
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2000 Proceedings Americas Conference on Information Systems
(AMCIS)

2000

Developing Internet E-Commerce Applications
with Database Access using Active Server Pages
Grove N. Allen
University of Minnesota, allen088@umn.edu

Follow this and additional works at: http://aisel.aisnet.org/amcis2000

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2000 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Allen, Grove N., "Developing Internet E-Commerce Applications with Database Access using Active Server Pages" (2000). AMCIS
2000 Proceedings. 85.
http://aisel.aisnet.org/amcis2000/85

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301348183?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2000/85?utm_source=aisel.aisnet.org%2Famcis2000%2F85&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Developing Internet E-Commerce Applications with
 Database Access using Active Server Pages

Gove N. Allen, Department of Information and Decision Sciences

University of Minnesota, allen088@umn.edu

Abstract

Connecting web sites to databases is foundational to
electronic commerce on the Internet. Microsoft’s Active
Server Pages is one tool which allows web sites to
dynamically interact with database management systems.
This tutorial shows how to create an electronic commerce
application using this technology.

Introduction

Business-to-business electronic commerce has been
conducted through EDI (electronic data interchange) since
the 1960s (Kosiur, 1997). Recently, the increased
popularity of the Internet has allowed businesses to
pursue business-to-consumer electronic commerce on an
unprecedented scale. The foundational technology of
virtually all Internet electronic commerce applications
(whether business-to-business or business-to-consumer or
consumer-to-consumer) involves connecting Internet sites
to database management systems. This connection can be
accomplished through a number of means including Perl
and CGI (common gateway interface), Java applets and
servelets, Sun’s Java Server pages, Microsoft’s Active
Server Pages, PHP, Altaire’s Cold Fusion, and many
others (Ladd, et al., 1988). This tutorial shows how to
create an electronic commerce web site using Microsoft’s
Active Server Pages. The example that is developed in
this tutorial is a business-to-consumer web site using
Microsoft SQL Server as the back-end database
management system.

Business Example

The business that will be used as the foundation for the
code examples of this tutorial is an award-winning
restaurant in the northwest United States. Mama
Vallone’s Steak House and Inn has an informational web
site (www.mamavallones.com) but would like to add a
page that allows customers to enter take-out orders.
Mama Vallone’s menu is stored in a database
management system (Microsoft SQL Server) and is
updated several times a year. The take-out order page
must show the current menu and current prices.
Customers who visit the page need to be able to compose
an order by selecting from the menu and submit payment
information online. A set of web pages will be generated
in this tutorial to meet these needs.

Prerequisites

This is not a tutorial about web page design or hypertext
markup language (HTML). This is not a tutorial about
database design or Structured Query Language (SQL).
This is a tutorial about using Microsoft Active Server
Pages (ASPs) scripts to dynamically create HTML
documents including data stored in a SQL-92 compliant
database management system. To appreciate this tutorial,
readers should be familiar with HTML including frames
and tables. The reader should also be familiar with the
select statement of SQL including SQL-92 join syntax.
The reader need not have any familiarity with Active
Server Pages, but experience in at least one programming
language (Visual Basic, C++, Pascal, etc) will be helpful.

The examples in this tutorial will be stored in a directory
which has been configured in IIS to allow scripts to
execute. While this configuration is beyond the scope of
the tutorial, several example ASPs are installed in
properly configured directories during standard
installations of Windows NT 4 or Windows 2000
Advanced Server. Any of these directories would work
well to test the techniques demonstrated in this turorial.

Active Server Pages Overview

ASPSs allows for the dynamic creation of HTML
documents on Microsoft’s web server, Internet
Information Server (IIS). ASPs allow developers to build
dynamic web sites by adding server-side scripts to static
HTML pages. When a browser requests an ASP, these
scripts execute and build an HTML file, which is then
returned to the browser. These scripts have the ability to
instantiate objects that can provide different functionality.
Although such object can be created using tools such as
Microsoft’s Visual C++ or Visual Basic, several are
installed by default as a part of IIS. These standard
components allow developers to access any database that
supports an ODBC connection while the HTML response
is being generated. This allows a page to be delivered to
a browser that is composed of data about a particular
order, delivery, customer, etc. Figure 1 shows the process
by which a user’s request for an ASP which accesses a
database is fulfilled.

2140

Tutorial Setup

To understand the steps in this tutorial, it helps to see the
final destination. The result of this tutorial will appear as
seen in Figure 2.

