truncated) by our program, and hence only
partiall y identified;

3. Expansion: an item selected by a domain expert was
‘ lengthened’ (expanded) by our program, and hence only
partiall y identified;

4. Undergeneration: an item selected by a domain expert
was not proposed as a candidate by our program;

5. Overgeneration: an item not selected by a domain
expert was proposed as a candidate by our program.

An illustration of this evaluation framework is presented in
Table II below.

TABLE II

EVALUATION FRAMEWORK FOR ENTITY CAPTURE
Comparison Item selected by

domain expert
Candidate proposed by
entity capture program

Match bungalow bungalow

Truncation property for sale property

Expansion property sales managing property
sales

Undergeneration name -

Overgeneration - metres

Within a terminology extraction context, our noun
identification program consistently proposed correctly 80% of
the items selected by a domain expert. Further, the program
partiall y identified (i.e. truncated or expanded) the remaining
20% of items selected by a domain expert. In common with
over noun identification programs, our program substantially
overgenerated (i.e. the output contained a certain amount of
noise). Whilst we are investigating means of reducing this
noise to a minimum, we believe it is preferable for the
program to overgenerate rather than undergenerate. In the
context of entity capture, for instance, it is arguably better for
the program to propose too many items as entities (which the
analyst can the eliminate using his/her domain knowledge,
experience, linguistic knowledge, intuitions and judgments),
than it is for the program to undergenerate, thereby leaving
the analyst no option but to go back to the original documents
and scan them manually to identify the items missed by the
program.

The results of our evaluation within a terminology extraction
context held true across subject domains and text types.
Given the close correspondence between technical terms
(largely nouns) and entities (also largely nouns), we believe
that similar results can be expected from the program used in
an entity capture context (with the proviso already alluded to
that the entity-attribute distinction is addressed).

We turn our attention now to some preliminary work we
have undertaken to identify sub-types of entities and attributes
in system documents. Again, this work builds on some earlier
research undertaken in the context of knowledge engineering
and expert system development, and it draws on the literature
of linguistics in which the linguistic devices used for
representing semantic relationships are discussed (see for
example [24], [25]). In this earlier work, we investigated
means of tracking, in text, the lexical-semantic relationships
holding between noun terms, including relationships of
hyponymy (X is a kind of Y), and part-whole relationships.

Taking the hyponymy relationship as an expression of
types and subtypes has allowed us to extend this work to
include the capture of entity subtypes. Using the basic frame:
X is a kind of Y as a starting point for the hyponymy
relationship, we have collated a number of ‘ linguistic cues’
which are used in text to denote this relationship. Such cues
include type of, sort of, and so on. We have written a
program which searches text and highlights portions of text
containing the cues, the aim being to guide the analysts to the
‘r ich’ portions of the system description in which relevant
data are likely to be found.

Continuing our studies of language in use in text, we are
currently investigating the adoption of the ‘ linguistic cue
approach’ to the capture of attributes from system documents.
As noted earlier, it is acknowledged in the literature that
distinguishing attributes from entities in text is a complex
task. Like entities, attributes are often represented by nouns.
The analyst’s task is to decide which nouns are entities and
which are attributes of entities. Again, this task typicall y
involves the application of domain knowledge, experience,
intuition and judgment. Hence, as noted in the literature, the
automation of this task is fraught with diff iculties. Whilst we
are by no means claiming to have solved the problem of
attribute capture, we believe that our existing work on
identifying linguistic cues can be used to begin to tackle this
issue.

Having studied a number of system descriptions and
examined the items an analyst might select as attributes of
entities, we have begun to collect a set of linguistic cues
which seem often to be used to ‘point’ to the presence of
attributes in a sentence. These include words and phrases
such as each, every, of the, and of a. Identifiers might be
captured by searching for such linguistic cues as unique, only,
sole, and so on.

We believe that our approach to entity capture based on the
analysis of co-occurrence patterns represents a feasible means
of providing support to analysts engaging in entity modelli ng.
Furthermore, we believe that this approach could be
significantly enhanced by the development of our ‘ linguistic
cue’ approach to capturing entity subtypes, attributes and
identifiers. We intend to investigate this latter area of work

within the scope of a further research project, and to
incorporate also an approach to identifying relationships
holding between entities.

