View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by AIS Electronic Library (AlSeL)

Association for Information Systems

AIS Electronic Library (AISeL)

Americas Conference on Information Systems

AMCIS 2000 Proceedings (AMCIS)

2000

Developing Internet E-Commerce Applications
with Database Access using Active Server Pages

Grove N. Allen
University of Minnesota, allen088@umn.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

Recommended Citation

Allen, Grove N., "Developing Internet E-Commerce Applications with Database Access using Active Server Pages" (2000). AMCIS
2000 Proceedings. 85.
http://aisel.aisnet.org/amcis2000/85

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

https://core.ac.uk/display/301348183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/85?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Developing Internet E-Commer ce Applicationswith
Database Access using Active Server Pages

Gove N. Allen, Department of Information and Decision Sciences
University of Minnesota, allen088@umn.edu

Abstract

Connecting web sites to databases is foundational to
electronic commerce on the Internet. Microsoft’s Active
Server Pagesis one tool which allows web sitesto
dynamically interact with database management systems.
Thistutorial shows how to create an electronic commerce
application using this technology.

Introduction

Business-to-business el ectronic commerce has been
conducted through EDI (electronic data interchange) since
the 1960s (Kosiur, 1997). Recently, the increased
popularity of the Internet has allowed businesses to
pursue busi ness-to-consumer €l ectronic commerce on an
unprecedented scale. The foundational technology of
virtually all Internet electronic commerce applications
(whether business-to-business or business-to-consumer or
consumer-to-consumer) involves connecting Internet sites
to database management systems. This connection can be
accomplished through a number of means including Perl
and CGI (common gateway interface), Java applets and
servelets, Sun’s Java Server pages, Microsoft’s Active
Server Pages, PHP, Altaire’s Cold Fusion, and many
others (Ladd, et al., 1988). Thistutoria shows how to
create an electronic commerce web site using Microsoft’s
Active Server Pages. The examplethat is developed in
thistutorial is a business-to-consumer web site using
Microsoft SQL Server as the back-end database
management system.

Business Example

The business that will be used as the foundation for the
code examples of thistutorial is an award-winning
restaurant in the northwest United States. Mama
Vallone's Steak House and Inn has an informational web
site (www.mamavallones.com) but would liketo add a
page that allows customers to enter take-out orders.
Mama Valone' s menu is stored in a database
management system (Microsoft SQL Server) and is
updated several timesayear. The take-out order page
must show the current menu and current prices.
Customers who visit the page need to be able to compose
an order by selecting from the menu and submit payment
information online. A set of web pages will be generated
in thistutorial to meet these needs.

2140

Prerequisites

Thisisnot atutorial about web page design or hypertext
markup language (HTML). Thisis not atutorial about
database design or Structured Query Language (SQL).
Thisisatutorial about using Microsoft Active Server
Pages (ASPs) scriptsto dynamically create HTML
documents including data stored in a SQL-92 compliant
database management system. To appreciate thistutorial,
readers should be familiar with HTML including frames
and tables. The reader should also be familiar with the
select statement of SQL including SQL-92 join syntax.
The reader need not have any familiarity with Active
Server Pages, but experiencein at least one programming
language (Visual Basic, C++, Pascal, etc) will be helpful.

The examplesin thistutorial will be stored in a directory
which has been configured in [1S to allow scriptsto
execute. While this configuration is beyond the scope of
the tutorial, several example ASPs areinstalled in
properly configured directories during standard
installations of Windows NT 4 or Windows 2000
Advanced Server. Any of these directories would work
well to test the techniques demonstrated in this turorial.

Active Server Pages Overview

ASPSs allows for the dynamic creation of HTML
documents on Microsoft’s web server, Internet
Information Server (11S). ASPs allow developersto build
dynamic web sites by adding server-side scripts to static
HTML pages. When a browser requests an ASP, these
scripts execute and build an HTML file, which isthen
returned to the browser. These scripts have the ability to
instantiate objects that can provide different functionality.
Although such object can be created using tools such as
Microsoft’s Visual C++ or Visual Basic, severd are
installed by default as a part of I1S. These standard
components allow devel opers to access any database that
supports an ODBC connection while the HTML response
isbeing generated. This allows a page to be delivered to
abrowser that is composed of data about a particular
order, delivery, customer, etc. Figure 1 shows the process
by which a user’s request for an ASP which accesses a
database is fulfilled.

Internet Explorer

Star Office

Web Server
(MSI19)

Database Server
(Oracle/ SQL Server)

O A user with abrowser requests an Active Server Page.

® The browser sends an HTTP request (including parameters) to the web server.
© The web server begins building the HTML response to the HTTP request.

O The web server requests the database server to execute a query.

© The database server executes the query.

O The database server sends the result set of the query to the web server.

® The web server uses the query results to finish building the HTML response.

O The web server sendsthe HTML response to the browser that requested it.