Figure 2. The Finished Product

This example uses two framesets (default.htm and
OrderFrame.htm). A complete listing of these files and
all files used in this tutorial can be examined in the
Appendix.

The framesets organize the content documents as seen in
Figure 3.

Title.htm

Cart.asp

Order.htm

Menu.asp

Figure 3. Frameset Organization

To build the finished product, we will need to learn eight
techniques. These eight comprise the remainder of this
tutorial and are as follows:

1. Accessing Database Data
2. Adding Parameters to Hypertext Links
3. Using Session Variables
4. Reading Parameters from a Hypertext Request
5. Inserting Data into a Database
6. Deleting Data from a Database
7. Building a Form to Collect User Input
8. Updating Data in a Database.

Accessing Database Data

An Active Server Page is simply an HTML document
with an embedded script that is interpreted by the web
server. The script is executed after the browser requests
the page and before the server dispatches the page. Thus,

Database Server
(Oracle / SQL Server)

Internet

LAN

Web Server
(MS IIS)

Internet Explorer
Star Office

!
"

$

%

&

'

(

)

Netscape

! A user with a browser requests an Active Server Page.
" The browser sends an HTTP request (including parameters) to the web server.
The web server begins building the HTML response to the HTTP request.
$ The web server requests the database server to execute a query.
% The database server executes the query.
& The database server sends the result set of the query to the web server.
' The web server uses the query results to finish building the HTML response.
(The web server sends the HTML response to the browser that requested it.
) The browser renders and displays the HTML document based on the results of the query.

Figure 1. Generating an Active Server Page using Database Data

2141

the script can be used to specify the content of the page.
All ASPs must have the extension “.asp” as a part of the
file name. This tells IIS to examine the page for script
elements and to process those elements before dispatching
the page.

 In this example, we will build a page that displays Mama
Vallone’s menu using the information stored in MS SQL
Server. We begin with the following HTML document:

<html>
<head>
<title>
Mama Vallone�s Take-Out Menu
</title>
</head>
<body bgcolor=#f0f0b8>
</body>
</html>

This page has no text in the body of the document. We
will generate the body entirely with the ASP script. To
identify a script that is to be executed on the server, we
use the server-side script tag: <% %>. This is not an
HTML tag because it is never interpreted as part of the
HTML document. Instead, the web server executes the
script as the document is being built to respond to the
browser’s request. The server-side script tag and its
contents will be removed from the source of the ASP
document so the browser never receives the code of the
script. IIS supports server-side scripts written in either
VBScript or Jscript. This tutorial uses VBScript
exclusively.

We begin our discussion of database access by
introducing Server.CreateObject. Server is one of ASP’s
five built-in objects. It has a method called CreateObject
which is used to instantiate objects which are not built in.
In this case, we will use Server.CreateObject to instantiate
two Active Data Objects (ADO) components, a
connection and a recordset. The code to accomplish this
is as follows:

Set conn = Server.CreateObject("ADODB.Connection")
Set rs = Server.CreateObject("ADODB.RecordSet")

The set statement is used to assign the reference of an
object to a variable so that object can be used in the script.
In this example “conn” and “rs” are variables which now
reference the newly created connection and recordset
objects. In Active Server Pages, variables are untyped,
thus they do not need to be declared except to control
scope. Once these statements are inserted into the server-
side script tag and into the HTML document, we have
created and ASP document, which looks as follows:

<html>
<head>
<title>
Mama Vallone�s Take-Out Menu
</title>
</head>
<body bgcolor=#f0f0b8>
<%
 Set Conn = Server.CreateObject("ADODB.Connection")

 Set rs = Server.CreateObject("ADODB.RecordSet")
%>

</body>
</html>

Since this is now an ASP document, its file name needs
the “.asp” extension such as “menu.asp.”

So far, the script has only created objects that can be used
to access data that resides in a database. To access those
data, we need to open the connection and then open the
recordset. Each of these objects has an open method. To
open the connection, we first need an ODBC connection
to the database. This can be established as a System DSN
(data source name), as a File DSN, or as a Connection
String. In this example, we will use a File DSN.
Although creating a File DSN is beyond the scope of this
tutorial, it is fairly simple and can be accomplished using
the ODBC 32 tool in the Control Panel.