In the next section, we discuss our provision of CASE tool
support to the next phase of system design, and indicate how
we plan combine this work with the data capture work
outlined above.

IV. PROVIDING CASE TOOL SUPPORT

It was noted in section I that we have developed already a
prototype CASE tool that addresses the later phases of the
design process [3]. By combining the work we describe in
this paper with that tool, support would be available for all six
phases of the process depicted in Fig. 1. The entity capture
techniques, however, are provided currently in a tool separate
from the CASE environment.

CASE tools normally function by supporting one or more
forms of diagrammatic input, deriving textual, tokenised or
frame-based representations of the objects represented
diagrammaticall y, and manipulating the resulting text-based
representations to generate code.

In our approach to capturing entities, not only do we start
with (arbitrary) text, but the output of the process is also,
essentiall y, text. Whilst this might suggest that the
diagrammatic representation could be obviated completely, it
is the diagrammatic form which is most readily
comprehended, and which is normally used, therefore, to
verify the constructed model with the client.

Further, it has been noted above that the entity capture
technique will t end to overgenerate. In addition, there may be
several refinements which a skilled analyst would wish to
incorporate into a model based on documentation and
description alone – not least to ensure completeness (what
system is ever full y documented?). Such interaction with a
CASE environment is likely to require rather more freedom
than is normally available in a “ traditional” CASE tool which
supports a specific method.

The combination of using text as a starting point and the
requirement for a high level of interaction with a tool
incorporating “automatic” entity capture suggests that, rather
than incorporating the entity capture technique directly into
existing CASE tools, it will be necessary to develop a new
environment. The facil ities required – the abil ities to
generate, dynamicall y, graphical representations from text-
based descriptions, and to support dialogues with the (tool)
user to control such generation – are readily supported by
meta-CASE tools, such as Lincoln Software’s Toolbuilder
[26], which we have used to develop the tool reported in [3].
The fundamental features of the meta-CASE environment
which are relevant here are a full y object-based representation
for every concept, with the ability to generate diagram objects

from text, or vice-versa, and a computationally complete
language and user interface, which wil l allow construction of
arbitrary control processes.

We have used Toolbuilder also to construct a design
environment which supports input in a number of formats,
including natural language and structured English [27]. Thus,
we have demonstrated one mechanism for inputting raw text
into a structured CASE environment, and this could readily be
exploited to provide an input mechanism for an entity capture
tool.

Finally, it should be noted that the generation of an ER
diagram from a list of entities, attributes and relationships is
itself non-trivial. In [28], an early approach to this problem is
described, and that paper notes the extreme complexity of
capturing suff icient semantic information, or, indeed,
aesthetic rules, to allow the automatic generation of an “ ideal”
diagram. Fortunately, however, one of the essential features
of a CASE tool, often referred to as “rubber banding”, is the
abilit y to retain (and stretch) connections between diagram
elements even if they are moved. Thus, it would be
straightforward for an analyst to improve the layout of
diagrams which had been generated automatically.

V. CONCLUDING REMARKS AND FURTHER WORK

We have shown that we have provided support for each
phase of the information system design process, and we have
noted that the meta-CASE environment we have used to
generate related CASE tools provides the facilities required to
build a full y integrated tool to provide support throughout
the entire design process. This is subject of a further research
project proposal, which will address issues such as:

- the refinement of data capture techniques
- an investigation of view integration issues
- building an integrated tool (text to generated code)

Whilst we have concentrated on Entity-Relationship
modell ing, and, in separate work, on the generation of code
for Relationship databases, it was noted above that similar
techniques are appropriate also for the design of object
oriented systems.

Further, the data capture techniques we have explored in
the context of generating entity relationship models could, we
believe, be more widely employed. One obvious possibilit y
would be in the analysis of legacy code, in order to support
reverse engineering. Consideration of legacy code suggests
that dynamic as well as static properties might be amenable to
capture. This implies that similar techniques could be applied
also to behaviour modell ing within object-oriented
environments.

REFERENCES

[1] D. Bowers, From Data to Database, 2nd ed., London: Chapman & Hall,
1993, p11.

