
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2005 Proceedings Americas Conference on Information Systems
(AMCIS)

2005

Mapping the UML to the Zachman Framework
Stevan Mrdalj
Eastern Michigan University, smrdalj@emich.edu

Vladan Jovanovic
Georgia Southern University, vladan@georgiasouthern.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2005

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Mrdalj, Stevan and Jovanovic, Vladan, "Mapping the UML to the Zachman Framework" (2005). AMCIS 2005 Proceedings. 315.
http://aisel.aisnet.org/amcis2005/315

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301348301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2005%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005/315?utm_source=aisel.aisnet.org%2Famcis2005%2F315&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Mapping the UML to the Zachman Framework

Stevan Mrdalj
Eastern Michigan University

smrdalj@emich.edu

Vladan Jovanovic
Georgia Southern University
vladan@georgiasouthern.edu

ABSTRACT

This article offers an overview of the Zachman Enterprise Architecture Framework (ZEAF) and examines how the Unified
Modeling Language (UML) can be used in describing enterprise architecture. The ZEAF is a classification scheme that
organizes descriptive representations into a matrix of six distinct stakeholder perspectives and six unique concerns or aspects
yielding a normalized approach in which, as a rule, particular cell content cannot be found in more than one cell. This paper
presents a comparative review of four approaches for mapping UML onto ZEAF, which despite the above rule, use the same
diagram types differently. At first, this appeared to be a problem, but our analysis discovered that it is result of UML’s rich
and divers notation. This paper also attempts to answer several questions related to these different mappings recognizing an
opportunity to extend ZEAF into a multidimensional representation.

Keywords

Zachman Framework, UML, Enterprise Architecture, Documenting Architecture.

INTRODUCTION

Managing enterprise information system architecture is a challenging task as organizations, products, services and
technologies continue to change at an increasingly rapid rate. Inspired by architectural engineering, Zachman (1987) and
Sowa (1992) created a powerful tool for describing Enterprise Architecture (EA) by combining the views and aspects into a
matrix widely known as the Zachman Framework (ZF). The Zachman Enterprise Architecture Framework (www.zifa.com)
identifies two different axes of representations which precisely describe the nature and purpose of each cell in the matrix and
the deliverables within the organizational context. ZF provided organizations with an effective way of architecting the
enterprise information system that confirm to the organization's information needs focusing on ways to ensure a vision-driven
development.

Pereira and Sousa (2004) describe the Zachman Framework as one of the most widely known frameworks in the EA context.
ZF is a general purpose framework that does not impose a methodology and does not restrict users to a set of pre-defined
artifacts. Van Belle (2004) reports on how different authors have applied the ZF to other information system areas which to a
greater or lesser extent exhibit similar structural relationships between deliverables, resources, design etc. For example, Bruce
(1992) situated information modeling in the ZF, Spewak (1993) used the ZF in enterprise architecture planning and Cook
(1996) used the ZF as the basis for building enterprise information architectures. Inmon, Zachman and Geiger (1996)
proposed to use the ZF as a guide for the implementation of data warehouses, and De Villiers (2001) even uses the ZF on a
meta-analysis level to analyze the framework itself.

The Unified Modeling Language is a general-purpose modeling language originally developed to visually specify the design
of object-oriented applications. The complete system model using the UML consists of a set of interrelated diagrams that
depict the structure and behavior aspects of the system under design. West, Bittner, and Eddie (2002) well described the
strengths of the UML for representing enterprise architecture and its tested means to assess, build, and deploy information
systems that “support the organization's core mission” in a cost effective and accurate way. Having the UML as the most
commonly used modeling language for object-oriented applications, there is a strong interest on how to use the UML within
the EA and specifically for the Zachman Framework as the most widely known architecture framework. Several CASE
vendors and practitioners launched efforts to address this challenge. This resulted in different approaches with a noticeable
difference in mapping the UML to the Zachman Framework. Different approaches use different diagrams to address the same
cell in the framework. Some diagrams address more than one cell in the framework. Another case is when combinations of
diagrams address only one cell. The first impression is that this is contrary to Zachman’s (1987) normalized approach in
which, as a rule, particular cell content cannot be found in more than one cell. Therefore, the generality of structural
relationships that is the UML’s advantage can be considered a disadvantage leading into confusion about different usage of
the same diagrams within the ZF. Additionally, if we do not have a set of unique artifacts for each cell, the expected result

 2973

mailto:smrdalj@emich.edu
mailto:vladan@georgiasouthern.edu
http://www.zifa.com

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

may become distinct and impossible to validate due to the level of dispersion that each user could place. This debate created a
need to closely examine the differences in mapping the UML to the Zachman Framework.