To open the connection object, we supply the File DSN,
the user name, and the password ass seen here:

 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"

To open the recordset object, we supply an open
connection object and query to specify the records which
will comprise the recordset.

 query="select * from menuitem order by menugroup desc, itemName"
 rs.open query, conn

At this point, we have written the code necessary to
access a set of records from a database, but we have not
specified any way to include those records in the html
response that will be sent to the browser. To use
VBScript to include a value in the response document, we
use the write method of the built-in object called
response. To open a table tag from inside a server-side
VBScript script, the following syntax would be used:

response.write "<table border=1>"

To access a field of the current record of a recordset, we
use the variable which references the recordset followed
by either a number that identifies the column (beginning
with zero) or a string that evaluates to the field name. If a
record set has at least three fields and the third field is
named “Price” then the following statements would both
include the value from the third field of the current record
of the recordset named “rs” in the html response:

response.write rs("price")
response.write rs(2)

Since we can only access fields from the current record of
a record set, we need some way to iterate through the
recordset. The recordset object has a “moveNext”
method which allows us to move to the next record and an
“EOF” method which indicates if the record has moved
past the last record. Combining these with VBScript

2142

Do..Loop loop, we can effectively iterate through the
recordset as follows:

do until rs.eof
 'code to execute for each record goes here
 rs.movenext
loop

At this point, we have seen everything we need to print
the contents of menu table in the menu.asp web page.
The code to do this is a follows:

response.write "<table border=1>"
do until rs.eof
 response.write "<tr>"
 response.write "<td>"
 response.write rs("itemName")
 response.write "</td>"
 response.write "<td>"
 response.write rs("Price")
 response.write "</td>"
 response.write "<td>"
 response.write rs("description")
 response.write "</td>"
 response.write "</tr>"
 rs.movenext
loop
response.write "</table>"

This code creates an HTML table with the item name,
price and description of each item in the menuItem table.

The last step is to close the recordset and connection
objects. Each object has a close method. The recordset
should be closed first as follows:

rs.close
conn.close

The menu shown in the right frame of Figure 1 has one
additional quality, a row is added to the table each time
the recordset moves to a record with a different value in
the “menuGroup” field. The code for this is included in
Appendix with the listing for menu.asp.

Adding Parameters to Hypertext Links

Menu.asp from the previous sections allows a user with a
web browser to see the current menu offered by Mama
Vallone’s. Since it is dynamically created using data
from the database, it will always be as current as the menu
information in the database. The next step in creating this
electronic commerce application is to give the user the
ability to select an item from the menu to be included in
the order. We will create another ASP to show the
currently selected items called cart.asp; however, first we
will modify menu.asp to allow the user to click on the
name of a menu item and add it to their order.

In order to accomplish this, we will make the menu item
name a hyperlink using the anchor tag. The link will
reference cart.asp and will include necessary instructions
to add a particular item to the order. This information

will be included in the anchor tag’s hypertext reference as
parameters.

The normal form of the anchor tag is as follows:

 Gove�s home Page

The “href” parameter holds the URL of the page that
should be displayed when the user follows the link. To
add a parameter to the URL, one simply appends a
question mark (?) followed by the name of the parameter
followed by the equals sign (=) followed by the
parameter’s value. Hyperlink parameters can only
include certain characters. Characters which are not
allowed can be coded. For example, the space character
is not allowed. If a parameter’s value needs to include a
space, one can replace the space with the plus sign (+)
which will be interpreted as a space. Although it will not
be used in the example of this tutorial, the built-in server
object has a method called “urlencode” which will
properly encode hyperlink parameters and their values.

The question mark (?) only works to identify the first
parameter. All subsequent parameters are identified by
the ampersand character (&). The link to cart.asp that has
a parameter named “mode” with a value of “add” and a
parameter named “menuItemID” with a value of “64” is
as follows:

Cappuccino

Our menu.asp already writes the name of each menu item
as seen here:

response.write "<td>"
response.write rs("itemName")
response.write "</td>"

 We have only to add the code to for the anchor tag with
the specific menuItemID. This is accomplished with the
following code:

response.write "<td>"
response.write "<a target=cartPage href=cart.asp?mode=add&menuItemID="
response.write rs("menuitemID")
response.write ">"
response.write rs("itemName")
response.write ""
response.write "</td>"

The “target” parameter directs the browser to display the
page returned from the web server as a result of following
the hyperlink to the frame named “cartPage.”

