
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2005 Proceedings Americas Conference on Information Systems
(AMCIS)

2005

Teaching Java to IS Students: Top Ten Most
Heinous Programming Errors
Mark Pendergast
Florida Gulf Coast University, mpenderg@fgcu.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2005

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2005 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Pendergast, Mark, "Teaching Java to IS Students: Top Ten Most Heinous Programming Errors" (2005). AMCIS 2005 Proceedings. 241.
http://aisel.aisnet.org/amcis2005/241

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301348288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2005%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2005%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005?utm_source=aisel.aisnet.org%2Famcis2005%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2005/241?utm_source=aisel.aisnet.org%2Famcis2005%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Teaching Java to IS Students:
Top Ten Most Heinous Programming Errors

Mark Pendergast
Florida Gulf Coast University

Fort Myers, FL, USA
mpenderg@fgcu.edu

ABSTRACT

Learning to write computer programs is a difficult process. This short experience paper details ten common, yet difficult to
spot errors made by students in my introductory Java programming classes. The errors detailed in this article are considered
"heinous" because they either don't occur every time, are hard to spot when desk checking code, are due to an inconsistency
in the Java language itself, or all of the above. Along with the errors this article describes teaching techniques to help
students avoid them and suggests potential language modifications to preclude them.

Keywords
Java, Information Systems, Education, Introductory Programming Course.

INTRODUCTION

Picture, if you dare, being stuck in an office for hours each week with a line of dazed and desperate Java students waiting
outside your door. Each desires to get "just a couple of minutes" of your time to help them past their current problem in the
often-futile attempt to complete their assignment on time. If you are a recent college grad you may remember standing in
such a line, or if you are the resident office Java guru, you may have such a line outside your door right now. You may also
remember certain problems you spent all night staring at only to realize it was a simple matter of a misplaced semi-colon or
an inconsistency in the way standard Java objects work. The importance of a properly constructed first course in
programming cannot be overstated. A well taught course will leave students with good programming habits, the ability to
learn on their own, and a favorable opinion of programming as a profession. A poor experience may result in a “just get
by” attitude, bad programming habits, and could lead to a change in majors.

During CS/IS boom in the 1990’s the loss of students to other disciplines was not a major concern. These students were just
written off as not having an “aptitude” for programming. This philosophy will change due to shrinking enrollments in
CS/IS fields (Zweben, 2004). (Hensel, 1998) foretold of shrinking enrollment, predicting that enrollment would drop due to
a decline in college age students, poor preparation for technical classes (leading to failures and reluctance to enroll), and
changing interests in students. This added to fears of outsourcing, the dot com bust, and the hiring slow down after Y2K
conversions have kept students away from CS/IS. CS/IS faculty members have little control of national birthrates and the
hiring practices of corporations, but they can look for ways to attract more students and retain the ones they now have.

This article starts with a little background on Information Systems programs then details ten such conceptual problems
routinely made by my students and occasionally made myself. Along with the problems I propose coping mechanism and
potential compiler enhancements.

EVOLUTION OF INFORMATION SYSTEMS CURRICULUM

Teaching programming courses to Information Systems students in the College of Business has much in common with
teaching Computer Science students but there are some differences in student background and prerequisite courses. Unlike
CS students, IS students are generally only required to have a semester of statistics and a semester of “business calculus” to
graduate. More often than not, these courses are put off to their senior years. Therefore the mathematical background of IS
students consists of what the may or may not have learned in high school and what they may or may not remember of it. In
addition, a typical IS major only takes 20-30 credits of computer related courses whereas the CS major is required by ABET

 657

mailto:mpenderg@fgcu.edu

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

standards to have 42 hours (or more). This leaves IS students with only 2 or 3 courses whose primary purpose is to teach
programming fundamentals.

As late as the 1990, COBOL was the programming language of choice for IS students due to its popularity in business
applications. In the early 1990s IS programs began using PASCAL (in addition to COBOL) so that their students would
have experience with a procedural language. This trend was reinforced by the introduction of personal computers and
Borland’s Turbo Pascal on campuses. The combination of Microsoft’s introduction of Visual Basic and the advent of the
world-wide-web caused many IS programs to abandon Pascal in favor of Visual Basic or Java. C and C++ are also used by
many IS programs, especially those that depend on the Computer Science department to provide programming courses.
(Culwin, 1999) (Noll, Wilkins, 2002) noted the increased need for developing programming skills for web-based languages
(Perl, JavaSript, Java, SQL) over traditional application programming languages (COBOL, C). See (AIS, 2002) for more
information on IS curriculum standards.