The aim of this paper is to present a comparative review of four existing approaches for mapping the UML onto the ZF. The
authors are not aware of any similar efforts. This paper also attempts to answer several questions related to the mapping of
the UML onto the ZF. The first question is “Why are some diagrams used for more than one cell in the Zachman
Framework?” A related question is “How can we bridge different perspectives or aspects using the same diagram types?” The
third question is “Can we use more than one diagram to address only one cell in the framework?” The last question is “Is it
feasible or, for that matter, necessary that all cells are represented using UML diagrams?” Our analysis discovered that the
cause for different mappings is neither the result of inconsistency nor the UML’s unfitness to be used for the ZF, instead it is
the result of the UML’s rich and diverse notation.

THE ZACHMAN FRAMEWORK

Sowa and Zachman (1992) described the Zachman’s Framework for Enterprise Architecture (Figure 1) as a matrix that offers
taxonomy for relating things in the real world to computer representations: ‘The ISA framework serves as a convenient
classification scheme or “periodic table” for information entities.’ It provides a means of ensuring that standards for creating
the information environment exist and that they are appropriately integrated. The ZF helps govern the architectural process
for complex systems with the clarity, dependency, coherence, and traceability needed for an enterprise to manage change and
to ensure that the proper alignment is achieved.

Zachman
Framework

Data
(What)

Function
(How)

Network
(Where)

People
(Who)

Time
(When)

Motivation
(Why)

Scope
(Contextual)

List of things important
to the enterprise

List of core processes
the business performs

List of locations in which
the business operates

List of organizations
important to the

business

List of events / cycles
significant to the

business

List of business goals /
strategies

Enterprise
Model

(Conceptual)

e.g., Semantic model

Business entity
Business relationship

e.g., Business process
model

Business process
Business resources

e.g., Business Logistics
system

Business locations
Business linkage

e.g., Workflow model

Organization unit
Work product

e.g., Master schedule

Business event
Business cycle

e.g., Business plan

Business objectives
Business strategy

System
Model

(Logical)

e.g., Logical data model

Data entity
Data relationship

e.g., Application
architecture

Application function
User views

e.g., Distributed system
architecture

I/S Function
Line characteristics

e.g., Human interface
architecture

Role
Deliverable

e.g., Process structure

System event
Processing cycle

e.g., Business rule
model

Structured assertion
Action assertion

Technology
Model

(Physical)

e.g., Data Definition

Segment/Table/etc.
Pointer/Key/etc.

e.g., Program

Computer function
Data element/set

e.g., Technology
architecture

Hdw/System structure
Line specification

e.g., Presentation
Architecture

User
Screen formats

e.g., Control structure

Execute
Component cycle

e.g., Rule design

Condition
Action

Detailed
Model
(Out of

Context)

e.g., Physical storage
design

Field
Address

e.g., Detailed program
design

Language statement
Control block

e.g., Network
architecture

Address
Protocol

e.g., Security
architecture

Identity
Job

e.g., Timing definitions

Interrupt
Machine cycle

e.g., Rule specification

Sub-condition
Step

Functioning
enterprise DATA FUNCTION NETWORK ORGANIZATION SCHEDULE STRATEGY

Figure 1. The Zachman Enterprise Architecture Framework (Based upon: www.zifa.com/framework.html)

According to Pereira and Sousa (2004) the ZF “proposes a logical structure for classifying and organizing the descriptive
representations of an enterprise” by taking into consideration all the participants (stakeholders as users of documentation)
involved in the planning, conception, building, using and maintaining of activities of an enterprise information system. It also
describes the participant’s views by providing a focus on different concerns which apply to each perspective. Each cell stands
alone and each is different from the others, although all the descriptions pertain to the same system, and therefore, are related
to one another (Goethals, Vandenbulcke and Lemahieu, 2004). Each cell describes artifacts that an organization might
document. Cells in the framework are to be considered primitive and therefore, can be modeled or described independently.
Zachman (1987) refers to a cell as “normalized” with one fact in one place. The proposed artifacts do not oblige us to follow
any type of pre-defined notation. However, a notation should reflect the intention of a cell and enable the direct

 2974

http://www.zifa.com/framework.html

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

correspondence between the cell content and a form of representation (Pereira and Sousa, 2004). The ZF lets us develop a
formal framework for maintaining the various documents describing the business requirements that the EA realizes and to
support their traceability and linking.