With hyperlinks that have parameters, an ASP can read
the values of the parameters and act differently based on
those values. In this case, cart.asp will add to the order

2143

the item that corresponds to the value passed with the
“menuItemID” parameter.

It would be useless to pass parameters to an ASP if there
were not some way to interpret those parameters’ values.
ASPs has a built-in object called “Request” which allows
a developer to access the parameters passed as a part of an
HTTP request. Request has several methods; however,
this tutorial will deal only with an abbreviated syntax
which accesses parameter values from the HTTP request
whether those values were embedded in a link or
submitted as a part of a form. The syntax to reference
these values is as follows:

request("parameterName")

To simply write the value of the a parameter named
“mode” to the response document, the code is as follows:

response.write request("mode")

In this tutorial we will use the “mode” parameter to allow
cart.asp to perform many different database tasks.
Cart.asp will be responsible to create the order, to add
items to the order, to remove items from the order, and to
display the items currently on the order. While these
tasks could be accomplished by several different pages,
placing them in one ASP is very convenient for both
development and maintenance.

To accomplish this, we will first read the value of the
“Mode” parameter and convert it to upper case (to allows
case insensitive comparisons). We will then assign a
default value if the parameter was not passed and use a
select . . . case statement to decide what to do based on
the value of the “mode” parameter. The code which does
this follows:

varMode = ucase(Request("Mode"))
if not varMode > "" then varMode = "DISPLAY"
select case varMode
 case "DISPLAY" : DISPLAY
 case "ADD" : ADD
 case "DELETE" : DELETE
 case Else
 response.write "This page is only displayed when "
 response.write "there is a system logic error."
 response.write "

"
 response.write "Contact Mama Vallone"
end select

This code fragment reads the value of “mode” parameter
and assigns its uppercase equivalent to a variable named
“varMode.” If nothing was passed to the “mode”
parameter, then varMode is not greater than an empty
string and is set to “DISPLAY,” which is the default
mode. The “select . . . case” statement then calls one of
three sub procedures to accomplish a different task
depending on the value of varMode. If an unanticipated
value is passed to the mode parameter, an error message
is displayed. With this “mode processor” in place, a
separate sub procedure can be called for each value of the
mode parameter. The sub procedures can be completely

independent resulting in the same level of control that
results in separate ASPs for each taks; however, in this
approach, the functionality which is logically connected is
located in the same place.

Using Session Variables

The web server which accepts the requests for Mama
Vallone’s will need to simultaneously accept input from
many customers and keep track of who is ordering what.
Fortunately, ASPs allow for session variables which hold
their value even though a user is changing from one page
to another. No matter which page in a site sets the value
of a session variable, other pages in that site can read that
value for the current session. A session is created when a
user first accesses a page in a site and exists until the
server has not received any requests from that browser
instance for a specified period of time (default is 20
minutes). If a user closes his or her browser completely,
and then reopens it and returns to the site, the server
would create a separate session and the variables the
former session would be inaccessible.

In this example, a session variable is convenient to hold
the order identifier (saleID) that a particular customer is
composing. By placing the saleID in a session variable,
each time cart.asp needs to modify an order, it can simply
refer to the session’s saleID variable to identify the proper
order to manipulate. Also, when a customer first comes
to the site, saleID session variable will be unassigned.
We can use this condition as a trigger to insert a record
into the sale table and get the saleID that pertains to this
customer’s order.

Session variables are identified by the built-in object
called “Session.” The syntax for creating or accessing a
session variable called “saleID” is as follows:

Session("saleID")

Using this notation, we can check to see if the saleID
session variable has a value less than one (below the valid
range for saleID) to determine if a new saleID should be
generated. The code to do this follows:

if session("saleID") < 1 then
 session("saleid") = createOrder
end if

The createOrder function simply inserts a new record into
the Sale table, then retrieves it to see what the
automatically generated saleID is and returns that value.
The createOrder function will be discussed in the next
section.