On our campus we have proponents of all three languages, VB, Java, and C++. We chose to teach Java because of its
dominance in web applications, it is less complex and easier to debug than C++, and it has a syntax based on C/C++,
making it easier for students to transition to those languages once they graduate. (Tyma, 1998) cited these reasons along
with platform independence, higher programmer productivity, and better systems stability as reasons for moving to Java.
More recently, NASA chose Java as its programming language for the Mars rover missions (Sun 2004) due to programmer
productivity. Java has long been denigrated for its slow performance due to the use of a virtual machine to execute
programs however the perceived performance difference may not be as great as some people claim. (Mangione, 1998) found
little or no difference for most tests, and (Lewis, 2003) found Java to be as fast or faster than C++.

JAVA’S STRENGTHS AND WEAKNESSES

Teaching object-oriented programming and object-oriented languages have come a long way since (Decker, Hirshfield
1994) enumerated ten reasons why CS/IS programs were avoiding teaching OO programming in their introductory
programming language. Chief among these were a resistance to change and the idea OO programming was “too hard.” At
that time OO programming languages were evolving and coming onto favor and going out of favor at a high rate. C++,
SmallTalk, Lisp, EIFFEL, SATHER were all vying for the hearts and minds of programmers. (Kolling, etal 1995)
concluded that none of these languages could be considered as appropriate for use by beginning programmers. He went on
to propose ten requirements for an object-oriented language that is to be used in a first year programming course. See table
1.

Kolling Requirement Java Support

1. The language should support clean, simple, and well-
defined concepts. This applies especially to the type system,
which will have a major influence on the structure of the
language. The basic concepts of object-oriented
programming, such as information hiding, inheritance, type
parameterization and dynamic dispatch, should be supported
in a consistent and easily understandable manner.

No, since Java inherited much of its OO nature from C++, it
inherited many of its pitfalls. Java did replace multiple
inheritance with single inheritance augmented with a new
construct called “interfaces”.

2. The language should exhibit “pure” object-orientation in
the sense that object-oriented constructs are not an
additional option amongst other possible structures, but are
the basic abstraction used in programming.

Yes, unlike C++, all code within a Java program must reside
in an object. GUI and file IO are controlled by library
object. However, this doesn’t preclude someone from
creating a poorly structured program.

3. It should avoid concepts that are likely to result in
erroneous programs. In particular it should have a safe,
statically checked (as far as possible) type system, no

Yes, unlike scripting languages, Java has a tightly typed
system and the compiler automatically detects uninitialized
variables. Java has no explicit pointers or use of indirection.

 658

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

explicit pointers and no undetectable uninitialized variables. It does have reference variables.

4. The language should not include constructs that concern
machine internals and have no semantic value. This
includes, most importantly, dynamic storage allocation. As a
result the system must provide automatic garbage collection.

Yes, Java is platform independent and does not contain
constructs that concern machine internals (e.g. register
variables). Java does provide automatic garbage collection,
though this has proven to hurt performance.

5. It should have a well-defined, easily understandable
execution model.

No, in the case of over-loaded and overridden methods it is
not always clear to beginning students which method will be
invoked. Also the use of static methods and variables
complicates understanding where data resides and how it
can be accessed.

6. The language should have an easily readable, consistent
syntax. Consistency and understandability are enhanced by
ensuring that the same syntax is used for semantically
similar constructs and that different syntax is used for other
constructs.

No, again, due to its parentage with C and C++, there are
multiple constructs for performing simple tasks, e.g. there
are at least three ways to increment a variable by one: i =
i+1; i++; and i+= 1;

7. The language itself should be small, clear and avoid
redundancy in language constructs.

No, not only does Java inherit a large number of constructs
from C++, it adds a large library of system objects that must
be learned as well.

8. It should, as far as possible, ease the transition to other
widely used languages, such as C.

Yes, Java shares many language constructs with both C and
C++.

9. It should provide support for correctness assurance, such
as assertions, debug instructions, and pre and post
conditions.

Yes, to some degree. Java does provide an exception
handling mechanism to assure proper execution and
provides automatic testing for array bounds, null pointers,
and arithmetic exceptions. However, consistency is a
problem, in the case of arithmetic exceptions a divide by 0
in floating point operations results in a value of infinity,
while in integer arithmetic the result is a divide by zero
exception.