THE UNIFIED MODELING LANGUAGE

The standardization of UML is maintained by the Object Management Group (www.omg.org). The current UML 2.0 version
(www.uml.org/#UML2.0) uses 13 diagram types listed in Table 1 (Fowler, 2004). The UML diagram types are not
particularly rigid and elements from one diagram type may be occasionally used in another. It is intended to be used
pragmatically to reflect the problem and modeling approach taken. The UML descriptions can be used as sketches, detail
engineering blueprints or even executable specifications, clearly with a wide range of rigor and details befitting the intent.

Diagram Purpose

Class Properties and relationships of classes

Component Structure and connection of components

Composite structure Runtime decomposition of a class

Deployment Deployment of artifacts to nodes

Object Example configuration of instances

St
ru

ct
ur

e

Package Compile-time hierarchic structure

Activity Procedural and parallel behavior

Communication Interaction between objects with emphases on links

Interaction overview Mix of sequence and activity diagrams

Sequence Interaction between objects with emphases on sequence

State Event changes of an object over its life

Timing Interaction between objects with emphases on time

B
eh

av
io

r

Use case User interactions with a system

Table 1. UML 2.0 Diagram Types (Adapted from: Fowler (2004), p.11)

Nowadays, the software development community realizes the UML’s potential for much more than visual descriptions of
software. West, Bittner and Glenn (2002) state that the UML’s applicability and ease of use extends into many domains:
business modeling, data modeling, and system modeling. They add that it is “ideal for developing precise and complete
visual descriptions of the elements” of enterprise architecture.

A primary strength of the UML is that it is defined by a meta-model. Therefore, the models developed using the UML are
potentially consistent in their definitions and can support traceability and linking. West, Bittner, and Eddie (2002) list the
following strengths of the UML for representing enterprise architecture:

• The UML is an industry standard notation for developing and documenting systems of all kinds.

• It can help all the way from capturing the business or operational process to defining the EA and specifying systems that
support it.

• By providing a single, rigorous notation for documenting all the disparate views of the EA, the UML enables
relationships to be more easily represented, communicated, and understood. This facilitates communication and uncovers
errors in understanding more easily than other approaches.

• As the UML can be used to define the EA as well as the supporting system, it can also be used to assess compliance of a
system with the defined EA.

MAPPING THE UML INTO THE ZACHMAN FRAMEWORK

In this paper, we decided to review the following four empirical approaches of mapping the UML into the ZF developed by
major CASE vendors and organizations

• The Rational Unified Process mapped into the ZF (De Villiers, 2003).

 2975

http://www.omg.org
http://www.uml.org/#UML2.0

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

• The Popkin Process for Enterprise Architecture which is based upon the ZF and uses the Popkin’s tool System Architect
(Popkin Software).

• The Zachman Framework applied through the Select Perspective and the UML using the Select Component Architect
(Select Business Solutions).

• OMG’s Model Driven Architecture mapping to the ZF (Frankel, Harmon, Mukerji, Odell, Owen, Rivitt, Rosen, and
Soley, 2003).

There are several other approaches, like Moriarty’s (2001), but we deliberately restricted our attention here to the approaches
that are either supported by the aforementioned organizations or that have good documentation and are generally available.

Our comparative analysis of the different mappings is organized by the ZF perspectives: Scope, Enterprise Model, System
Model, Technology Model and Detailed Representation. Definitions of these perspectives are provided later. Since the
Operational perspective is a view of the functional system in its operational environment, there is no need to represent
artifacts in this row with any UML diagrams. That leaves us with 30 cells for which we will provide a review of the used
artifacts. In this paper, the UML artifact means any kind of UML representation, model or diagram, which supports the cell’s
intention.

Planner’s View

This view describes the business purpose and strategy, which defines the extent of the other views (Table 2). De Villiers
(2001) stated that this view “serves as the context within which the other views will be derived and managed.”