© The browser renders and displays the HTML document based on the results of the query.

Figurel. Generating an Active Server Page using Database Data

Tutorial Setup

To understand the stepsin this tutorial, it helpsto see the
final destination. The result of thistutorial will appear as
seenin Figure 2.

/FMama Vallone’s Take Out Order Form - Microsoft Internet Explorer _(O] x|
Fle Edt Wiew | Favortes Took Help ‘
EBak - = - (D A ‘ (Qlsearch [fFavorites £ AHistory ‘ Y= -]

Phess [&] hitpijdev.csom.omn, eduimamen! -] #eo “Llrvks >’|
! Salad [l
Mama Vallone's e T
Steak House and Inn e 7.95 [smaller porion of the periect
Take-Out Ord Caezar Salad Caesar for the lighter appetite
BRI DaQlEits I oy mombi e ek b g J
- choice of dressing--Bleu Cheese,
Item Price Mfadda's Dinner 295 Two Cheese Ranch, Honey
Iced Tea, 16 Ounce 1.75| |Salad Mustard, Chutney French Ttalian Oil
& Vinegar, Low Calorie Ranch,
Lasagna Al F. 13.95 - 3
Zrane o [Pure Olive Oil & Balsamic Vinegar
Latte 2.5 -
= A& large entrée size salad of crisp
[The Perfect Caesar Salad 935 Romaine Lettucr with the perfect
Total 15| [mBerfeet o o5 | car dressing Garmished with
Caczar Salad I .
homemade croutons and freshly
igrated parmesan cheese
First Wome [Gordon The Perfect We cook awhele, double-breast
Caesar Salad 1295 f 4 slice it
Last Name [Davis wth Grilled, over an open flame and dlice into
e sttips to top the salad

Phone 6255665 ucen
. The Perfect

Pick Up Time [Toady, 600 pm Cacsar Saad |, .,

Credit Card#|1111-2222-3333-4444 with Tiger
Fup. Date |3 =]/ = Shrimp
14 bowl of our famous Pasta e
T Fagioli Soup and your choice of | =]
& || [meermet 7

Figure2. TheFinished Product

This example uses two framesets (default.ntm and
OrderFrame.htm). A complete listing of these files and
all files used in this tutorial can be examined in the
Appendix.

The framesets organize the content documents as seenin
Figure 3.

Title.htm Menu.asp

Cart.asp

Order.htm

Figure 3. Frameset Organization

To build the finished product, we will need to learn eight
techniques. These eight comprise the remainder of this
tutorial and are as follows:

Accessing Database Data

Adding Parametersto Hypertext Links

Using Session Variables

Reading Parameters from a Hypertext Request
Inserting Data into a Database

Deleting Data from a Database

Building a Form to Collect User Input
Updating Datain a Database.

N AWDNE

Accessing Database Data

An Active Server Pageis simply an HTML document
with an embedded script that is interpreted by the web
server. The script is executed after the browser requests
the page and before the server dispatches the page. Thus,

the script can be used to specify the content of the page.
All ASPs must have the extension “.asp” as a part of the
file name. Thistells11Sto examine the page for script
elements and to process those elements before dispatching

the page.

In this example, we will build a page that displays Mama
Vallone's menu using the information stored in MS SQL
Server. We begin with the following HTML document:

<html>

<head>

<title>

Mama Vallone's Take-Out Menu
<[title>

</head>

<body bgcolor=#f0f0b8>
</body>

</html>

This page has no text in the body of the document. We
will generate the body entirely with the ASP script. To
identify a script that is to be executed on the server, we
use the server-side script tag: <% %>. Thisisnot an
HTML tag becauseit is never interpreted as part of the
HTML document. Instead, the web server executes the
script as the document is being built to respond to the
browser’srequest. The server-side script tag and its
contents will be removed from the source of the ASP
document so the browser never receives the code of the
script. 11S supports server-side scripts written in either
VBScript or Jscript. Thistutorial uses VBScript
exclusively.

We begin our discussion of database access by
introducing Server.CreateObject. Server isone of ASP's
five built-in objects. It has a method called CreateObject
which is used to instantiate objects which are not built in.
In this case, we will use Server.CreateObject to instantiate
two Active Data Objects (ADO) components, a
connection and arecordset. The code to accomplish this

isasfollows:
Set conn = Server.CreateObject("ADODB.Connection")
Set rs = Server.CreateObject("ADODB.RecordSet")

The set statement is used to assign the reference of an
object to a variable so that object can be used in the script.
In this example “conn” and “rs” are variables which now
reference the newly created connection and recordset
objects. In Active Server Pages, variables are untyped,
thus they do not need to be declared except to control
scope. Once these statements are inserted into the server-
side script tag and into the HTML document, we have
created and ASP document, which looks as follows:

<html>

<head>

<title>

Mama Vallone's Take-Out Menu
<[title>

</head>

<body bgcolor=#f0f0b8>

<%

Set Conn = Server.CreateObject("ADODB.Connection")

2142

Set rs = Server.CreateObject("ADODB.RecordSet")

%>

</body>
</html>

Since thisis now an ASP document, its file name needs
the “.asp” extension such as “menu.asp.”