10. Finally, the language should have an easy-to-use
development environment, including a debugger, so that the
students can concentrate on learning programming concepts
rather than the environment itself.

Yes, many mature IDEs are available, including Borland’s
JBuilder, Sun Microsystems Sun One Studio, Eclipse, and
NetBeans, and other open source IDE. The main drawback
to these environments is their cryptic compiler error
messages and clumsy form editors.

Table 1 – Java’s Compliance with Kolling’s 10 Criteria

(Kolling, 1995) observations from 1995 are as relevant today as there were when he made them. As evidence of this the
next section presents what I consider to be the most difficult errors for students to detect, correct, and comprehend. These
errors are included because they either don't occur every time, are hard to spot when desk checking code, are due to an
inconsistency in the Java language itself, or all of the above.

HEINOUS ERRORS

Extraneous Semicolons

Beginning students tend to take anything a professor or a textbook says literally. When their textbook (Liang, 2003) states
“Every statement in Java ends with a semicolon (;)”, then that’s what they do. IDE’s such as Netbeans that identify syntax
errors as the students type the code can contribute to the programs. For example, when a student types in the first line of a

 659

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

for statement, Netbeans will mark it as an error until the body of the for loop is added. The following code snippet includes
5 such cases:

 660

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

public class SemiClass ; // 1

{

 public SemiClass(int parameter); //2

 {

 int i = 0, j = 0, x = 0;

 if(i < 9); //3

 j = 1;

 else; //4

 j = 2;

 for(x = 0; x < 100; x++); //5

 {

 i = i +x;

 return;

 }

 }

}

This code generates 5 syntax errors when compiled by the J2SDK, but only one of the erroneous semicolons is flagged.
Extra semicolons on the end of if, while, and for statements will not generate compilation errors. Instead the code will
compile, but not execute as intended since the extra “;” ends the statement. As a result, a student’s for loop might execute a
do-nothing statement 100 times, and their intended body of the loop only once!

Helping overcome this problem can be achieved by having textbooks more precisely define what a statement is, using lots of
examples during class presentation, and by having a compiler that supports warning messages for control structures with
do-nothing bodies.

Integer Arithmetic Errors

These occur most frequently when an equation that yields a double result has an intermediate calculation that contains one
integer being divided by another. Not only is this type of error hard to spot while desk checking it is also difficult to explain
the rationale behind the standard. Students can readily understand that results must be truncated when they are stored into
integer variables, but have a harder time with the concept of truncating numbers that are to be stored into double or floats.
Example:

int x = 1, y = 2;

double z = x/y + 44.0;

System.out.println("z = "+z);

In this case z is given a value of 44.0 instead of 44.5. The best advice to give to students is to double-check every division
for divide by zero errors AND integer truncation. Changing the operation of a compiler to use double precision math for all
intermediate operations would simplify the teaching of the language, but may generate unintended errors in existing
programs. A compiler generated warning message is more appropriate.

Zero Relative and One Relative Inconsistencies

 661

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Java, like C and C++, uses zero relative indexing for arrays. Most Java library classes also use zero relative indexes for
retrieving items (e.g. Strings, Vectors, JComboBox, JList, JTable). Exceptions to this rule are for accessing fields in Java
SQL objects. In particular the PreparedStatement and ResultSet objects are one-relative. Students programs that use one-
relative indexing for arrays and container objects generally result in IndexOutOfBoundExceptions being thrown.
SQLExceptions are thrown for using zero-relative indexing with PreparedStatements and ResultSet object produce SQL
Exceptions. These exceptions are thrown only if the programs try to access every element, if not, then the error can go
unnoticed.

Dealing with this inconsistency requires diligence by the students while coding and debugging. Having a consistent
standard for the creation of standard language objects would help.

Not Recompiling all Dependent Classes When static final Variables Change

In Java, constants are declared with the final modifier. Constants that are universally useful, e.g. PI, are declared in a class
with the static and public modifiers as well. E.g.

 public static final double PI = 3.141592653589793;

This makes the constants accessible by methods in other classes without having to use accessor methods. The problem
arises when constants defined this way are changed and their class files are recompiled but classes that use them are not
recompiled. This is because the values for final variables are treated by the Java compiler as literals and are set in the class
code at compile time. Example, if class Other is initially defined and compiled as:

public class Other {

 public static final int C1 = 1;

 public static int c2 = 22;

}

and class Main is defined and compiled as:

public class Main {

 public static void main(String args[])

 {

System.out.println(Other.C1+","+Other.c2);