Data
(What)

Function
(How)

Network
(Where)

People
(Who)

Time
(When)

Motivation
(Why)

Zachman
List of things
important to the
enterprise

List of core
processes the
enterprise performs

List of locations
where the
enterprise operates

List of
organizations
important to the
enterprise

List of business
events / cycles

List of business
goals / strategies

Rational
RUP

Class (Business
entities)

Activity (Business
workflow)

Popkin

Select Package Activity (Business
actors) Activity (Events)

Sc
op

e

OMG
MDA

Package, Class,
Use Case Activity, Use Case

Table 2. Scope Artifacts

Diagrams are not necessarily the best ways to communicate the Scope perspective, which identifies the enterprise at a high
level. Moriarty (2001) suggested that diagrams “may be too structured to meet the needs of the intended audience.” The
Popkin Process (www.popkin.com) also argues that UML diagrams are not appropriate for this view. When UML diagrams
are used to describe the scope, expect to see some variation of the UML diagrams like in OMG’s usage of the Use Case
diagrams to represent business entities.

Owner's View

The owner is interested in the business deliverable and how it will be used. This provides a description of the organization
within which the information system must function. The artifacts from this view provide an understanding about the areas of
the enterprise that should be automated (Table 3). Since the emphasis of the Owner’s view is on what the business does and
what it needs to know about, the question is if UML diagrams are useful for developing business models. Moriarty (2001)
suggested that they are, when the elements in the model are named “with terms that are meaningful to the business” in plain
English. For example, this can be done using the UML stereotype <<business>> for classes, actors, workers or use case.
Another example is to name the swim lanes in the activity and interaction diagrams using business roles such as vendor,
account specialist or marketing analyst.

 2976

http://www.popkin.com

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Data
(What)

Function
(How)

Network
(Where)

People
(Who)

Time
(When)

Motivation
(Why)

Zachman Conceptual data
model

Business process
model

Logistics network
(nodes and links)

Organization chart,
workflow model

Business master
schedule Business plan

Rational
RUP

Class (Business
classes)

Use Case
(Business Use

cases)

Use Case
(Business Actors) Use Case (Events)

Popkin Activity

Select Class (Business
classes)

Activity (Process
flow)

Activity (Business
Actors) Activity (Events)

En
te

rp
ris

e
M

od
el

 (C
on

ce
pt

ua
l)

OMG
MDA Class

Activity, State,
Sequence,

Communication

Table 3. Enterprise Model Artifacts

Designer's View

This view outlines how the system will satisfy the organization's information needs. This view should not contain solution-
specific details or production-specific constraints. The specifications in this view should ensure that the system will fulfill the
owner’s expectations (Table 4).

Data
(What)

Function
(How)

Network
(Where)

People
(Who)

Time
(When)

Motivation
(Why)

Zachman Logical data model Application
architecture

Distributed system
architecture

Human interface
architecture

Dependency
diagram, entity life
history

Business rule
model

Rational
RUP

Class (Persistent
classes)

Use Case
(Realization) Deployment Class (Boundary

classes)
Sequence,
Communication

Class
(Multiplicities)

Popkin Class Use Case Component Use Case

Select Class Use Case Deployment,
Component Sequence, Class State

Sy
st

em
 M

od
el

 (L
og

ic
al

)

OMG
MDA

Class, Package,
Component

Activity, State,
Sequence,
Communication

Deployment

Table 4. System Model Artifacts

Diagrams from the logical perspective are more technical with the elements usually stereotyped based on the role they play in
the application architecture. For example, the persistent stereotype represents those classes that must persist over time, the
control stereotype represents those classes that synchronize the interactions between objects, and the boundary stereotype is
used to represent the user interface objects (Moriarty, 2001).

Builder's View

The builder manages the process of assembling and fabricating the components in the production of the product. This view
addresses production constraints and provides a specification of how the information system will be implemented. It
emphasizes the specific solutions and information technologies (Table 5). Diagrams used within the technology perspective
are quite similar to those used in the logic perspective with more emphasis on the behavior and implementation details.

 2977

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Subcontractor’s View

The subcontractor fabricates out-of-context components which meet the builder’s specifications. This view puts more stress
on the parts of the system versus the whole system architecture. It is concerned with implementation-specific details of the
individual system elements (Table 6).