Inserting Data into a Database

The createOrder function interacts with the database. Just
like menu.asp, it must create a connection object to
connect to the database and since it reads data from the

2144

database, it also needs a recordset object. The code for
this function is as follows:

function createOrder

 Set Conn = Server.CreateObject("ADODB.Connection")
 Set rs=Server.CreateObject("ADODB.RecordSet")

 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"

 ip=request.servervariables("remote_addr")
 query="insert into sale (IPaddress) values('"&ip&"')"
 conn.execute(query)

 query = "select saleid from sale where ipaddress='"&ip&"'"
 query = query & " order by orderCreated desc"
 rs.open query, conn
 createOrder=rs("saleID")
 rs.close
 conn.close

end function

This function instantiates the objects necessary to access
the database, opens the connection, obtains the IP address
of the requesting browser, uses that IP address as the
value for a field in the Sale table. Then it inserts a record
into the Sale Table. When a record is inserted into the
Sale table, it automatically gets a new saleID and the
orderCreated field is assigned to the current date and time.
This is done so when the function queries the database for
orders created from a specific IP address and requests
them in descending order by orderCreated, the one which
was just inserted will appear at the top of the result set.
The value of saleID is then passed back as the return
value of the function.

This example introduces the “execute” method of the
connection object. This method is used for all queries
which do not retrun a results set, such as insert, update
and delete queries.

Cart.asp has three more sub procedures: add, display, and
delete. The add sub procedure is executed when the user
clicks on the name of one of the menu items from
menu.asp. It reads the value passed to the menuItemID
parameter and uses it with the value of the saleID session
variable to insert records into the table called “sale_item,”
which lists the items on a particular order. It then calls
the “display” sub procedure, which writes the list of items
currently on the order along with their prices and totals
the order. As seen below, this sub procedure also uses the
execute method of the connection object:

Sub Add
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 SaleID = session("SaleID")
 itemID = request("MenuItemID")
 query = "insert into Sale_Item(menuItemID, SaleID)"
 query = query & " values("&ItemID&","&SaleID&")"
 conn.execute(query)
 conn.close
 set conn=nothing
 display
end sub

The “display” sub procedure simply reads the list of menu
items associated with a specific sale and writes them to
the response document in an HTML table. This
procedure introduces the native function
“FormatCurrency” which accepts a numeric argument and
returns a formatted string. The code for the “display” sub
procedure is as follows:

Sub Display
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"

 set rs=Server.CreateObject("ADODB.RecordSet")

 query = "select * from menuitem inner Join sale_Item on"
 query = query & " menuitem.menuItemID=sale_item.menuItemID"
 query = query & " where sale_item.saleid=" & session("saleid")
 query = query & " Order by itemname"

 rs.open query, conn

 response.write "<table width=100% Border=1>"
 response.write "<tr><th>Item</th><th>Price</th></tr>"
 total=0
 do until rs.eof
 response.write "<tr>"
 response.write "<td>"
 response.write "<a target=cartPage href=cart.asp?"
 response.write "mode=delete & lineItemID="
 response.write rs("lineItemID")
 response.write ">"
 response.write rs("itemName")
 response.write ""
 response.write "</td>"
 response.write "<td align=right valign=top>"
 response.write rs("price")
 response.write "</td>"
 response.write "</tr>"
 total=total + cdbl(rs("price"))
 rs.movenext
 loop
 response.write "<tr><td>Total</td><td align=right>"
 response.write formatCurrency(total)
 response.write "</td></tr>"
 response.write "</table>"

 rs.close
 conn.close

end sub

Deleting Data from a Database
The process for deleting records from a table in a database
is virtually identical to the process for inserting records
into a table. The difference is found in the query which is
passed to the execute method of the connection object.
The code for the “delete” sub procedure of cart.asp
follows:

Sub Delete
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 SaleID = session("SaleID")
 itemID = request("lineItemID")
 query="delete from Sale_Item where lineItemID = "&ItemID
 conn.execute(query)
 conn.close
 set conn=nothing
 display
end sub

2145

This procedure is called when the user clicks on the name
of a menu item that is in the list of selected items. This
completes the discussion of the code for cart.asp. The
reader is encouraged to refer to the appendix to review the
code as it is assembled in the file.

Building a Form to Collect User Input

We’ve discussed one way to assign the values to
parameters in an HTTP request—specifying them as a
part of a hyperlink. The other way is to allow users to
enter them on an HTML form. While a discussion of the
HTML tags used in conjunction with the <form> tag is
beyond the scope of this tutorial, a simple form is used in
order.htm as seen below:

