View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

European Conference on Information Systems

ECIS 2000 Proceedings (ECIS)

2000

On Some Epistemological Problems of Software
Engineering

Peter Schefe

Universitat Hamburg, schefe@informatik.uni-hamburg.de

Follow this and additional works at: http://aisel.aisnet.org/ecis2000

Recommended Citation

Schefe, Peter, "On Some Epistemological Problems of Software Engineering" (2000). ECIS 2000 Proceedings. 49.
http://aisel.aisnet.org/ecis2000/49

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.


https://core.ac.uk/display/301348321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000?utm_source=aisel.aisnet.org%2Fecis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2000/49?utm_source=aisel.aisnet.org%2Fecis2000%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

On some epistemological problems of Software Engineering

Peter Schefe
Fachbereich Informatik
Universitat Hamburg
Vogt-KolIn-Str. 30
D-22527 Hamburg
schefe @informatik.uni-hamburg.de

Abstract

The paper addresses some misconceptions of Software
Engineering, requirements analysis and modelling in
particular, due to underlying epistemological flaws., e.g.
the believe that the system analyst's task be simlar to that
of a natural scientist's. The fundamental issues,
constitution of objects and signs, conceptualization and
definability, are discussed. It comes out that the
paradoxical situation of software engineering is having to
formalize what cannot be formalized. This is reflected in
the fuzzy notion of 'model’ in general as well as in the
epistemological presumptions of 'object oriented
modelling' in particular. The paradigm of 'objective
modelling' has to be replaced by a paradigm of purposive
description’ shifting the focus of Software Engineering
research to non-formal methodologies.

1. Introduction

A definition of Software Engineering (SE in the sequel)
such as given by J. McDermid [..]:

[...] a science and art of specifying, designing,
implementing and evolving — with economy,
timeliness and elegance - programs,
documentation and operating procedures whereby
computers can be made useful to man. ([8], p. 2)

exhibits the typical engineer‘s concept of her discipline.
The twofold characterization of “science and art* can be
traced back to Aristotle‘s dichotomy of theoretical
knowledge and practical ability. It goes unnoticed that the
generic part of this definition, "science", and the specific
part, "programs, documentation, and operating
procedures”, are implying epistemological presuppositions
contradicting each other.

As to the first issue, the foundation of SE in science
presumes that the software engineer is in the
epistemological position of a scientist:

The task of the system analyst may indeed be
considered to be essentially the same as that of
the scientist, in that it involves constructing an
abstract mathematical model of a real world
domain of phenomena. ([9], p. 3)

This comparison gives rise to a deep epistemological
misconception, especially, as to the role of mathematics in
the building of a software "model of the real world".

Science uses mathematics to conceive of natural laws
allowing for explaining and predicting phenomena in the
physical world represented as measurements. Thus,
mathematics provides with an abstract modelling facility,
e. g., the model of Newtonian mechanics may be used to
program the control of rockets, say. Obviously, it is not the
task of software engineers to develop such models, yet
they have to understand them to some degree, in order to
translate them into programs.

The contradiction becomes apparent, when "familiar
applications" - which can do without such mathematical
models - are taken into consideration:

Taking the ‘scientific view*, the specification,
especially that part which specifies functional
behaviour, is best written in a formal language,
that is a language with precisely defined
semantics. Such languages in this context
normally have a semantics defined in
mathematical terms. ([9], p. 3)

Here, the role of mathematics in specifying sofware
‘models‘ is quite different from the role it takes in natural
sciences such as physics: it is not used for prediction and
explanation of real world phenomena, instead, it provides
with the formal semantics of the language in which the
software ‘model‘ is written. Fig. 1, the Software
Engineering Triangle, shows the problem constellation
more obvious in familiar applications.



description/
requirements text

interprets satisfies

assigns sense

mathematical
structure/
implementation

conceptualized
reality

Fig. 1 Software Engineering Triangle

The ‘model‘s® fext occurs in two roles: First, it is a theory
satisfied by a mathematical model implementing the
specification. Second, it is a description interpreted by real
world concepts giving rise to a mediated relationship
between real world and the software system that may be
called "assignment of sense". This assigment cannot be
accounted for formally. To "satisfy" the formal
specification and to "satisfy" the informal requirements are
epistemologically quite different issues.