Data
(What)

Function
(How)

Network
(Where)

People
(Who)

Time
(When)

Motivation
(Why)

Zachman Physical data
architecture System design System

architecture

Presentation
Architecture,
User interface

Control structure Business rule
design

Rational
RUP Class Component

Popkin Class Use Case,
Activity Deployment

Sequence,
Communication,
State

Select
Use Case, Class,
Sequence,
Component

Component,
Deployment Sequence, Class Sequence,

Communication

Package, Class,
Sequence,
Communication

Te
ch

no
lo

gy
 M

od
el

 (P
hy

si
ca

l)

OMG
MDA

Class, Package,
Component

Activity, State,
Sequence,
Communication

Deployment

Table 5. Technology Model Artifacts

The use of diagrams becomes less and less important as we progress from the technology to the out-of-context perspective
and begin to approach the code. For instance, the logic of some method in an object class should correspond to the rules for
state transitions existing in a state chart for that class. Another example is the database schema which should contain all
persistent classes. Similarly, technologies such as COM or CORBA are used to implement the interaction of the objects
across the network. Therefore, just a few diagrams are allocated to this perspective of the Zachman Framework.

Data
(What)

Function
(How)

Network
(Where)

People
(Who)

Time
(When)

Motivation
(Why)

Zachman Physical storage
design

Detailed
program design

Network
architecture

Security
architecture

Timing
definitions

Rule
specification

Rational
RUP

State

Popkin

Select Component,
Deployment Sequence SequenceD
et

ai
le

d
M

od
el

(O
ut

 o
f C

on
te

xt
)

OMG
MDA

Table 6. Detail Representation Artifacts

THE CONVERGENCE

In original Zachman works the framework defines that framework cells contain single primitives (artifacts.) Such a
normalized approach governs that particular cell content cannot be found in more than one cell. This leads into an assumption
that UML diagrams should be consistently mapped onto the Zachman Framework. As can be seen above, there is a noticeable
difference in doing so. Let us first provide a comparative analysis of the diagrams used to represent the different aspects of
the system.

Things - The content of the systems is consistently described using Class diagrams. Package diagrams are used for grouping
or hierarchical structuring. Component diagrams are also used at the logical and physical level to represent the intended
structural representation.

 2978

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Process - The functional aspect of the system is also consistently described using Use Case and Activity diagrams at the
scope and conceptual views. At the logical and physical views, the Sequence and Communication diagrams are used to
describe the interaction between objects. Class diagrams can also be used here to emphasize an object’s behavioral details
like visibility etc. Similarly, component diagrams can be used to indicate the required interface. Occasionally, State diagrams
can be used to indicate activities that take place during the object’s state changes.

Locations - There is no specific UML diagram that can be used for Zachman’s network aspect. Still, there is a need to show
that the business object classes are utilized at various locations where business is conducted. Deployment diagrams are used
to map those location dependent classes into the network nodes. To some extent, Component diagrams can be used to show
where the component would reside.

People – The UML does not provide a specific diagram to indicate people or organizations important to the business. Instead,
the actors used in Activity, Use Case, Sequence and Communication diagrams represent the roles people or organizations
assume in the business. Class diagrams can also be used for this purpose if, for example, they indicate boundary classes.

Time – Although the UML 2.0 provides the Timing diagram it is not used to represent sequencing and timing of the
processes and flows in the Zachman Framework. This is partially due to the fact that this diagram is added to the UML after
the methodologies considered here are created. Instead, the Activity and Use case diagrams are used to show events at the
scope and conceptual views. More detailed sequencing and timing is indicated using the Sequence, Communication and State
diagrams.

Motivation - No specific UML diagrams exist to represent the enterprise's business rules or to specify how the information
system assemblies support those business rules. Instead, the business rules are expressed as various constraints or adornments
in all UML diagrams and specifically in the Class, Sequence and Communication diagrams.

Base on the above analysis, our first question is “Why are some diagrams used for more than one cell in the Zachman
Framework?” This is especially true across the aspects. For example, Class diagrams are used in almost all cells of the “Data”
aspect as illustrated in Figure 2. The second observation is that the same diagram types are not only used across the aspects,
but they are used across perspectives for different aspects as shown in Figure 3.