[2] P. Chen, “The entity relationship model: towards a unified view of
data.” ACM Trans. on Database Systems vol. 1 (1), 1976.

[3] D. Bowers, “Database schema improvement techniques for CASE
tools” , Proc. UKAIS 2000, April 2000

[4] R. Rock-Evans, Data Analysis, Sutton: IPC Business Press, 1981, p10.
[5] R. Abbott, “Program design by informal English description” ,

Communications of the ACM Vol 16 (11), pp. 882-894, 1983.
 [6] M. Lejk, D. Deeks, Systems Analysis Techniques, Hemel Hempstead:

Prentice Hall Europe, 1998, p76.
[7] D. Bowers, From Data to Database, 2nd ed., London: Chapman & Hall,

1993, p52.
[8] T. Connolly, C. Begg, Database Systems: a practical approach to

design, implementation and management, 2nd ed., Harlow: Addison
Wesley Longman, 1999, p231.

[9] A. Silberschatz, H. Korth, S. Sudershan, Database System Concepts, 3rd

ed., Singapore: McGraw-Hil l, 1997, p29.
[10] G. Booch, “Object Oriented Development” , IEEE Transactions on

Software Engineering, vol. 12 (2), pp. 211-221, 1986.
[11] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen, Object-

Oriented Modeling and Design, Englewood Cliffs: Prentice-Hall, 1991,
pp. 21-47.

[12] N. Juristo, J. Morant, A. Moreno, “A formal approach for generating oo
specifications from natural language” , Journal of Systems and Software,
vol. 48 (2), pp. 139-153, 1999.

[13] P. Loucopoulos, R. Champian, “Concept acquisition and analysis for
requirements specification” , Software Engineering Journal, vol. 5, pp
116-124, 1990.

[14] I. Sommervil le, P. Sawyer, Requirements Engineering: a good practice
guide, Chichester: John Wiley & Sons, 1997, p64.

[15] W. Rzepka, Y. Ohno, “ Introduction: special issue on requirements
engineering” , IEEE Comp., vol. 18 (4), 1985

[16] M. Fowler, K. Scott, UML Distill ed: Applying the standard Object
Modelli ng Language, Addison Wesley Longman, 1997, p19.

[17] Y. Liang, D. West, F. Stowell , “ An approach to object identification,
selection and specification in object-oriented analysis” , Info Systems
Journal, vol. 8 (2), pp. 163-180, 1998.

[18] J. M. Sinclair, Corpus, concordance, collocation, Oxford University
Press. 1991

[19] K. Aijmer , B. Altenberg, English corpus linguistics: studies in honour
of Jan Svartvik, Longman, 1991

[20] J. Sager, A practical course in terminology processing, John Benjamins
Publishing Co., 1990

[21] H. Fulford, S. Griffin, K. Ahmad, “Resources for knowledge transfer
and training: the exploitation of domain documentation and database
technology” , Proceedings of the 6th International Conference on Urban
Storm Drainage,2, J. Marsalek and H. C. Torno (eds), Seapoint
Publishing, 1993

[22] H. Fulford, Term acquisition: a text-probing approach, Doctoral thesis,
University of Surrey

[23] J. C. Sager, D. Dungworth, P. F. McDonald, English special languages,
principles and practice in science and technology, Oscar Brandstetter
Verlag KG. 1980, p. 199.

[24] J. Lyons, Semantics, Cambridge University Press, 1977
[25] D. A. Cruse, Lexical semantics, Cambridge University Press, 1986
[26] Lincoln Software Ltd., Toolbuilder User Manual, Macclesfield, 1998.
[27] H. Fulford, L. B. Work, D. Bowers, “Tools for information systems

teaching: making a case for metaCASE” , Proceedings of the 7th Annual
Conference on the Teaching of Computing, S. Alexander and U.
O’Reill y (eds), University of Ulster, 1999

[28] P. Feldman, “ A diagrammer for the automatic production of entity type
models” , Proc. 3rd British National Conference on Databases, pp 57-70,
1984.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	From Data Capture to Code Generation: Tools for Entity Modeling
	Heather Fulford
	David Bowers
	Recommended Citation

	Microsoft Word - Ecis.doc

	search: search