As a consequence, the work of the system analyst
cannot be viewed in parallel to that of the scientist‘s work.
The former has to construct a text to desribe, the latter
hypothesizes or uses a law to explain or to predict. There
are both epistemological and practical consequences. As to
the latter, I would like to quote McDermid once more:

In practice it is very rare for problem domain
theories to be re-used and this is an area where
our current practices exacerbate the inherent
problem.([9], p. 3)

This "inherent problem" is not grounded in poor
programming techniques, but in the epistemological
situation of SE. Its goal is not to arrive at universally valid
laws, but the provision of means that are adaptable to
changing purposes. The problem is a philosophical one. It
raises several philosophical issues I will elaborate on in
the sequel: What are objects? What is software? What can
be represented in software? What can be defined and
formalized? What are ‘objects’ in ‘object-oriented’
systems about? What is a (software) model? These
questions are related to some general issues in ontology,
epistemology, and philosophy of language.

2. Objects

"Object-oriented" analysis, design and programming have
rendered the notion of "object" a central issue of SE. It
appears to be a common conjecture that this methodology
will be appropriate for constructing software as
isomorphic models of the real world. As Coad and
Jourdon [1999] put it, naively:

Object-oriented analysis is based upon concepts
that we first learned in kindergarten: objects and
attributes, classes and members, wholes and

parts. |

What are objects? There are two basic answers to this
question:

* Objects are liguistic-logical entities
* Objects are real world phenomena

The first approach is due to G. Frege[3] in the first place.
The "Tractatus" of L. Wittgenstein[19] gives the
explanation:

Two objects|...] can be distinguished only
by their being different objects2

and W.V.0O. Quine provides with the famous formulation:

To be is to be the value of a bound
variable.([13], p. 103)

This formal notion of object cannot account for
phenomena, namely material things such as persons and
physical objects. Whilst the Tractatus declared formal
objects to be the substance of the world, the Aristotelian
tradition drawn upon by Madsen et al. [1993] considers
"substance" to be some substrate giving objects their
identity:

Phenomena like 'Sokrates', 'Mount Everest', a
medical record, and a memory cell in a computer
are all examples of phenomena which have
substance. Substance is characterized by a certain
volume and a unique location in time and space.
A major aspect of substance is identity. Two
pieces of substance have the same identity only if
they are the same substance. (p 294)

There are difficulties as to this "definition": How is the
"identity" of Sokrates bound to a certain volume? How
could we measure his volume without identifying him
before? Doesn't he change his volume continually? The
last statement, then, shows the circularity of argument that
makes this explanation worthless.

We need a principle of concrete individuation and
suitable conditions of identity. A plausible principle has
been proposed by P. Strawson [17]: Objects, e. g.
'Sokrates' and 'Mount Everest', can be referred to using a
real system of reference, the system of temporal and
spatial relations in which every individual is related to
every other in an unambiguous way. Together with
recognizability, this frame of reference enables objects to

1 Coad und Jourdon (1990), quoted in [19], p. 2

22,0233 Zwei Gegenstinde [...] sind[...] von einander
nur dadurch unterschieden, daf} sie verschieden sind.



be identified. By this principle, physical objects gain a
central role in the identification of individuals in general.
Processes, properties, and states are individuals that can be
identified only secondarily, that is to say, with respect to
some primarily identifiable entity. This bears some
evidence for the appropriateness of "object-oriented
modelling".

But how do the two notions of "object" mentioned
comply with each other? Formal objects are pure
particulars; they lack identity; they do not belong to the
physical world; they can only be distinguished from each
other in the Tractatus' way. A reflection of this dichotomy
is the software distinction of "values" being non-locatable
abstract entities and identifiable "objects" that can be and
have to be accessed at physical locations.