So far, the script has only created objects that can be used
to access data that residesin a database. To access those
data, we need to open the connection and then open the
recordset. Each of these objects has an open method. To
open the connection, we first need an ODBC connection
to the database. This can be established as a System DSN
(data source name), as a File DSN, or as a Connection
String. In this example, we will use aFile DSN.
Although creating a File DSN is beyond the scope of this
tutorial, it is fairly simple and can be accomplished using
the ODBC 32 tool in the Control Panel.

To open the connection object, we supply the File DSN,
the user name, and the password ass seen here:

Conn.Open "filedsn=d:\virtualweb\mamavimamav.dsn", "mamav", "sq|"

To open the recordset object, we supply an open
connection object and query to specify the records which
will comprise the recordset.

query="select * from menuitem order by menugroup desc, itemName"
rs.open query, conn

At this point, we have written the code necessary to
access a set of records from a database, but we have not
specified any way to include those recordsin the html
response that will be sent to the browser. To use
VBScript to include a value in the response document, we
use the write method of the built-in object called
response. To open atable tag frominside a server-side

V BScript script, the following syntax would be used:

response.write "<table border=1>"

To access afield of the current record of arecordset, we
use the variable which references the recordset followed
by either a number that identifies the column (beginning
with zero) or a string that evaluates to the field name. If a
record set has at least three fields and the third field is
named “Price” then the following statements would both
include the value from the third field of the current record
of the recordset named “rs’ in the html response:

response.write rs("price")
response.write rs(2)

Since we can only access fields from the current record of
arecord set, we need some way to iterate through the
recordset. The recordset object has a“ moveNext”

method which allows us to move to the next record and an
“EOF" method which indicatesif the record has moved
past the last record. Combining these with VB Script

Do..Loop loop, we can effectively iterate through the
recordset as follows:

do until rs.eof
‘code to execute for each record goes here
rs.movenext

loop

At this point, we have seen everything we need to print
the contents of menu table in the menu.asp web page.
The code to do thisis afollows:

response.write "<table border=1>"
do until rs.eof

response.write "<tr>"
response.write "<td>"
response.write rs("itemName")
response.write "</td>"
response.write "<td>"
response.write rs("Price")
response.write "</td>"
response.write "<td>"
response.write rs("description")
response.write "</td>"
response.write "</tr>"
rs.movenext

loop

response.write "</table>"

This code createsan HTML table with the item name,
price and description of each item in the menultem table.

The last step isto close the recordset and connection
objects. Each object has a close method. The recordset
should be closed first asfollows:

rs.close
conn.close

The menu shown in the right frame of Figure 1 has one
additional quality, arow is added to the table each time
the recordset movesto a record with a different valuein
the “menuGroup” field. The code for thisisincluded in
Appendix with the listing for menu.asp.

Adding Parametersto Hypertext Links

Menu.asp from the previous sections allows a user with a
web browser to see the current menu offered by Mama
Vallone's. Sinceit isdynamically created using data
from the database, it will always be as current as the menu
information in the database. The next step in creating this
electronic commerce application is to give the user the
ability to select an item from the menu to be included in
the order. We will create another ASP to show the
currently selected items called cart.asp; however, first we
will modify menu.asp to allow the user to click on the
name of a menu item and add it to their order.

In order to accomplish this, we will make the menu item
name a hyperlink using the anchor tag. The link will
reference cart.asp and will include necessary instructions
to add a particular item to the order. Thisinformation

2143

will beincluded in the anchor tag's hypertext reference as
parameters.

The normal form of the anchor tag is as follows:

Gove'’s home Page
<la>

The “href” parameter holds the URL of the page that
should be displayed when the user followsthe link. To
add a parameter to the URL, one simply appends a
question mark (?) followed by the name of the parameter
followed by the equals sign (=) followed by the
parameter’s value. Hyperlink parameters can only
include certain characters. Characters which are not
allowed can be coded. For example, the space character
isnot allowed. If aparameter’s value needsto include a
space, one can replace the space with the plus sign (+)
which will be interpreted as a space. Although it will not
be used in the exampl e of this tutorial, the built-in server
object has a method called “urlencode” which will
properly encode hyperlink parameters and their values.