Figure 2. Bridging the Zachman Framework perspectives

The answer to this question is that it is because UML diagrams are composite models using several primitives in the same
diagram that are classified in different cells in the Zachman framework. Therefore, it is acceptable that some diagrams
address more than one cell in the Zachman Framework — sometimes disjoint cells.

The separation of concerns as a principle provides for a clear framework for conceptualization and selection of technologies,
but it is not supposed to preclude people from thinking in terms of ‘unexplored’ relationships leading to more integrated
systems. A related question is “How can we bridge different perspectives or aspects using the same diagram types?” Figure 2
illustrates how bridging of the framework’s rows can be achieved using stereotypes, adornments and icons to provide a
different perspective. Moriarty (2001) explains this ability to use a diagram across rows by employing different UML
features within each perspective.

Similarly, Figure 3 illustrates how the Activity diagram describes workflows in terms of activities, roles (actors), events and
objects. This also implies that relationships between the What, Who, When, and How columns cannot be represented within
the Zachman Framework (De Villiers, 2001).

Another example is the Class diagram which expresses the concept of an object in terms of the interrogatives it addresses and
the perspective it serves. If, for example, you consider an object to be the encapsulation of data, processes, and rules that it
plays, then a deliverable comprising such objects fits into row 3, columns 1,2, and 6 (von Halle, 1997). Similar attempts to

 2979

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

further extend the ZF to the Object-Oriented Framework are also addressed by Bruce (1992). It is simple, but true, that
humans may have needs to relate different concepts from different aspects, especially in the case of cross-cutting concerns,
and that stifling innovation in the sense of preventing possible combinations from being viewed can be counter-productive.

Figure 3. Bridging the Zachman Framework aspects

Our next observation, that the combinations of diagrams address only one cell, leads us into the third question “Can we use
more than one diagram to address only one cell in the framework?” The answer is yes, due to the fact that different UML
diagrams contain the same primitives. For example, events can be expressed in the Activity and State diagrams. Therefore,
the same event can be documented with different types of diagrams or some events can be documented with one type of
diagram and other events can be documented with another type of diagram.

It is also easy to see that there are cells in the Zachman Framework which have no UML coverage. This creates our last
question “Is it feasible or for that matter necessary that all cells are represented using UML diagrams?” We may find the
answer to this question in the following common myth about the use of the Zachman Framework (von Halle, 1997):

Myth 1. You must deliver
components for every cell.

Truth 1. You should select only those cells whose deliverables will assist in
achieving specific business goals and in integrating the enterprise. Every
cell costs money to deliver and manage.

As we have indicated before, no special diagram is necessary to communicate the enterprise's mission, vision statement,
goals, strategies, tactics, and plans. On the other hand, the UML still has the greatest potential for displaying correlated
elements of interest to various stakeholders.

Contrary to the initial assumption, the answers to the questions reveal that the cause for different mappings is neither the
result of inconsistency among different mapping approaches nor inability of the UML to be effectively used for the ZF,
instead it is a result of UML diagrams being composite models and the UML’s rich and diverse notation.

CONCLUSION

The Zachman’s Framework for Enterprise Architecture is a well known tool used to define what products must be delivered
to whom (stakeholder view) and what concerns and subject matter they are addressing (aspects). In this paper we presented a
comparative analysis of four approaches that use the UML to describe systems in the scope of the Zachman Framework. This
analysis revealed that there are noticeable differences in how the UML is used to describe framework cells.

The main contribution of this paper is that it debunked the assumption that there should be a unique mapping of the UML
into the ZF. This paper provided explanations why it is allowable to have some diagrams used for more than one cell in the
Zachman Framework. It illustrated how we can bridge different perspectives or aspects using the same UML diagram types
or how to use more than one diagram to address only one cell in the framework. As this paper also demonstrated, there are
open dimensions in using the UML for the Zachman Framework. Namely, no viewpoint and concern uniquely stipulates a
single possible way to use only one representation even if we focus on the most comprehensive modeling language such as
the UML.

It is important to understand here that a particular choice of UML mapping to the ZF still depends on specific organizational
needs and requirements. The organizations are still responsible for developing their own know-how for the EA, since
consistent and comprehensive total approaches might just be too elusive. In this respect, this paper provides guidance in
selecting elements from the UML to develop the organizational instantiation of a Zachman Framework. With the provided
analysis it is possible to understand the different possibilities and to recognize the vast potential for the diverse usage of the
UML diagrams for documenting framework cells.