This may lead up to the question "What is software"?
Is it an abstract entity such as a number or a physical
object such as a magnetic tape? A. Turing [18] was the
first stipulating that computation must be mechanizable,
i.e., realizable in a physical medium. He indicated two
ways to do so, first, to construct a mechanical device
(hardware), second, to imprint marks on some physical
carrier (software). This has some interesting philosophical
consequences pertaining to SE: software and hardware are
equivalent; both software and hardware are participating in
the world of pure particulars as well as in the world of
individuals. Put in another way, there is no ontological
distinction of software and hardware such as conjectured
by some philosophers of Artificial Intelligencel, and it is
mistaken to address software as a pure mathematical entity
[2]. This result corroborates our former statement that
natural sciences are not the appropriate model for SE: the
physical patterns of a magnetic tape marked by a writing
device cannot be deciphered using methods of physics, but
only by another technical, i. e., man-made purposeful
device. Software construction is not "physical modelling",
as E. Madsen, B. Moller-Pedersen, and K. Nygaard[7]
have in mind, but purposive construction of abstract
objects realizable in an arbitrary physical medium.

A last issue of "objects" is in order. The notion of
object implies relativity. There is no absolute condition of
what counts as an object and what exactly an object
amounts to, e.g. what exactly belongs to 'Mount Everest',
whether a broken chair is still a chair etc. As H. Putnam
[12] has pointed out, it is a matter of degree what factual
and what conventional aspects are determining our grasp
of an object. To emphasize it: "modelling" and identifying
"objects" in our world is not a natural scientist's task, but a
task of somebody capable of understanding and
communicating human conventions, needs and purposes.

3. Representations

As has been mentioned, it appears to be a common

L1, p- 210: 'The powers of this virtual machine vastly
enhance the underlying powers of the organic hardware
on which it runs[...]*

understanding in SE that objects of the real world are
"represented" or "modelled" by software isomorphically,
ideally at least, says D. A. Stokes[16]:

Ideally, we would use languages which had a
single interpretation, i. e. the language would be
'isomorphic with' the real world; each part (e. g.
word) of the language would refer to only a single
'thing' in the real world. Such languages would
allow the analyst to write system descriptions that
would be entirely unambiguous, and which could
be only correctly understood by both the
customer/user and the designer/analyst. (p. 16/5)

Once more, this reminds of the Tractatus' conception of
object and sign as a "model" or "image" of the former.
These notions are reflected in the formal semantics
concept of Computer Science: a formal association
(morphism) of formal objects. The meaning of a formal
term is a formal object. This concept of sign and meaning
is rooted in deduction establishing pure formal
erquivalence relationships [7]. Meanings, however, can
only be hypothesised risking misinterpretation. This is not
a deficiency of particular human communicative means,
but a necessary constituent enabling flexibility and
change.

The formal concept of meaning fosters the belief in
representation as isomorphic modelling. There are even
inherent drawbacks, however. The double role of formal
objects gives rise to contradictions, as has been explained
by K. Godel and others. Only if used in restrictive ways, it
allows for any level of formal abstraction used in SE for
construction and interpretation of "modelling" languages.
This restrictive notion of meaning looses its usefulness if
transferred to language semantics in general; Madsen et al.
are supplying an example involuntarily:

The programming process involves identification
of relevant concepts and phenomena in the
referent system and representation of these
concepts and phenomena in the model system. (p.
292, emphasis by P.S.)

Problems due to their concept of 'representation’ may be
explained using the following examples provided by the
authors:

The balance property of an Account is an example
of a property that cannot be represented directly
in BETA. Balance is an example of a measurable
property, and the substance of the integer part-
object does not correspond to a phenomenon in
the referent system. (my emphasis - P.S.)

But what, then, does a balance of "1000 Euro", say,
represent? Nothing? If this makes sense at all, its
inappropriateness is grounded in several misconceptions,
especially in the notions of "substance" (see above) and
"representation” as a correspondence relation, and even of



“object”. Similarly:

Consider next the speed of a vehicle. This is
another property that does not have substance. It
is, however, an observable and measurable
property, by for example the car's speedometer or
the police radar, and the measuring devices do
have substance. (p. 312)

Hence, it follows that "speed" (as well as balance) is not
an object, that is to say, it is not part of the real world -
only speedometers are! As a consequence, Madsen et al.
have to state:

BETA elements which are not representative are
called non-representative. (p. 312)

What does it mean: "Sokrates is represented by a computer
program"? Is there a physical duplicate? Is Sokrates
simulated? Obviously not. Sokrates is not "represented” as
a physical object, instead, there is a linguistic description
'modelling' the logical structure of a certain conceptual
grasp of Sokrates. As a consequence, it makes no sense to
look for physical elements corresponding to the syntactic
elements of the description. It is mistaken to declare some
syntactic elements as “representative®, others not, because
there be no obvious primarily identifiable objects in the
refenrence system. Reference is not an isomorphic
relationship between descriptions and their subjects.