The question mark (?) only works to identify the first
parameter. All subsequent parameters are identified by
the ampersand character (&). Thelink to cart.asp that has
a parameter named “mode” with avalue of “add” and a
parameter named “menultemID” with avalue of “64” is
asfollows:

Cappuccino

Our menu.asp aready writes the name of each menu item
as seen here:

response.write "<td>"
response.write rs("itemName")
response.write "</td>"

We have only to add the code to for the anchor tag with
the specific menultemID. Thisis accomplished with the
following code:

response.write "<td>"

response.write "<a target=cartPage href=cart.asp?mode=add&menultemID="
response.write rs("menuitemID")

response.write ">"

response.write rs("itemName")

response.write ""

response.write "</td>"

The “target” parameter directs the browser to display the
page returned from the web server as aresult of following
the hyperlink to the frame named “ cartPage.”

With hyperlinks that have parameters, an ASP can read
the values of the parameters and act differently based on
those values. In this case, cart.asp will add to the order

the item that corresponds to the value passed with the
“menultemID” parameter.

It would be useless to pass parametersto an ASP if there
were not some way to interpret those parameters’ values.
ASPs has abuilt-in object called “Request” which allows
a developer to access the parameters passed as a part of an
HTTP request. Request has several methods; however,
this tutorial will deal only with an abbreviated syntax
which accesses parameter values from the HTTP request
whether those values were embedded in alink or
submitted as a part of aform. The syntax to reference
these valuesis asfollows:

request("parameterName")

To simply write the value of the a parameter named
“mode” to the response document, the code is as follows:

response.write request("mode")

In this tutorial we will use the “mode”’ parameter to allow
cart.asp to perform many different database tasks.
Cart.asp will be responsible to create the order, to add
items to the order, to remove items from the order, and to
display the items currently on the order. While these
tasks could be accomplished by several different pages,
placing them in one ASP is very convenient for both
development and maintenance.

To accomplish this, we will first read the value of the
“Mode” parameter and convert it to upper case (to allows
case insensitive comparisons). We will then assign a
default value if the parameter was not passed and use a
select . . . case statement to decide what to do based on
the value of the “mode” parameter. The code which does
this follows:

varMode = ucase(Request("Mode"))
if not varMode > "" then varMode = "DISPLAY"
select case varMode
case "DISPLAY" : DISPLAY
case "ADD": ADD
case "DELETE": DELETE
case Else
response.write "This page is only displayed when "
response.write "there is a system logic error."
response.write "

"
response.write "Contact Mama Vallone"
end select

This code fragment reads the value of “mode” parameter
and assigns its uppercase equivalent to a variable named
“varMode.” If nothing was passed to the “mode”
parameter, then varMode is not greater than an empty
string and is set to “DISPLAY,” which is the default
mode. The“select . . . case” statement then calls one of
three sub procedures to accomplish a different task
depending on the value of varMode. If an unanticipated
value is passed to the mode parameter, an error message
isdisplayed. With this“mode processor” in place, a
separate sub procedure can be called for each value of the
mode parameter. The sub procedures can be completely

2144

independent resulting in the same level of control that
results in separate ASPs for each taks; however, in this
approach, the functionality whichislogically connected is
located in the same place.

Using Session Variables

The web server which accepts the requests for Mama
Vallone' swill need to simultaneously accept input from
many customers and keep track of who is ordering what.
Fortunately, ASPs alow for session variables which hold
their value even though a user is changing from one page
to another. No matter which page in a site sets the value
of asession variable, other pages in that site can read that
value for the current session. A session is created when a
user first accesses apage in a site and exists until the
server has not received any requests from that browser
instance for a specified period of time (default is 20
minutes). If auser closes his or her browser completely,
and then reopens it and returnsto the site, the server
would create a separate session and the variables the
former session would be inaccessible.

In this example, a session variable is convenient to hold
the order identifier (salelD) that a particular customer is
composing. By placing the salelD in a session variable,
each time cart.asp needs to modify an order, it can simply
refer to the session’s salel D variable to identify the proper
order to manipulate. Also, when a customer first comes
to the site, salel D session variable will be unassigned.

We can use this condition as a trigger to insert arecord
into the sale table and get the salel D that pertainsto this
customer’s order.

Session variables are identified by the built-in object
called “Session.” The syntax for creating or accessing a
session variable called “salel D" is as follows:

Session("salelD")

Using this notation, we can check to see if the salelD
session variable has a value less than one (below the valid
range for salel D) to determine if anew salel D should be
generated. The code to do thisfollows:

if session("salelD") < 1 then
session("saleid") = createOrder
end if

The createOrder function simply inserts a new record into
the Sale table, then retrieves it to see what the
automatically generated salel D is and returns that value.

The createOrder function will be discussed in the next
section.