The findings from this study helped us to recognize the need for an extension of the ZF with dimensions which would include
various representation options. This creates an opportunity to question the ZF rules (Sowa and Zachman, 1992) of preserving
the orthogonal and discrete nature of the ZF classification. It is clear that the multidimensional aspect of the ZF has a

 2980

 Mrdalj et al. Mapping the UML to the Zachman Framework

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

potential to contribute significantly to the EA and, above all, to the understanding of the architectural challenges and the
required robust design process beyond the representational views and artifacts.

REFERENCES

1. Bruce, T. (1992) Designing Quality Databases with IDEF1X Information Models, Dorset House Publishing, New York.
2. Cook, M. A. (1996) Building Enterprise Information Architectures: Reengineering Information Systems, Prentice-Hall,

Upper Saddle River.
3. De Villiers, D.J. (2001) Using the Zachman Framework to Assess the Rational Unified Process. The Rational Edge,

March 2001. Available online www-128.ibm.com/developerworks/rational/library/372.html (Accessed 01-26-2005).
4. Frankel D.S., Harmon, P., Mukerji, J., Odell, J., Owen, M., Rivitt, P., Rosen, M. and Soley, R.M. (2003) The Zachman

Framework and the OMG's Model Driven Architecture, Business Process Trends, September 02, Available online
www.bptrends.com.

5. Fowler, M. (2004) UML Distilled 3rd ed. Addison Wesley, Boston.
6. Goethals, F., Vandenbulcke, J. and Lemahieu, W. (2004) Developing the Extended Enterprise with the FADEE,

Proceedings of the ACM Symposium on Applied Computing, March 14-17, 2004, Nicosia, Cyprus, 1372-1379.
7. Inmon, W.H.; Zachman, J. and Geiger, J. (1997) Data Stores, Data Warehousing and the Zachman Framework:

Managing Enterprise Knowledge, McGraw-Hill, New York.
8. Moriarty, T. (2001) To Unify Architecture with Methodology: The Rational Unified Process meets the Zachman

Information Systems architecture, Intelligent Enterprise, April 2001, Available online www.intelligententerprise.com
/010416/print/metaprise.jhtml.

9. Pereira C.M., and Sousa, P. (2004) A method to define an Enterprise Architecture using the Zachman Framework,
Proceedings of the 2004 ACM symposium on Applied Computing, Nicosia, Cyprus , 1366 – 1371

10. Select Business Solutions, Zachman framework to Select products mapping, www.selectbs.com/products/solutions
/zachman_framework.htm.

11. Sowa, J.F. and Zachman, J.A. (1992) Extending and Formalizing the Framework for Information Systems Architecture,
IBM Systems Business Journal, 31, 3, 590-616.

12. Spewek, S.H. (1993) Enterprise Architecture Planning, QED Publishing Group, Boston.
13. West, D., Bittner, K. and Eddie Glenn E. (2002) Ingredients for Building Effective Enterprise Architectures, Rational

Edge, November 2002, Available online www-106.ibm.com/developerworks/rational/library/content/
RationalEdge/nov02/Enterprise Architectures_TheRationalEdge_Nov2002.pdf

14. Van Belle, J-P. (2004) Leveraging IS theory by exploiting the isomorphism between different research areas,
Proceedings of the 2004 annual research conference of the South African institute of computer scientists and
information technologists on IT research in developing countries, Stellenbosch, Western Cape, South Africa, 107 - 114

15. Von Halle, B. (1997) What IS can and should learn from traditional architecture: Architecting in a Virtual World,
Database Programming & Design On-Line, Available online www.dbpd.com/vault/9611arch.htm

16. Zachman, J. (1987) A Framework for Information Systems Architecture. IBM Systems Journal, 26, 3, 276-292.

 2981

http://www.bptrends.com
http://www.intelligententerprise.com
http://www.selectbs.com/products/solutions
http://www.dbpd.com/vault/9611arch.htm

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2005

	Mapping the UML to the Zachman Framework
	Stevan Mrdalj
	Vladan Jovanovic
	Recommended Citation

	tmp.1236826220.pdf.l8_Zj