The meaning of language terms is conventional and
relative, so is the meaning of software representations. The
construction and use of software are grounded in
purposive action, and the "world" it refers to is to a
considerable degree a reflection of the conventional
commitment to these purposes.

4. Concepts, definitions, and classes

Concepts are the means for the epistemological "grasp" of
our world. The “definition®:

A concept is a generalized idea of a collection of
phenomena, based on knowledge of common
properties of instances in the collection. ([7], p.
297)

originating from Aristotle seems to be popular in
computer science because of its similarity with the notion
of formal abstraction. Unfortunately, it does not work for
concepts of natural kinds. What would be the generalized
idea of a dog? What colour , which size would it have? A
typical dog would not be what a universal is conveying to
its user. It is closely entangled with the identification of
particulars. As Strawson puts it:

For what constitutes our grasp of the general
criterion of identity for men, or for that of horses,
or of planets or storms or buildings or battles — or
indeed for any kind of particulars — is precisely
our grasp of the general concepts under which
they respectively fall or (what comes to the same
thing) our grasp of the senses of the general

terms for the kinds in question.1

According to Strawson [17], there are three kinds of
universals, feature, sortal, and characterizing universals. I
will not comment on the first kind. The use of sortal
universals is closely related to our criterion of identity for
individuals. Only if the meaning of these caregories is
understood, meaningful discourse pertaining to objects
becomes possible, i. e., that characterizing universals can
be ascribed successfully. For example, "Sokrates is
human" is the presupposition to "Sokrates ist wise". The
former is tautological (if not used for introduction), i. e., it
is not subject to refutation by history, whilst the latter may
be. The examples are related to well-known dichotomies,
among others, of analytical and synthetical knowledge, of
closed and open concepts, of necessary and contingent
properties.

Similarly, to the distinction of defining and
characteristic properties of concepts. Can categories be
defined? Yes, if not, they would not be programmable, is
the answer of SE. This gives rise to the central dilemma of
the discipline, as Stokes puts it:

We need to force synthetic reasoning to be less
subjective to bring the statement of requirements
into an (almost) analytical framework. If we wish
to use formal languages then the problem of
misinterpretation must be reduced. How we
might achieve this, perhaps by 'narrowing the
bandwidth of the observations' that we must
make to a minimum, and thereby controlling the
degree of misinterpretation, will be discussed
later. (p. 16/6)

The 'solution' seems clear: knowledge captured by
empirical concepts has to be forced into definitions that
'minimize' (i .e. 'zero') misinterpretation. However, this is
simply impossible. Stokes' fundamental mistake is the
believe that formal definitions implying absolute
decidability of membership are a means of precization of
empirical concepts. W. V. O. Quine [14] has argued that
definitions of empirical concepts are still dependent on
prior synonymities that cannot be forced into a closed
equivalence relationship. Amazingly, Stokes himself
admits:

1 p. Strawson : Two Conceptions of Philosophy. (1990) quoted
in [5], p. 191, footnote 27.



One further fundamental difficulty of RML (an
algebraic specification system - P. S.) is the
relationship between the world, the model and the
system. How can we ensure that the model
correctly represents the relevant issues of the real
world? (p. 16/19)

Then, he resorts again to a formal method: verification
against a formal "enviromental model":

This would be useful because validation would
become more analytical, and less subjective. (p.
16/6)

thus closing his circle of argument. Madsen et al., using
the dichotomy of "Aristotelian" (= analytical) and
"prototypical" (= synthetical) concept are running into the
same trap, when stating on the one hand:

The realized concepts in the model have to be
Aristotelian. Part of the modelling function is
thus concerned with giving prototypical concepts
an Aristotelian interpretation.

and admitting on the other one:

This will often make the resulting computer
system appear inflexible to the user. (p. 318)

thus exhibiting the same misconception. This is not the
solution to the dilemma that real world concepts are not
formal entities. Hence, formal reconstructions of real
world concepts have to be considered open. Their
definitions can only be partial., and, thus, open to change.
Whether a concept is "well-defined" in this sense, depends
on its usefulness. Even SE concepts such as "system
design" and "implementation" are not "objective" in the
sense that their extensions could be defined exactly once
and for ever. The differentiation is useful, as it accounts
for different kinds of mistakes.