Inserting Data into a Database

The createOrder function interacts with the database. Just
like menu.asp, it must create a connection object to
connect to the database and since it reads data from the

database, it also needs a recordset object. The code for
this function is asfollows:

function createOrder

Set Conn = Server.CreateObject("ADODB.Connection")
Set rs=Server.CreateObject("ADODB.RecordSet")

Conn.Open "filedsn=d:\virtualweb\mamavi\mamav.dsn", "mamav", "sql"

ip=request.servervariables("remote_addr")
query="insert into sale (IPaddress) values("&ip&")"
conn.execute(query)

query = "select saleid from sale where ipaddress="&ip&""
query = query & " order by orderCreated desc"
rs.open query, conn
createOrder=rs("salelD")
rs.close
conn.close

end function

This function instantiates the objects necessary to access
the database, opens the connection, obtains the IP address
of the requesting browser, uses that |P address as the
value for afield in the Sale table. Then it insertsarecord
into the Sale Table. When arecord is inserted into the
Sale table, it automatically gets a new salel D and the
orderCreated field is assigned to the current date and time.
Thisis done so when the function queries the database for
orders created from a specific | P address and requests
them in descending order by orderCreated, the one which
was just inserted will appear at the top of the result set.
The value of salelD isthen passed back as the return
value of the function.

This example introduces the “execute’ method of the
connection object. This method is used for all queries
which do not retrun a results set, such asinsert, update
and delete queries.

Cart.asp has three more sub procedures: add, display, and
delete. The add sub procedure is executed when the user
clicks on the name of one of the menu items from
menu.asp. It reads the value passed to the menultemID
parameter and uses it with the value of the salelD session
variable to insert records into the table called “sale _item,”
which lists the items on a particular order. It then calls
the “display” sub procedure, which writes the list of items
currently on the order along with their prices and totals
the order. As seen below, this sub procedure also uses the
execute method of the connection object:

Sub Add
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open "filedsn=d:\virtualweb\mamavimamav.dsn", "mamav", "sql"
SalelD = session("SalelD")
itemID = request("MenultemID")
query = "insert into Sale_ltem(menultemID, SalelD)"
query = query & " values("<emID&","&SalelD&")"
conn.execute(query)
conn.close
set conn=nothing
display
end sub

2145

The “display” sub procedure simply reads the list of menu
items associated with a specific sale and writes them to
the response document in an HTML table. This
procedure introduces the native function
“FormatCurrency” which accepts a numeric argument and
returns a formatted string. The code for the “display” sub
procedureis as follows:

Sub Display
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open "filedsn=d:\virtualweb\mamavimamav.dsn", " "

, "mamav", "sql"

set rs=Server.CreateObject("ADODB.RecordSet")

query = "select * from menuitem inner Join sale_ltem on"

query = query & " menuitem.menultem|D=sale_item.menultemID"
query = query & " where sale_item.saleid=" & session("saleid")
query = query & " Order by itemname”

rs.open query, conn

response.write "<table width=100% Border=1>"
response.write "<tr><th>ltem</th><th>Price</th></tr>"
total=0
do until rs.eof
response.write "<tr>"
response.write "<td>"
response.write "<a target=cartPage href=cart.asp?"
response.write "mode=delete & lineltemID="
response.write rs("lineltemID")
response.write ">"
response.write rs("itemName")
response.write ""
response.write "</td>"
response.write "<td align=right valign=top>"
response.write rs("price")
response.write "</td>"
response.write "</tr>"
total=total + cdbl(rs("price"))
rs.movenext
loop
response.write "<tr><td>Total</td><td align=right>"
response.write formatCurrency(total)
response.write "</td></tr>"
response.write "</table>"

rs.close
conn.close

end sub

Deleting Data from a Database

The process for deleting records from atable in a database
isvirtually identical to the process for inserting records
into atable. The differenceisfound inthe query whichis
passed to the execute method of the connection object.
The code for the “delete” sub procedure of cart.asp
follows:

Sub Delete
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
SalelD = session("SalelD")
itemID = request("lineltemID")
query="delete from Sale_Iltem where lineltemID = "<emID
conn.execute(query)
conn.close
set conn=nothing
display
end sub

This procedure is called when the user clicks on the name
of amenu item that isin the list of selected items. This
compl etes the discussion of the code for cart.asp. The
reader is encouraged to refer to the appendix to review the
code asit isassembled in thefile.

Building a Form to Collect User Input

WEe' ve discussed one way to assign the values to
parametersin an HTTP request—specifying them as a
part of ahyperlink. The other way isto allow usersto
enter them on an HTML form. While adiscussion of the
HTML tags used in conjunction with the <form> tag is
beyond the scope of thistutorial, asimple formisused in
order.htm as seen below:

