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Abstract 

The research paper focuses on how change in structural complexity impacts Open Source 

Software maintenance. We analyzed software maintenance in terms of change in number of bugs, 

change in time taken to fix bugs, and change in the number of contributions from new developers. 

Data for model validation was collected from SourceForge. The important implications of the 

study are discussed.  
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Résumé 

La recherche se concentre sur la manière dont le changement dans la complexité de la structure des logiciels Open 

Source peut avoir des conséquences sur la maintenance de ces logiciels. Nous analysons la maintenance des 

logiciels en termes de nombre de bugs, de temps passé à réparer les bugs, et les changements dans le nombre de 

contributions apportées par les nouveaux développeurs. Les données de validation du modèle ont été recueillies par 

Source Forge. Les implications importantes de cette étude sont alors discutées. 

 

Introduction 

A typical Open Source Software (OSS) project starts when an individual (or group) writes the first version of the 

software and, in order to share it the community with similar needs, the software is released under a license that 

allows the community to use the software and modify the source code to meet local needs or to improve it. Making 

software available on the Internet allows developers around the world to contribute code, add new features, report 

bugs, and submit bug fixes to the current release. The developers of the project then incorporate the features and 
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fixes into the main source code, and a new release of the software is made available to the community. This process 

of code contribution and bug fixing is continued in such circular manner. Due to its cyclic and open nature, OSS is 

often argued to have faster evolution. The rationale is that multiple contributors write, test, or debug the product in 

parallel, which accelerates software evolution. Raymond (2001) mentioned that more people looking at the code will 

result in more bugs found, which is likely to accelerate software improvements. The model also claims that this 

rapid evolution produces better software than the traditional closed model (Open source, 2002).  

A ready interpretation of the OSS development process is that of a perpetual maintenance task. Developing an OSS 

implies continual maintenance for bugs reported by various users (Samoladas, 2004). As most of the OSS projects 

are a result of voluntary work (Stewart et al 2005, Feller & Fitzgerald 2001, Siedlok 2002), it is crucial to ensure 

that the volunteers are able to do so with minimal efforts.  

Usually a developer maintaining the source code has not participated in the initial development of the original 

program (Kemerer, 1995). So, a large amount of effort goes into understanding and comprehending the existing 

source code (Smith et al., 2006). It was reported as early as in the late 1970's that more than fifty percent of all 

software maintenance effort was devoted to comprehension (Fjelstad and Hamlen 1983). Comprehension of existing 

source code involves identifying logic among various segments of the source code and understanding their 

relationships. As software is becoming increasingly complex, the task of comprehension of existing software source 

code is becoming increasingly tough (Rilling & Klemola, 2003). The comprehension of existing source code, thus, 

plays a prominent role in software maintenance.  

While software maintainability, which is dependent on comprehension of source code, has been linked with source 

code complexity, prior empirical evidence studying the magnitude of the link is relatively weak (Thaik et al., 1992). 

This could be attributed to the reason that many of such attempts have been based on experiments involving small 

pieces of software code written by students (Banker et al, 1993). This observation clearly indicates a need to conduct 

a study on the impact of complexity of source code written by professionals. 

An uncontrolled complexity growth is big concern for OSS development (Nichols & Twidale, 2003) and it may 

trigger the need for either substantial software re-engineering or the entire system replacement. Hence, it is vital to 

understand the impact of complexity of source code on software maintenance, and, even more importantly, on the 

OSS maintenance. A number of studies have examined the impact of complexity on maintainability and have put 

forth the recommendations to reduce it. But, no study, to the best of our knowledge, has tested if the reduced 

complexity was beneficial to developers performing software maintenance. In this paper, following Banker et al.’s 

(1993) recommendation, we analyze the Open Source Software (OSS), written by real world OSS developer 

community, and study the impact of change in complexity on software maintenance. We study the software 

maintenance in terms of the change in the number of bugs, the change in time taken to fix the bugs, and the change 

in the number of contributions from new developers in OSS development. This novelty of the research will help 

software development managers in attracting contributions from developers.  

The remaining of the paper is organized in the order as follows: In the next section, we draw on the relevant 

literature in software development to build upon our theoretical model. Next, we describe the empirical methods 

used in our study, followed by the evaluation of our model. Lastly, we discuss our results and present our conclusion 

by identifying the contributions and limitations of our study and its implications for research and practice in OSS 

development. 