 }

}

The output is “1,22” as one would expect. However, if class Other is later modified and compiled as the following:

public class Other {

 public static final int C1 = 3;

 public static int c2 = 33;

}

 When class Main is run without recompiling, then the output is “1,33”, not “3, 33” as you would expect. This illustrates
that the value for the final C1 variable was accessed at compile time and the non final variable c2 at run time. Many IDEs

 662

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

don’t automatically check for dependency changes of this type (some don’t check for changes at all), and the compiler does
not generate errors or warnings. The only sure solution to give to students to resolve this issue is to tell them to either avoid
using the “final” keyword, or to use the “build-all” function of their IDE to force recompilation of all classes. A build-all is
also necessary if the students update their Java class libraries as some constants may have changed since the last release.

Operator Precedence Problems

One exam question I recently gave to my System Design class required them to calculate the lines of code for a system using
some of the classical empirical estimation models (Cocomo, Bailey-Basili, Boehm (Pressman, 2001)). Completing the
exam question only required the ability to plug values into an equation and generate the result. I was surprised to discover
that over half of the class could not do this correctly for an equation as simple as:

E = 5.5 + .73K1.16

Not only did they not know that the value of K should be raised to the 1.16 power before multiply by .73, many did not
know that the addition should be done last. They assumed everything should be done in a strict left to right sequence! While
this particular class is not typical of all students at my university or all IS students, the problems they experienced pose a
further teaching challenge. Correctly converting mathematical equations to Java code not only requires the understanding of
Java precedence rules, but precedence rules used in the equations themselves. Business programming requires very accurate
calculations of accrued interest, present values, future values, depreciation, etc. Accurate answers cannot be stressed
enough.

Most, if not all authors of Java programming books include tables showing operator precedence order. Getting the students
to learn how to correctly interpret the tables is a first step. A second step is to require extensive testing with problem sets
that have known answers.

Variable Scope Errors

In Java, as in C++, variable may be declared in the class definition, as parameters in methods, and as local variables in
methods. Java allows local variables to be given the same name as those defined in the class. Furthermore, a method in Java
may declare multiple variables with the same name as long as they occur in different code blocks. Java code resolves
ambiguous references by using the variable declared in the block of code.
Another confusing aspect of variable scope is with variables defined in do-while blocks and in the header of for loops. In the
example below, even though the while part of the do-while is considered part of the statement, the condition in the while
cannot access variables defined in the while block. However, variables defined in the header of a for-loop can be accessed by
code in the block.

do{

 int x = 2;

 cost = cost + x;

 x = x-1;

 }while(x > 0); // compile error here

 for(int i = 0; i < 3; i++)

 {

 int x = x+i;

 663

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

 }

Variable scope problems can be overcome to some extent by using proper Java variable naming conventions. Under these
conventions, local variables are defined with all lower case letters (e.g. productname) and class variables are declared with
mixed case using lower case for the first word in the name and upper case for the first character of subsequent words (e.g
productName). This is just a partial solution because it differentiates only variable names that are more than one word
long, and because the naming convention is not enforced by the compiler (and would be somewhat difficult to do so). A
better solution would be to not allow local variable and method parameters to be given the same name as class variables.

 For now, I have adopted the strategy of telling the students to never name a local variable the same as a class variable, and
to declare all their variables at the beginning of the methods. This helps them spot naming conflicts, avoids ambiguous
definitions, and makes the code easier to read.

Casting and Type Checking

This is as much a conceptual problem as it is a programming problem. Many of my students have learned web-scripting
languages, such as PHP, that do not require the declaration of variables and that do no type checking. They see this as a
faster, easier, and therefore better approach to programming. Those of us with experience managing and maintaining
systems have learned “the hard way” the value of languages that have tight type checking. Tight type checking reduces
coding errors in both the creation and maintenance stages of a program’s lifecycle. Students without scripting experience
do not have these preconceived notions. In either case, student must learn to understand type checking and casting in order
to create Java programs.