<form action=order.asp method=post target=_top>
<table border=0>
<tr><td>First Name</td>
<td><input type=text size=20 name=fname></td></tr>
<tr><td>Last Name</td>
<td><input type=text size=20 name=Iname></td></tr>
<tr><td>Phone</td>
<td><input type=text size=20 name=phone></td></tr>
<tr><td>Pick Up Time</td>
<td><input type=text size=20 name=pickup></td></tr>
<tr><td>Credit Card #</td>
<td><input type=text size=20 name=CCNumber></td></tr>
<tr><td>Exp. Date</td>
<td><select name=ccExpMonth>
<option value=1>1
<option value=2>2
<option value=3>3
<option value=4>4
<option value=5>5
<option value=6>6
<option value=7>7
<option value=8>8
<option value=9>9
<option value=10>10
<option value=11>11
<option value=12>12
</select>
/
<select name=ccExpYear>
<option value=2000>2000
<option value=2001>2001
<option value=2002>2002
<option value=2003>2003
<option value=2004>2004
<option value=2005>2005
<option value=2006>2006
<option value=2007>2007
<option value=2008>2008
<option value=2009>2009
<option value=2010>2010
</select>
</td></tr><tr><td></td>
<td align=right>
<input type=submit value="Submit Order">
</td></tr></table>
</form>

The “target” parameter of the <form> tag on the first line
indicates in which frame the resulting document should be
displayed. Itsvalue (_top) isareserved value which
indicates that the response should replace the topmost
frameset in which the current page is embedded. The

2146

“action” parameter of the <form> tag indicates that
order.asp is the file that will process the values entered in
the form. The <input> tag and the <select> tag each have
aname parameter. The value of the name parameter
along with the value entered by the user for the input or
select elements are passed to the web server. The ASP
which is specified in the action parameter of the <form>
tag accesses these values in the same manner as discussed
in the section “Reading Parameters from an HTTP
Request.”

Updating Data in a Database

Updating database datais very similar to inserting and
deleting—they all use the execute method of the
connection object. This can be seen in the source of
order.asp as follows:

<%
if request(
request(
request(
request("Pickup")=""or _
request("ccnumber")="" or _
(
(

"Fname")=""or _
"Lname")="" or _
"phone")=" or _

request("ccExpMonth")="" or _
request("ccExpYear")="" Then

response.write "All infomration is required. Use your"
response.write " browser's back button to try again."

else
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn”, "mamav", "
SalelD=session("SalelD")
itemID=request("lineltemID")
query = "update sale set fname="=8&request("fname")&","
query = query & " Iname="&request("Iname")&","
query = query & " phone="_&request("phone")&" "
query = query & " pickUpTime="&request("Pickup")&","
query = query & " CreditCardNumber="&request("ccnumber")&","
query = query & " ExpDate="&request("ccExpMonth")
query = query & "/"&request("ccExpYear")&™"
query = query & " where Saleid="&session("saleid")
conn.execute(query)
conn.close
set conn=nothing

sql

response.write "
<center>Thank you for your "
response.write "order.</center>

Feel free to "
response.write "create another order.
"
session.abandon

end if

%>

Notice that this code begins by checking to see if any of
the values passed from the form are empty. If any are,
then the response document simply includes an error
message to be rendered by the browser. More
sophisticated data validity measures can be implemented.
For example, email addresses can be checked to see if
they contain the “@" symbol, tel ephone numbers can be
checked to make sure the are a certain length and contain
no letter and so on. Also notice that after an order is
successfully updated with the order information, the
session is abandoned (third line fromthe end). This

destroys all session variables, so if the user places a new
order, cart.asp will create anew order.

This concludes the discussion of the elements of this
electronic commerce application. The application can be
examined at http://dev.csom.umn.edu/mamav. The
application and the source code will be available through
May of 2001.

References

Kosiur, D. Understanding Electronic Commerce.
Microsoft Press: Redmond WA, 1997.

Ladd, E., Ablan, J., Banick, S., Cassady-Dorion, L.,
Chandak, R., Doherty, D., Ellsworth, M., Santa Maria, P.,
Morgan, M., Morrison, M., Niles, M., Sloan, B., Sutter,
R. Using HTML4, Java 1.1, and Javacript 1.2. Que:
Indianapolis IN, 1998.

2147

Appendix
These are the code listings from the compl ete project.

default. htm
<HTML>
<HEAD>
<TI TLE>Mama Val | one' s Take Qut Order Fornx/ Tl TLE>
</ HEAD>
<FRAMESET col s="300, *" border="0" franmeborder="no" franmespaci ng="0">
<FRAME nane="or der Franme" src="orderFrane. ht i margi nwi dt h="0" mar gi nhei ght ="0"
scrol ling="No" noresize franmespaci ng="0" franmeborder="NO">