A special look on 'object-oriented’ methodology may
clarify the issue. It appears to be a commonality among
object-oriented people that:

...it is natural in the sense that the design pieces
are closely identified with the real world concepts
which they model. ([6], p. 41)

Beyond that, it is asserted that class hierarchies do 'model'
conceptual hierarchies. A simple example refutes the
conjecture that class defining hierarchies are conceptually
generalisation/specialization hierarchies. The class of
points in the plane is 'modelled' by two 'attributes', the
coordinates. A 'subclass' can be derived by adding a third
attribute giving the 'model' of a point in three-dimensional
space. As the resulting set of instances is not a subset of
the set of instances of the 'superclass’, the conjectured
relationship does not hold: the set of three-dimensional
points is not a subset of the set of two-dimensional points.
This does not preclude that class hierarchies can be

constructed in analogy with conceptual relationships to
some degree. Consider the example due to [7]:

Reservation:
Date:...
Customer:..
FligthReservation: Reservation
ReservedFlight:...
ReservedSeat:...
TrainReservation: Reservation
ReservedTrain:...
ReservedCarriage:...
ReservedSeat:...

The conceptual relationship of "Reservation" and the two
subclasses is indeed a subconcept relationship. However,
this is not what is 'modelled' by the classes! In conceptual
hierarchies, defining properties are needed for subclassing,
"sort of vehicle" would do in the example above. In
object-oriented subclassing, descriptive entities are added
re-using the description of the superclass. The set-
theoretical semantics is not applicable: the instances of
"TrainReservation" are not a subset of the instances of
"Reservation", and "Reservation" is an so-called abstract
class with no instances at all!

What, then, are obeject-oriented class hierarchies
about? First, class hierarchies are description hierarchies
tied together by the purely syntactic mechanisms of
factorization and extension, respectively, addressing
aggregates of descriptive attributes and methods common
to all instances. The semantic aspect of subclassing is
given by the conformance relation holding among class
and superclass, that is to say: an instance of some class can
stand for ("is a") an instsnace of its superclass, if and
because it shares the syntactic and static attributes of its
predecessors. This is, certainly, not a conceptual, but a
(software-)technical feature of object-oriented inheritance
systems.

Their usefulness, and perhaps their superiorty to other
methodologies, is not grounded in - contradicting the term
- 'modelling' real world objects, but in reconstructing
purposive action grouped around some material. The
following example adapted from [11] is illustrative in this
respect, the actions of filing, sorting, accessing etc.
material in different kinds of containers:

File:
Insert:...
Sort:...
Select:...
Delete:...

The actions that constitute the essence of a file are abstract
as long as the implementation is not known. Stacks and
folders behave differently, and they may add more specific
actions, e.g. "Label" or "Spread-out". Subclassing may be
concretization or implementation, not just specialization.



Re-use is one of its benefits, program structuring and
modularity are the classical issues addressed, too. As to
"modelling", the strength of object-oriented systems is not
to describe real world concepts or objects, but to formally
reconstruct actions constituting patterns of behaviour of
some material to be differentiated into queries and
updates. If these "models" are implemented on a real
machine, their intended purpose must become obvious to
their users. The description of methods associated with a
certain (mostly abstract) material, not the description of
physical objects makes up the strength of this
methodology.

5. Models

SE has tried to address the "inherent problem" of
requirement anlysis and specification by methods of
prototyping. Unfortunately, the concept of prototype is
closely related to the concept of 'model' in which the
epistemological misconceptions and fallacies of SE
crystallize. One source of difficulty has its origin in the
confusion of "model for" and "model of". B. Monahan
and R. Shaw conceive of the "engineer's notion of
'model"":

This is a prototype construction, smaller in scale
than the real thing, but useful for testing out ideas
and checking specific calculations (e.g. the use of
wind tunnel models in aerodynamic design).
(p. 21/4, my emphasis— P. S.)

A prototype is a 'model for' something to be constructed, a
wind tunnel model, contrarily, is a 'model of something to
be analysed.