Java’s type checking makes perfect sense, once you understand it. Basically, Java will allow you to store values in variables
without complaint as long as there is no loss of precision. Integers can be stored in longs, floats in doubles, integers into
doubles, etc. However, loss of precision compiler errors will result if doubles are stored into floats or integers. When this is
explained my students nod their heads indicating understanding, but still write code like the below:

double d = 3.0;

int x = d+1;

They assume that since d does not have a decimal part, it should be able to be used with an integer. Since most of the
functions in the Java Math object return doubles, the need to store doubles in integers comes up a lot. One solution that
often appears in books is to cast the result as an integer.

int x = (int)Math.sqrt(143);

This has the effect of converting (and truncating) the result into an integer. So long as students realize they are truncating
the decimal part of the answer and not rounding it, then their program will produce the intended results. However, often
times they forget, or they assume that it won’t make a difference in their final result. Therefore I also teach them the use the
Math.round function. Also the students need to learn that casting can be used to convert real number to integers, but
casting will not convert Strings or characters to numbers. For example:

char c = ‘5’;

int x = (int)c;

 664

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

x will be set to the ascii code for the character 5 (53), not 5.

Casting Objects

Beyond numeric type conversions, casting is a necessity when working with object streams, Java data structure, and
container objects such as Vectors, JTables, JComboBoxes, JLists. These objects maintain lists of other objects. An object of
any type can be inserted into them without compiler complaint since the “add” methods accept objects of type “Object”
(Object is the root type of all Java objects). Java allows objects of a subtype to be stored in a supertype without casting. The
reverse is not true. Supertype objects cannot be stored into subtype variables without casting. Since the “get” methods
associated with container objects return a value of type Object, casting is mandatory. The conceptual problem that students
have with casting objects is they assume they are converting data as they did when casting primitive data types. Therefore
they make mistakes like the following:

JTextField nameInput = new JTextField();

…

String s = (String)nameInput;

When they define the object nameInput they are creating a Java interface object that allows the input of string data.
However, simply casting the object to a string does not retrieve its data. The example above will generate a compilation
error since String is not a subtype of JTextField. This error can be explained and fixed. Casting of objects as they are
retrieved from Vectors or other container/collection objects can produce run time errors that are less than obvious. In the
following code a String object and an Employee object are stored into a Vector, they are both retrieved into Strings. The
code compiles correctly but will generate a runtime error (ClassCastException) on the second call to “get”.

Vector v = new Vector();

String a = "A String";

Employee e = new Employee();

v.add(a);

v.add(e);

String s1=(String)v.get(0);

String s2=(String)v.get(1);//runtime error!

Avoiding errors of this sort is a matter of keeping track of the order and type of objects added to the Vector, and/or, by
properly using the instanceof operator when retrieving items. The best advice to give to beginning students is to tell them
to only add objects of one type to collections and containers.

Handling NaN and infinity Values

Next to grading, explaining language inconsistencies is my least favorite teaching task. This is particularly true of Java’s
handling of arithmetic operations errors. Java will generate an ArithmeticException when a divide by zero occurs for
integer division, but not for double division. Instead, Java assigns the value of infinity to the double result. Taking a square
root of a negative number does not produce an exception, instead, it assigns a value of NaN (not a number) to the result.
The following example illustrates both cases.

 double y = Math.sqrt(-1);

 double x = 5.0/0.0;

 System.out.println("x = "+x+" y = "+y);

 665

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

 int z = 1/0;

 System.out.println("z = "+z);

produces:

 x = Infinity y = NaN
 Exception in thread "main" java.lang.ArithmeticException: / by zero at Main.main(Main.java:12)

To overcome these errors students must be instructed to carefully examine every equation, and to not rely on catching
ArithmeticExceptions. Also, code must be added to test for results that produce infinity or NaN. The handling of divide by
zero errors by the Java engine should be consistent, either always producing an exception or always result in infinity.

Accidental Octal Literals

I’ve yet to encounter a good use for octal numbers in business applications but they are useful for some computer science
applications and therefore they are supported most by programming languages, including Java. Java uses a leading 0 to
distinguish an octal literal from a decimal literal, 0123 is an octal number (decimal 83), 123 decimal. This is fine until you
start storing such things as product id numbers, phone numbers, and other values that have (any may require) leading 0s.
Most of the time these values are read in from databases or screens and the leading 0 is just a matter of formatting for user
display on reports, literals are not necessary. Other times the issue can be avoided completely by storing such numbers as
Strings instead of ints and longs. However, the rare circumstance does come up where students use literals to enter such
numbers into their programs. E.g.

int internationalDialing = 011;
long productID = 01112222;

These mistakes are difficult to spot. It would make life easier if the Java designers had chosen a prefix for octal numbers
that make them stand out. For example, since 0x is used to denote hexadecimal number, 0c could have been used for octal
numbers.