<FRAME nanme="nmenu" src="nenu. asp" margi nhei ght="0" scrolling="Auto" franeborder="NO
nor esi ze framespaci ng="0" margi nwi dt h="0">
</ FRAMESET>
</ HTM.>

order Frane. htm
<HTM.>
<HEAD>
<TI TLE>Mama Val | one' s Take Qut Order Fornx/ Tl TLE>
</ HEAD>
<FRAMESET rows="100, *, 200" border="0" franmeborder="no" franmespaci ng="0">
<FRAME nane="Title" src="title.htnl margi nhei ght="0" scrolling="No" franmeborder="NO
nor esi ze framespaci ng="0" margi nwi dt h="0">
<FRAME nane="cart Page" src="cart.asp" margi nhei ght="0" scrolling="Auto" franeborder="NO
noresi ze framespaci ng="0" margi nwi dt h="0">
<FRAME nanme="Or der Page" src="order.htni' margi nwi dt h="0" nar gi nhei ght="0" scrolling="No"
noresi ze framespaci ng="0" franmeborder="NO'>
</ FRAMESET>
</ HTML>

nenu. asp
<htm >
<head>
<title>Mana Val |l one's Take-Qut Menu</title>
</ head>
<body bgcol or =#f Of 0b8>

<% Set Conn = Server. Creat eObj ect (" ADODB. Connecti on")
set rs = Server. CreateCbj ect (" ADCDB. RecordSet ")

Conn. Open "fil edsn=d:\virtual web\ mamav\ nanav. dsn", "nmanmav", "sql"
query="sel ect * from nenuitem order by menugroup desc, itemNane"
rs.open query, conn

current G oup=""
response.wite "<table border=1>"
do until rs.eof
if currentGoup<>rs("menuG oup") then
response.wite "<tr><td col span=3 al i gn=cent er bgcol or =#f 0e0f 8>"

response.wite ""
response. wite rs("menuG oup")
response.wite "</font</td></tr>"

end if

current G oup=rs("nmenuG oup")
response.wite "<tr>"

response.wite "<td>"

response. wite "<a target=cartPage href=cart.asp?node=add&renul t em D="
response.wite rs("menuitem D")
response.wite ">

response. wite rs("itemNane")
response.wite "</ a>"
response.wite "</td>"

response. wite "<t d>"
response.wite rs("Price")
response.wite "</td>"

response. wite "<t d>"
response.wite rs("description")
response.wite "</td>"

response.wite "</tr>"
rs. movenext

| oop

response.wite "</tabl e>"

rs.close
conn. cl ose
%
</ body>
</ htm >

2148

cart.asp
<htm >
<head>
<title>
Manme Val | one' s Take-Qut Menu
</title>
</ head>
<body bgcol or =#f 0f 0b8>

<%

if session("salelD') < 1 then
session("sal ei d") =creat eOr der

end if

-------------------- Mbde Processor --------------------
var Mode = ucase(Request (" Mode"))

if not varMbde > "" then varMde = "Dl SPLAY"

sel ect case var Mode

case "Dl SPLAY" : DI SPLAY
case "ADD' . ADD
case "DELETE" . DELETE
case Else

response.wite "This page is only displayed when "
response.wite "there is a systemlogic error."
response. wite "

"

response.wite "Contact Mana Val |l one"

end sel ect
R T Sub Procedures --------------------
Sub Di spl ay
Set Conn = Server. Creat eObj ect (" ADODB. Connecti on")
Conn. Open "fil edsn=d:\virtual web\ mamav\ mamav. dsn", "mamv",

set rs=Server. CreateObject (" ADODB. RecordSet")

query = "select * fromnenuiteminner Join sale_Item on"
query = query & " menuitem nmenultem D=sale_item nmenultem D'
query = query & " where sale_item sal ei d="&session("sal ei d")
query = query & " Order by itemmane"

rs.open query, conn

response.wite "<table w dt h=100% Bor der =1>"
response.wite "<tr><th>ltenx/th><th>Price</th></tr>"
total =0
do until rs.eof

response.wite "<tr>"

response.wite "<td>"

response.wite "<a target=cartPage href=cart.asp?"
response.wite "nmode=del et e&l i nel tem D="
response.wite rs("lineltem D")
response.wite ">

response.wite rs("itemName")
response.wite "</ a>"

response.wite "</td>"

response.wite "<td align=right valign=top>"
response.wite rs("price")

response.wite "</td>"

response.wite "</tr>"
total =total + cdbl (rs("price"))
rs. novenext
| oop
response.wite "<tr><td>Total </ b></td><td align=right>"
response.wite formatCurrency(total)
response.wite "</td></tr>"
response.wite "</tabl e>"

rs.cl ose
conn. cl ose

end sub

2149

cart.asp (continued)

Sub Add
Set Conn = Server. Creat eObj ect (" ADCDB. Connecti on")
Conn. Open "fil edsn=d:\virtual web\ mamav\ mamav. dsn", "mamav", "sql"