Literature and Model Development 

When the first version of source code is released to public via the internet, developers from various parts of the 

world contribute to that code. The reasons as to why developers contribute have received a great deal of attention 

from researchers (e.g., Lakhani and Wolf, 2005). On the other hand, only a very limited work has been done to study 

the factors that could lead the developers to not contribute to a project (e.g., von Krogh et al., 2003). According to 

them, the major concern among the developers was the complexity of the source code and the level of difficulty of 

the used algorithms in order to achieve the desired goals. Fitzgerald (2005) also pointed that increasing complexity 

posits a barrier in the OSS development. As software projects progress, they become more complex, leading to a 

steep rise in the efforts required for comprehending the source code (Fitzgerald, 2005; Rilling & Klemola, 2003). 

Comprehension of a source code could be conceptualized as an information processing task in which input 

informational cues are interpreted and manipulated to create task outcomes (Ramanujan and Cooper, 1994). It is 

essentially a mental pattern-recognition by the software developer which involves filtering and recognizing 
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enormous amount of data (Rilling & Klemola, 2003). Wood et al. (1986) argued that performance of such tasks 

depends on effective processing of cues in the task environment and is influenced by complexity. This is especially 

relevant in OSS which has been criticized for lack of proper documentation. When a developer wants to contribute 

to an existing OSS project without the proper documentation, it becomes an extremely challenging work to 

understand and manipulate relationships between cues presented by the existing source code.  

As mentioned earlier, more than fifty percent of all software maintenance effort is devoted to comprehension, 

suggests that software comprehension plays a major role in OSS development. It must be noted that comprehension 

is important for traditional software development also. But, it is even more important in OSS, where the software 

development is not properly documented and is, primarily, done by volunteers. 

Complexity and Its Impact 

Much of what we know about software comes from analyses of closed source development (e.g. Boehm, 1981). As 

noted by Stewart et al (2005), the results from those findings have also been applied to OSS (e.g., study of Debian 

2.2 development (Gonzalez-Barahona et al, 2001) or the Linux growth (Godfrey & Tu, 2000, 2002)).  

The software literature suggests that software complexity has multiple facets, including structural complexity 

(Adamov & Richter, 1990) and algorithmic complexity (Hartmanis, 1994). The structural complexity of a program 

comes from “the organization of program elements within a program” (Gorla, 1997) and algorithmic complexity is 

defined in terms of the time taken to execute a program (Darcy et al., 2005). Dealing with structural complexity 

primarily expends intellectual resources; whereas algorithmic complexity primarily consumes machine resources. 

Kearney et al (1986) suggested that the difficulty of understanding depends, in part, on structural properties of the 

source code. And, as we are concerned with the impact of complexity on source code comprehension, we primarily 

focus on structural complexity in this paper. We use structural complexity as the basis of the discussion in the 

remaining part of this section, where we theorize the impact of complexity on various aspects on OSS development.  

Number of Bugs 

The main idea behind the relationship between complexity and number of bugs is that when comparing two different 

solutions to the same problem provided that all other things are equal, the most complex solution generates the most 

number of bugs. This relationship is one of the most analyzed by software metrics’ researchers and previous studies 

and experiments have found this relationship to be statistically significant (Curtis et al. 1979, Henry et al. 1981).  

In order for a programmer to understand the existing source code, the programmer has to understand the flow of 

logic. And, when a programmer has to deal with a source code with high structural complexity, the programmer has 

to frequently search among dispersed pieces of code to determine the flow of logic (Ramanujan & Cooper, 1994). 

Understand and recollecting all such dispersed pieces increases the cognitive load on the programmer making such 

software with complex source code more liable to human errors. Failure to properly comprehend the source code 

often leads to bugs in the source code (Klemola, 2000). Complex software, hence, need more maintenance efforts. 

Gill and Kemerer (1991) reported that the number of bugs in a program is positively associated with maintenance 

effort and recommended further empirical testing with a larger data set. We, thus, hypothesize that the OSS projects 

which experience decrease in complexity over its previous release experience an decrease in the number of bugs 

(over its previous stage). Hence, 

 

H1: An increase in the source code’s structural complexity is positively associated with an increase in the 

number of bugs in the OSS source code. 

 

Contributions from New Developers 

Because of the important role of volunteer developers in the OSS development, attracting new developers to 

contribute and keeping them motivated is crucial to OSS development. This is especially important during the early 

development stage so that the number of developers could reach a critical mass.  