<form action=order.asp method=post target=_top>
 <table border=0>
 <tr><td>First Name</td>
 <td><input type=text size=20 name=fname></td></tr>
 <tr><td>Last Name</td>
 <td><input type=text size=20 name=lname></td></tr>
 <tr><td>Phone</td>
 <td><input type=text size=20 name=phone></td></tr>
 <tr><td>Pick Up Time</td>
 <td><input type=text size=20 name=pickup></td></tr>
 <tr><td>Credit Card #</td>
 <td><input type=text size=20 name=CCNumber></td></tr>
 <tr><td>Exp. Date</td>
 <td><select name=ccExpMonth>
 <option value=1>1
 <option value=2>2
 <option value=3>3
 <option value=4>4
 <option value=5>5
 <option value=6>6
 <option value=7>7
 <option value=8>8
 <option value=9>9
 <option value=10>10
 <option value=11>11
 <option value=12>12
 </select>
 /
 <select name=ccExpYear>
 <option value=2000>2000
 <option value=2001>2001
 <option value=2002>2002
 <option value=2003>2003
 <option value=2004>2004
 <option value=2005>2005
 <option value=2006>2006
 <option value=2007>2007
 <option value=2008>2008
 <option value=2009>2009
 <option value=2010>2010
 </select>
 </td></tr><tr><td></td>
 <td align=right>
 <input type=submit value="Submit Order">
 </td></tr></table>
 </form>

The “target” parameter of the <form> tag on the first line
indicates in which frame the resulting document should be
displayed. Its value (_top) is a reserved value which
indicates that the response should replace the topmost
frameset in which the current page is embedded. The

“action” parameter of the <form> tag indicates that
order.asp is the file that will process the values entered in
the form. The <input> tag and the <select> tag each have
a name parameter. The value of the name parameter
along with the value entered by the user for the input or
select elements are passed to the web server. The ASP
which is specified in the action parameter of the <form>
tag accesses these values in the same manner as discussed
in the section “Reading Parameters from an HTTP
Request.”

Updating Data in a Database

Updating database data is very similar to inserting and
deleting—they all use the execute method of the
connection object. This can be seen in the source of
order.asp as follows:

<%
 if request("Fname")="" or _
 request("Lname")="" or _
 request("phone")="" or _
 request("Pickup")="" or _
 request("ccnumber")="" or _
 request("ccExpMonth")="" or _
 request("ccExpYear")="" Then

 response.write "All infomration is required. Use your"
 response.write " browser's back button to try again."

 else
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 SaleID=session("SaleID")
 itemID=request("lineItemID")
 query = "update sale set fname='"&request("fname")&"',"
 query = query & " lname='"&request("lname")&"',"
 query = query & " phone='"&request("phone")&"',"
 query = query & " pickUpTime='"&request("Pickup")&"',"
 query = query & " CreditCardNumber='"&request("ccnumber")&"',"
 query = query & " ExpDate='"&request("ccExpMonth")
 query = query & "/"&request("ccExpYear")&"'"
 query = query & " where Saleid="&session("saleid")
 conn.execute(query)
 conn.close
 set conn=nothing

 response.write "
<center>Thank you for your "
 response.write "order.</center>

Feel free to "
 response.write "create another order.
"
 session.abandon

 end if
%>

Notice that this code begins by checking to see if any of
the values passed from the form are empty. If any are,
then the response document simply includes an error
message to be rendered by the browser. More
sophisticated data validity measures can be implemented.
For example, email addresses can be checked to see if
they contain the “@” symbol, telephone numbers can be
checked to make sure the are a certain length and contain
no letter and so on. Also notice that after an order is
successfully updated with the order information, the
session is abandoned (third line from the end). This

2146

destroys all session variables, so if the user places a new
order, cart.asp will create a new order.

This concludes the discussion of the elements of this
electronic commerce application. The application can be
examined at http://dev.csom.umn.edu/mamav. The
application and the source code will be available through
May of 2001.

References

Kosiur, D. Understanding Electronic Commerce.
Microsoft Press: Redmond WA, 1997.

Ladd, E., Ablan, J., Banick, S., Cassady-Dorion, L.,
Chandak, R., Doherty, D., Ellsworth, M., Santa Maria, P.,
Morgan, M., Morrison, M., Niles, M., Sloan, B., Sutter,
R. Using HTML4, Java 1.1, and JavaScript 1.2. Que:
Indianapolis IN, 1998.