Furthermore, there is the adoption of a naive 'natural
science view': software as a 'mathematical model' for
prediction and explanation:

This is a mathematical theory in which the more
fundamental aspects of the system are formulated
and discussed. This is useful in making
predictions and in drawing conclusions about the
system by the use of logical inference. (p. 21/4)

Once more the same confusion: in natural sciences, a
mathematical model is a ‘model of", whilst a formal
software specification is a 'model for' the system to be
implemented. For the former, the relationship between
'model' and its target is synthetical, for the latter, it is
purely analytical.

There is at least a third - well established - notion of
model, the semantic model. Each consistent theory has a
'model' by definition, a structure that satisfies it. As the
system implementing the specification is a semantic model
of this theory, we get another source of confusion.
Monahan and Shaw appear to make a virtue out of
necessity:

Finally, it should also be clear that model-based
specifications involve some of the characteristics
of each of the notions of 'model‘ mentioned
above. (p. 21/15)

The better alternative would be to avoid the term "model”
altogether, and to use unambiguos terms instead,
"description" and "prescription”, e. g., to differentiate the
"of-" and "for-"roles, and "explorative/experimental
version" to indicate the status of an implementation.

The examples given by the authors (see below) clearly
show that "models" are formal descriptions of some
logically conceived structure of organizational reality. The
formal specification language Z, a logic-oriented system
augmented with set-theoretic constructs, provides the
impression of a "model-building approach”, i.e:

The objects are then given existence by building
them as compound strcutures, using the more
fundamental objects as a base material. (p. 21/4)

The example below exhibits conventional wisdom:

2. Employs. A relation will be used to model the
link between companies and employed people]...]
This relationship models the link between the
entitiecs COMPANY and PERSON. The domain
of the relationship models the entity set
COMPANY and the pairs (company, person)
models the entity set PERSON of those people
employed by companies.

3. Vacancies. A partial function between
companies and the number of vacancies each has
[...] (p. 21/10)

This is a formal abstraction to be interpreted by the clients
as well as by the implementors. However, can the former
understand the consequences? What does it mean:
COMPANY is a "model" of a company and the set of
tuples called Employs a "model" of its relationship to
people? Is this the 'precization' they want? Can, for
example, people only be employed, if there are Vacancies?
Formal methods do not prevent desasters, as is
suggested even by risk-experienced P. Neumann:

Specification of abstractions and their
relationships are also sources of desasters. !

Nevertheless, he misses the point that formal methods are
not the lesson to be learned:

In the absence of stringent analytical techniques
(e.g. formal methods), oversimplification tends to
be discovered only after failures were observed.

To the contrary. As the SE dilemma cannot be solved

1 P. Neumann: Risks of Easy Answers. In: CACM 38
(1995), p. 130



simply by applying "stringent" formal methods, SE has to
shift the focus of research and education to non-formal
methodologies.

6. Conclusion

The discussion above let stand out some fundamental
conceptual problems of SE.

The - perhaps most momentous - misconception of SE

is to classify it as a natural science.
* Not natural phenomena and laws but systems of
purposive, mostly abstract, action are its subject.
Interpretation, not explanation or prediction, is the task of
the system analyst.

As to the concept of "object of the real world", a naive

ontological realism is the prevailing idea tightly coupled
with the notion of isomorphic modelling.
* "Objects" are relative to some language. Their
identification is dependent on a public reference system.
How individuals may be distinguished from each other
and its environment is, among other things, a matter of
convention and degree.

Representations are understood as (isomorphic)

mappings. It makes no sense to transfer this concept to
descriptions or software reconstructions of "some sector of
the real world".
» Software representations can only capture the logical
aspects of conceptualizations. Their meaning and
reference are not subject to morphisms but to intentional
interpretation.

It is a common misunderstanding in the field of

object-oriented programming that concepts are entities to
be 'modelled' by classes, and that class hierarchies are
‘models' of conceptual hierarchies.
* Class hierarchies are description hierarchies based on the
purely syntactic mechanisms of extension and
factorization. There is no set-theoretic interpretation such
as it is applied to concept hierarchies.

It is believed that real world concepts can be or at

least should be formally defined rendering reasoning
purely analytical and "objective".
* The inherent SE dilemma cannot be solved by formal
methods. Software reconstructions are only purposive
approximations, they have to be open for interpretation,
hence, for change.