Once a new developer is motivated to voluntarily contribute, he/she needs to first spend a large amount of time and 

resources to understand the existing source code. When the source code is easy to comprehend, it is easier to modify 
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it. However, when the source code is complex, a developer is required to input additional efforts and resources to 

understand it. Devoting such efforts and resources may pose as a barrier to the developer’s motivation to contribute. 

Such barriers may also lead the potential developers to not to contribute to the project, or, in worst case, to leave the 

project. This leads us to our next hypothesis that the OSS projects which experience decrease in complexity over its 

previous release attract increased contributions from the new developers (over its previous stage). Hence, 

 

H2: An increase in the source code’s structural complexity is negatively associated with an increase in the 

number of contributions to the OSS source code from new developers. 

 

Time to Fix Bugs 

More complex source code adds to a programmer’s cognitive load (Darcy et al., 2005). High cognitive load requires 

more time-consuming and resource-demanding efforts to familiarize oneself with the code. It is even possible that a 

source code is too complex to be able to comprehend at all. Thus, it requires resources that could be used for other 

activities, thereby lowering the productivity of the project. 

In other words, a source code with lesser structural complexity does not need as much resources, thus reducing the 

turn around time to fix repairs. This leads to our next hypothesis that OSS projects which experience increase in the 

structural complexity over its previous release require longer average time to fix the bugs. Hence, 

 

H3: An increase in the source code’s structural complexity is positively associated with an increase in the 

average time taken to fix the bugs in OSS source code. 

 

Methods 

To test the hypotheses, we focused on the OSS projects hosted at Sourceforge. Sourceforge is the primary hosting 

place for OSS projects provided by the OSTG group and houses about 90 percent of all OSS projects. Though not all 

OSS projects are hosted at Sourceforge, researchers interested in investigating issues related to the OSS 

phenomenon have predominantly used Sourceforge data (Grewal et al. 2006; Madey et al. 2002; von Hippel and von 

Krogh 2003; Xu et al. 2005). The data collection took place from October 2006 to March 2007. 

Studying all the projects hosted was unfeasible due to the limitation of our resources. To analyze the structural 

complexity of source code written by OSS users and developers, we limited our data selection to the projects that 

were targeted for either end users or developers only. In order to avoid ambiguity and to clearly differentiate 

between user-intended projects and developer-intended projects, we excluded those projects that are targeted at both 

end users and developers.  

Within this category we further controlled for Programming Language and Operating System. When a project is first 

started, the developer usually specifies in what language or languages the software will be written. And the choice of 

programming language is rarely changed as the project progresses. Past literature in software engineering suggests 

that programming language has an explicit impact on complexity (Weyuker, 1988) and program size (Jones 1986). It 

is also difficult to compare lines of code between “high” and “low” level programming languages. This is because 

“lower level” programming languages have more lines of code and take longer to develop than higher level 

programming languages. Hence we controlled for the programming language of the project by allowing projects 

written in C/C++ only. We did not distinguish between projects written in C/C++ only and those written in multiple 

languages including C/C++. Secondly, operating system of the project impacts the complexity of the software and 

the development effort required. Like Programming Language, once Operating System is decided for a project, it 

rarely changes and is relatively stable. We ensured that all the projects in our data set were designed for either 

Windows or Linux/Unix operating system.  

It is important to note that complexity of source code could only be measured after the software release has been 

released for use. Only after it has been used, discovered bugs are reported, and the source code is modified to fix the 

reported bugs. Once significant amount of modifications have been made to the source code, a new version is 

released to the public. Due to the modifications in the source code, the complexity of the source code changes. In 
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order to see if the complexity has changed from its previous release, we need to measure the complexity of both the 

previous and the current release. Similarly, to find the modifications and contributions made to the current release, 

we have to wait for the next release to be available. As a consequence, we have to study three consecutive releases, 

which we refer to as 1
st
, 2

nd
, and 3

rd
 release.  

As described, the change in complexity was measured using the values computed from 1
st
 and 2

nd
 release. Change in 

number of developers was calculated for 2
nd
 and 3

rd
 release, whereas other project characteristics were calculated 

from 3
rd
 release. Therefore, our sample was further restricted to the projects that had at least 3 versions. Lastly, we 

chose projects for which the required data were publicly available (not all projects allow public access to the bug 

tracking system). Following the above mentioned criterion, we extracted several attributes for each software system, 

taking measurements over releases for size, developer information, bugs reported, sponsorships to a project, 

development status, number of downloads, and structural complexity. The first 450 usable projects were studied. 