2147

Appendix

These are the code listings from the complete project.

default.htm
<HTML>
<HEAD>
<TITLE>Mama Vallone's Take Out Order Form</TITLE>
</HEAD>
<FRAMESET cols="300,*" border="0" frameborder="no" framespacing="0">
 <FRAME name="orderFrame" src="orderFrame.htm" marginwidth="0" marginheight="0"
 scrolling="No" noresize framespacing="0" frameborder="NO">

 <FRAME name="menu" src="menu.asp" marginheight="0" scrolling="Auto" frameborder="NO"
 noresize framespacing="0" marginwidth="0">
</FRAMESET>
</HTML>

orderFrame.htm
<HTML>
<HEAD>
<TITLE>Mama Vallone's Take Out Order Form</TITLE>
</HEAD>
<FRAMESET rows="100,*,200" border="0" frameborder="no" framespacing="0">
 <FRAME name="Title" src="title.htm" marginheight="0" scrolling="No" frameborder="NO"
 noresize framespacing="0" marginwidth="0">
 <FRAME name="cartPage" src="cart.asp" marginheight="0" scrolling="Auto" frameborder="NO"
 noresize framespacing="0" marginwidth="0">
 <FRAME name="OrderPage" src="order.htm" marginwidth="0" marginheight="0" scrolling="No"
 noresize framespacing="0" frameborder="NO">
</FRAMESET>
</HTML>

menu.asp
<html>
<head>
<title>Mama Vallone's Take-Out Menu</title>
</head>
<body bgcolor=#f0f0b8>

<% Set Conn = Server.CreateObject("ADODB.Connection")
 set rs = Server.CreateObject("ADODB.RecordSet")

 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 query="select * from menuitem order by menugroup desc, itemName"
 rs.open query, conn

 currentGroup=""
 response.write "<table border=1>"
 do until rs.eof
 if currentGroup<>rs("menuGroup") then
 response.write "<tr><td colspan=3 align=center bgcolor=#f0e0f8>"
 response.write ""
 response.write rs("menuGroup")
 response.write "</font</td></tr>"
 end if
 currentGroup=rs("menuGroup")
 response.write "<tr>"
 response.write "<td>"
 response.write "<a target=cartPage href=cart.asp?mode=add&menuItemID="
 response.write rs("menuitemID")
 response.write ">"
 response.write rs("itemName")
 response.write ""
 response.write "</td>"
 response.write "<td>"
 response.write rs("Price")
 response.write "</td>"
 response.write "<td>"
 response.write rs("description")
 response.write "</td>"
 response.write "</tr>"
 rs.movenext
 loop
 response.write "</table>"

 rs.close
 conn.close
%>
</body>
</html>

2148

cart.asp
<html>
<head>
<title>
Mama Vallone's Take-Out Menu
</title>
</head>
<body bgcolor=#f0f0b8>

<%
if session("saleID") < 1 then
 session("saleid")=createOrder
end if

' -------------------- Mode Processor --------------------
varMode = ucase(Request("Mode"))
if not varMode > "" then varMode = "DISPLAY"
select case varMode
 case "DISPLAY" : DISPLAY
 case "ADD" : ADD
 case "DELETE" : DELETE

 case Else
 response.write "This page is only displayed when "
 response.write "there is a system logic error."
 response.write "

"
 response.write "Contact Mama Vallone"
end select

' -------------------- Sub Procedures --------------------
Sub Display
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"

 set rs=Server.CreateObject("ADODB.RecordSet")

 query = "select * from menuitem inner Join sale_Item on"
 query = query & " menuitem.menuItemID=sale_item.menuItemID"
 query = query & " where sale_item.saleid="&session("saleid")
 query = query & " Order by itemname"

 rs.open query, conn

 response.write "<table width=100% Border=1>"
 response.write "<tr><th>Item</th><th>Price</th></tr>"
 total=0
 do until rs.eof
 response.write "<tr>"
 response.write "<td>"
 response.write "<a target=cartPage href=cart.asp?"
 response.write "mode=delete&lineItemID="
 response.write rs("lineItemID")
 response.write ">"
 response.write rs("itemName")
 response.write ""
 response.write "</td>"
 response.write "<td align=right valign=top>"
 response.write rs("price")
 response.write "</td>"
 response.write "</tr>"
 total=total + cdbl(rs("price"))
 rs.movenext
 loop
 response.write "<tr><td>Total</td><td align=right>"
 response.write formatCurrency(total)
 response.write "</td></tr>"
 response.write "</table>"

 rs.close
 conn.close

end sub

2149

cart.asp (continued)