Sal el D = session("Sal el D')
item D = request ("Menultem D")
query = "insert into Sale_Itenm(nmenultem D, SalelD)"
query = query & " values("& tem D&, "&Sal el D&")"
conn. execut e(query)

conn. cl ose

set conn=not hi ng

di spl ay

end sub

Sub Delete
Set Conn = Server. Creat eObj ect (" ADODB. Connecti on")
Conn. Open "fil edsn=d:\virtual web\ manav\ mamav. dsn", "mamav", "sql"
Sal el D = session("Sal el D")
item D = request ("lineltem D)
query="delete from Sale_ltem where lineltem D = "& tem D
conn. execut e(query)
conn. cl ose
set conn=not hi ng
di spl ay
end sub

function createGOrder
Set Conn = Server. Creat eObj ect (" ADCDB. Connecti on")
Set rs=Server. CreateObject (" ADODB. RecordSet ")
Conn. Open "fil edsn=d:\virtual web\ mamav\ mamav. dsn", "mamav", "sql"
i p=request.servervariabl es("renote_addr")
query="insert into sale (|Paddress) values('"& p&"")"
conn. execut e(query)
query = "select saleid fromsale where ipaddress=""& p&""'"
query = query & " order by orderCreated desc"
rs.open query, conn
createOrder=rs("salelD")
rs.close
conn. cl ose
end function

%>

</ body>
</ html >

title.htm
<htm >
<head>
<title>
Mama Val | one' s Take-Qut Menu
</title>
</ head>
<body bgcol or =#f 0f 0b8>
<cent er >
Manma Val | one' s</f ont >

St eak House and | nn

Take- Qut Or der s</f ont >

</center>

</ body>
</htm >

2150

<htm >
<head>
<title>

Manma Val | ones Take- Qut Menu

</title>
</ head>

<body bgcol or =#f 0f 0b8>

<form acti on=order.asp nethod=post target=_top>
<t abl e border=0>

<tr><td>First Nane</td>

<t d><i nput
<t r><t d>Last
<t d><i nput

type=text size=20
Nane</t d>
type=text size=20

<t r ><t d>Phone</t d>

<t d><i nput
<tr><t d>Pi ck

<t d><i nput
<tr><t d>Cr edi

<t d><i nput
<t r><t d>Exp

type=text size=20
Up Tine</td>
type=text size=20
t Card #</td>
type=text size=20
Dat e</ t d>

<t d><sel ect name=ccExpMont h>

<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt

on val ue=1>1
on val ue=2>2
on val ue=3>3
on val ue=4>4
on val ue=5>5
on val ue=6>6
on val ue=7>7
on val ue=8>8
on val ue=9>9
on val ue=10>10
on val ue=11>11
on val ue=12>12

</ sel ect >
/

<sel ect
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt
<opt

nane=ccExpYear >

on val ue=2000>2000
on val ue=2001>2001
on val ue=2002>2002
on val ue=2003>2003
on val ue=2004>2004
on val ue=2005>2005
on val ue=2006>2006
on val ue=2007>2007
on val ue=2008>2008
on val ue=2009>2009
on val ue=2010>2010

</ sel ect >
</td></tr><tr><td></td>
<td align=right>
<i nput type=subnmit val ue="Subnmit Order">
</td></tr></tabl e>

</ form
</ body>
</htm >

Order. htm

name=f name></td></tr>
name=| name></td></tr>
name=phone></td></tr>
nane=pi ckup></td></tr>

nanme=CCNunber ></ t d></tr>

2151

Or der . asp

<ht nl >
<head>
<title>
Marma Val | ones Take-Qut Menu
</title>
</ head>
<body bgcol or =#f 0f 0b8>
<%
i f request("Fnanme")="" or _
request ("Lnanme")="" or _
request (" phone")="" or _
request (" Pi ckup")="" or _
request ("ccnunber")="" or _
request (" ccExpmont h")="" _
request (" ccExpYear")="" Then
response.wite "All infonration is required. Use your"
response.wite " browser's back button to try again."
el se
Set Conn = Server. Creat eObj ect (" ADCDB. Connecti on")
Conn. Open "fil edsn=d:\virtual web\ mamav\ mamav. dsn", "mamav", "sql"
Sal el D=sessi on("Sal el D")
item D=request("lineltem D")
query = "update sal e set fname='"&request("fnanme")&"",
query = query & " Inane-'"&request("lnane")&” "
query = query & " phone='"&request (" phone)&,
query = query & " pickUpTi me=""&request (" Pi ckur p)& ", "
query = query & " Cred|tCardNunber-'"&request(ccnunber")&” "
query = query & " ExpDate='"&r equest (" ccExpMnth")
query = query & "/"& equest("ccExpYear")&"""
query = query & " where Sal ei d="&session("sal ei d")
conn. execut e(query)
conn. cl ose
set conn=not hi ng
response. wite "
<center>Thank you for your "
response.wite "order. </ b></center>

Feel free to "
response.wite "<a href=defaul t. htnmecreate another order.
"
sessi on. abandon
end if
%
</ body>
</htm >

2152

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Developing Internet E-Commerce Applications with Database Access using Active Server Pages
	Grove N. Allen
	Recommended Citation