CONCLUSION

The previous section detailed ten of what I consider to be the hardest conceptual and programming errors that my students
make. Some are due to the complexity of modern object-oriented programming languages, others due to inconsistencies in
the language itself, and others arise because of the backgrounds of the students (and instructor) themselves. These problems
illustrate that seemingly simple concepts can become very difficult to program if students do not have the proper level of
comprehension of the syntax, structure, and sometimes-arbitrary/inconsistent rules of a programming language. An updated
version of the Java language, know to some as Java 1.5 and to others as simply Java 5, makes certain constructs easier to
handle, for example “boxing” primitive objects, enumerations, and generic typing. While this does make some code more
readable it does little to alleviate the overall complexity and consistency of the language.

(White 2002) stipulates that both procedural and object-oriented programming require cognitive skills at the “formal
operations” level. Students must possess the capability to deal with abstractions, solve problems systematically, and engage
in mental manipulations. Once their level of cognition is exceeded then “burnout” insures (or as my students would say,
their brains are fried). Students experiencing burnout are less likely to continue in a CS/IS program. Therefore it is
imperative to create strategies to present information in a manner that will allow average students to succeed without
experience a level of frustration resulting in “burnout.” My intent is to bring about thought and discussion of education and
learning techniques, supply suggestions for textbook authors, and to detail possible changes to the Java SDK.

 666

Pendergast Teaching Java to IS Students

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

REFERENCES

1 Association for Information Systems, IS 2002 Standards, http://www.aisnet.org/Curriculum/IS2002-12-31.pdf, 2002.
2 Culwin, F. (1999), “Object Imperatives!”, ACM SIGCSE Bulletin , The Proceedings Of The Thirtieth SIGCSE

Technical Symposium On Computer Science Education, 31, 1, 31-36.
3 Decker, R., Hirshfield, S. (1994), “The Top 10 Reasons Why Object-Oriented Programming Can’t Be Taught in CS 1”,

ACM SIGCSE Bulletin , Selected Papers Of The Twenty-Fifth Annual SIGCSE Symposium On Computer Science
Education, 26, 1, 51-55.

4 Hensel, M. (1998) “The Approaching Crisis in Computing Education: Enrollment, Technology, Curricula, Standards,
and their Impact on Educational Institutions”, Journal of Information Systems Education, 9,4, 24-27.

5 Kölling, M., Koch, B., Rosenberg, J. (1995) “Requirements for a first year object-oriented teaching language”, ACM
SIGCSE Bulletin, Papers of the 26th SIGCSE technical symposium on Computer science education, 27, 1.

6 Lewis, J.P., Neuman, U.,(2003), “Performance of Java versus C++”, from
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html.

7 Liang, Y.D., Introduction to Java Programming with Sun One Studio 4, Prentice Hall, 2003.
8 Mangione, C., (1998) “Performance tests show Java as fast as C++”, JavaWorld, from

http://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf_p.html.
9 Noll, C. L., Wilkins, M.,(2002), “Critical Skills of IS Professionals: A Model for Curriculum Development”, Journal of

Information Technology, 1, 3, 143-154.
10 Pressman, R.S. Software Engineering: A Practitioner's Approach, 5th Edition, MCGraw-Hill, 2001.
11 Sun MicroSystems, (2004), “The Mars Mission Continues”, http://www.sun.com/aboutsun/media/features/mars.html,

January, 2004.
12 Tyma, P. (1998), “Why We are Using Java, Again?”, Communications of the ACM, 41, 6, 38-42.
13 White, G., Sivitanides, M., (2002), “A Theory of the Relationships between Cognitive Requirements of Computer

Programming Languages and Programmers’ Cognitive Characteristics”, Journal of Information Systems Education, 13,
1, 60-66.

14 Zweben, S. , Aspray. W.,(2004) “Undergraduate Enrollments Drop; Department Growth Expectations Moderate”,
2002-2003 Taulbee Survey, Computing Research Association. Retrieved from
http://www.cra.org/CRN/articles/may04/taulbee.html.

 667

http://www.aisnet.org/Curriculum/IS2002-12-31.pdf
http://www.idiom.com/~zilla/Computer/javaCbenchmark.html.
http://www.javaworld.com/javaworld/jw-02-1998/jw-02-jperf_p.html.
http://www.sun.com/aboutsun/media/features/mars.html
http://www.cra.org/CRN/articles/may04/taulbee.html.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2005

	Teaching Java to IS Students: Top Ten Most Heinous Programming Errors
	Mark Pendergast
	Recommended Citation

	tmp.1236710317.pdf.2R61z