Sub Add
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 SaleID = session("SaleID")
 itemID = request("MenuItemID")
 query = "insert into Sale_Item(menuItemID, SaleID)"
 query = query & " values("&ItemID&","&SaleID&")"
 conn.execute(query)
 conn.close
 set conn=nothing
 display
end sub

Sub Delete
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 SaleID = session("SaleID")
 itemID = request("lineItemID")
 query="delete from Sale_Item where lineItemID = "&ItemID
 conn.execute(query)
 conn.close
 set conn=nothing
 display
end sub

function createOrder
 Set Conn = Server.CreateObject("ADODB.Connection")
 Set rs=Server.CreateObject("ADODB.RecordSet")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 ip=request.servervariables("remote_addr")
 query="insert into sale (IPaddress) values('"&ip&"')"
 conn.execute(query)
 query = "select saleid from sale where ipaddress='"&ip&"'"
 query = query & " order by orderCreated desc"
 rs.open query, conn
 createOrder=rs("saleID")
 rs.close
 conn.close
end function

%>

</body>

 </html>

title.htm
<html>
<head>
<title>
Mama Vallone's Take-Out Menu
</title>
</head>
<body bgcolor=#f0f0b8>
<center>
Mama Vallone's

Steak House and Inn

Take-Out Orders

</center>

</body>

</html>

2150

Order.htm
<html>
<head>
<title>
Mama Vallones Take-Out Menu
</title>
</head>
<body bgcolor=#f0f0b8>
<form action=order.asp method=post target=_top>
 <table border=0>
 <tr><td>First Name</td>
 <td><input type=text size=20 name=fname></td></tr>
 <tr><td>Last Name</td>
 <td><input type=text size=20 name=lname></td></tr>
 <tr><td>Phone</td>
 <td><input type=text size=20 name=phone></td></tr>
 <tr><td>Pick Up Time</td>
 <td><input type=text size=20 name=pickup></td></tr>
 <tr><td>Credit Card #</td>
 <td><input type=text size=20 name=CCNumber></td></tr>
 <tr><td>Exp. Date</td>
 <td><select name=ccExpMonth>
 <option value=1>1
 <option value=2>2
 <option value=3>3
 <option value=4>4
 <option value=5>5
 <option value=6>6
 <option value=7>7
 <option value=8>8
 <option value=9>9
 <option value=10>10
 <option value=11>11
 <option value=12>12
 </select>
 /
 <select name=ccExpYear>
 <option value=2000>2000
 <option value=2001>2001
 <option value=2002>2002
 <option value=2003>2003
 <option value=2004>2004
 <option value=2005>2005
 <option value=2006>2006
 <option value=2007>2007
 <option value=2008>2008
 <option value=2009>2009
 <option value=2010>2010
 </select>
 </td></tr><tr><td></td>
 <td align=right>
 <input type=submit value="Submit Order">
 </td></tr></table>
 </form>
</body>
</html>

2151

 Order.asp
<html>
<head>
<title>
Mama Vallones Take-Out Menu
</title>
</head>
<body bgcolor=#f0f0b8>
<%
 if request("Fname")="" or _
 request("Lname")="" or _
 request("phone")="" or _
 request("Pickup")="" or _
 request("ccnumber")="" or _
 request("ccExpMonth")="" or _
 request("ccExpYear")="" Then

 response.write "All infomration is required. Use your"
 response.write " browser's back button to try again."

 else
 Set Conn = Server.CreateObject("ADODB.Connection")
 Conn.Open "filedsn=d:\virtualweb\mamav\mamav.dsn", "mamav", "sql"
 SaleID=session("SaleID")
 itemID=request("lineItemID")
 query = "update sale set fname='"&request("fname")&"',"
 query = query & " lname='"&request("lname")&"',"
 query = query & " phone='"&request("phone")&"',"
 query = query & " pickUpTime='"&request("Pickup")&"',"
 query = query & " CreditCardNumber='"&request("ccnumber")&"',"
 query = query & " ExpDate='"&request("ccExpMonth")
 query = query & "/"&request("ccExpYear")&"'"
 query = query & " where Saleid="&session("saleid")
 conn.execute(query)
 conn.close
 set conn=nothing

 response.write "
<center>Thank you for your "
 response.write "order.</center>

Feel free to "
 response.write "create another order.
"
 session.abandon

 end if
%>

</body>

</html>

2152

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2000

	Developing Internet E-Commerce Applications with Database Access using Active Server Pages
	Grove N. Allen
	Recommended Citation