Last not least, SE lacks a consistent use of "model" as
one of its central terms. Especially, there is confusion as to
a 'model' for and a 'model' of something. There are
different meanings of "model" that should not be
confused.

* First, a semantic model is a formal structure satisfying a
specification (model of).

* Second, a descriptive world model is a selective and
purposive informal or formal description intended to
capture certain aspects of the real world (model of).

* Third, a system model is a - mostly formal - prescription
for a system to be implemented (model for).

* Fourth, an experimental, or explorative, model (also
called "prototype") is a testbed for users (model of) or
developers (model for).

What are the consequences? Epistemological
misconceptions may induce severe drawbacks in research
as well as in practice of SE. Especially, the assumption
that only formal methods are warranting precision,
validity, and objectivity is one of the most eminent
mistakes. Contrarily to propagating "the cruelty of
teaching computer science"[2], we need to introduce more
"kindness" into SE, namely
* an analytical competence comprising social and
ethnological techniques of human ("familiar") system
analysis,

* a formalization discipline (mostly called "modelling",
misleadingly) comprising purposive methods to assess the
consequences of reduction,

* a communicative competence comprising abilities to
communicate appropriate to the knowledge states and
abilities of the partners, and to do teamwork,

* participation frameworks and tools for development
sustaining cooperation both within development and
across application domains.

The ultimate consequence may be the abandoning of
SE as a self-contained discipline altogether and
introducing, instead, many disciplines of SE contained in
those disciplines that are directed to aspects of the "real
world".

References

1. Dennet, D.: Consciousness explained. Boston 1991.

2. Dijkstra, E.: The cruelty of really teaching computer
science. CACM 32 (1989).

3. Frege, G.: Funktion, Begriff, Bedeutung. Hrsg. von G.
Patzig. Gottingen 1980.

4. Hertz, H.: Einleitung zu <Prinzipien der Mechanik>. In:
W. Heisenberg: Das Naturbild der heutigen Physik.
Reinbek 1955.

5. Keil, G.: Kritik des Naturalismus. Berlin 1993.

6. Korson, T., J. D. McGregor: Understanding object-
oriented: a unifying paradigm. In: CACM 33, No. 9
(1990), S. 40-60.

7. Madsen, O. L., B. Moller-Pedersen, K. Nygaard: Object-
Oriented Programming in the BETA Programming
Language. Wokingham etc. 1993.

8. McDermid, J.: Introduction and overview to Part II. In: J.
McDermid (Eds): Software Engineers Reference Book.
Oxford 1993.

9. McDermid, J., T. Denvir: Introduction to part I, In: J.
McDermid (Eds): Software Engineers Reference Book.
Oxford 1993.



11.

12.

16.
17.
18.

19.

Monahan, B., R. Shaw: Model-based Specifications. In
McDermid (1993)

Piepenburg, U., H. Ziillighoven: Objektorientierte
Systenentwicklung. In: W. Dzida, U, Konradt (Hrsg.):
Psychologie des Softwareentwurfs. Goéttingen 1995, S.
45-59.

Putnam, H.: Reprisentation und Realitit. Frankfurt 1991
(engl. original: Representation and Understanding, MIT
1988)

Quine, W. V. O.: From a logical Point of View.
Cambridge (Mass.) 1964.

Quine, W. V. O.: Zwei Dogmen des Empirismus. In: J.
Sinnreich (Hrsg.): Zur Philosophie der idealen Sprache.
Miinchen 1972.

Rumbaugh, J. et al.: Objektorientiertes Modellieren und
Entwerfen. Miinchen 1993 (engl. original Object-oriented
Modeling and Design, New York 1991)

Stokes, D.: Requirements analysis. In: McDermid (1993).
Strawson, P. : Individuals. London 1959.

Turing, A.: Uber berechenbare Zahlen und eine
Anwendung auf das Entscheidungsproblem. In: B.
Dotzler, F. Kittler (Hrsg.): Alan Turing. Intelligence
Service, 1987.

Wittgenstein, L.: Tractatus logico-philosophicus.
Frankfurt 1963.



	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	On Some Epistemological Problems of Software Engineering
	Peter Schefe
	Recommended Citation


	epistomolÉ

	search: search