Focal Dependent and Independent Variables 

Change in Number of Bugs Reported and Change in Time taken to Fix Bugs 

We extracted various elements of data, including the bugs reported, the date on which the bugs were reported, the 

date on which the bugs were fixed, and the release number, from bug tracking system, and CVS reports. In doing so, 

we faced one problem that all the bugs in the current release were not closed at the time of our study. To overcome 

the problem, we decided to study the earlier releases that had more than 90% of the bugs closed at the time of study. 

From these extracted elements, we calculated the number of bugs reported and the time taken to fix them for 

different software releases considered in this study. From the number of bugs and time to fix those bugs for each 

release, we computed the change in number of bugs (ChgBugsReported) over previous release and change in 

average time to fix the bugs (ChgFixTime). 

Contributions from New Developers  

Software developers use Concurrent Versioning System (CVS) to manage software development process. CVS 

stores the current version(s) of the project and its history. A developer can check-out the complete copy of the code, 

work on this copy and then check in her changes. The modifications are peer reviewed ensuring the quality. The 

CVS updates the modified file automatically and registers it as a commit. CVS keeps track of what change was 

made, who made the change, and when the change was made. This information can be gathered from the log files of 

the CVS repository of a project. As CVS commits provide a measure of novel invention that is internally validated 

by peers (Grewal et al 2006, Crowston et al 2003), we use the number of CVS commits as a measure of 

contributions of developers. If a contribution is made by a new developer, one who did not contribute in the earlier 

release, it is considered a contribution from a new developer to the current release. From this, we computed the 

number of contributions made by new developers, which is represented as ChgNewDevs 

Structural Complexity 

There is a large variety of complexity metrics available in literature and being practiced by the software industry. 

The two most common metrics for structural complexity are Halstead’s E and McCabe’s cyclomatic. We looked at 

complexity at the degree of cognitive efforts involved. 

McCabe’s Cyclomatic Complexity (CC) tends to assess the difficulty faced by the maintainer in order to follow the 

flow control of the program (McCabe, 1976; Rana et al., 2006). It is considered an indicator of the effort needed to 

understand and test the source code (Stamelos et al., 2002). Kemerer and Slaughter (1997) used McCabe cyclomatic 

complexity metric to evaluate decision density, which represents the cognitive burden on a programmer in 

understanding the source code. To compute the cyclomatic complexity, each source code file was subjected to a 

commercial software code analysis tool.  

Halstead Effort (HE) estimates complexity based on the number of unique operands and operators versus the total 

number of operands and operators (Halstead, 1977). It has been argued as a measure of lexical/ textual complexity 

leading to the mental effort required to develop or maintain a program.  

To account for the effects of size, the metric was normalized by dividing it by the number of lines of code for each 

software project. In addition, this also reduces collinearity problems when size is included in the regression models 

(Gill and Kemerer, 1991). Change in complexity (ChgMC or ChgHE) was calculated by subtracting complexity 
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measure of former release from the complexity measure of latter release, i.e. ChgMC = MClatter – MCformer or ChgHE 

= HElatter – HEformer. 

Control Variables 

Age 

Brook’s Law mentions that “Adding more programmers to a late project makes it later”. Based on this, adding new 

developers at later stages will increase the average time taken to fix bugs. Also, the age which represents the 

legitimacy of the software is more popular. Popular software attracts more developers and we expect that older 

software will have higher number of contributions from developers. So, we control for the age of the project by 

calculating Age variable as the number of months since a project’s inception at Sourceforge. To control for potential 

non linear effect of project age on the dependent variables, we also incorporate a variable AgeSq, square of the Age 

in the model. 

Size 

Size of the source code has been found to impact the complexity of the source code. Additionally, larger software is 

likely to receive more enhancements and more repairs than smaller software, ceteris paribus, as larger software 

embodies greater amount of functionality subject to change. Larger software will likely receive more repairs as well. 

The larger the software, the more difficult it is to test and validate the software’s functionality. This implies that 

larger software tend to incorporate more errors. Keeping the above in mind, we control for the size of the software, 

by calculating a Size variable as the number of lines of code, while studying various relationships. 

Number of downloads 

The key to field testing of a software product is to try it out in as many different settings as possible. Raymond 

suggests that OSS developers can leverage the law of large number to identify and fix the bugs. Given enough 

eyeballs, all bugs are shallow. A huge user base for the software implies that – software will be tested in numerous 

different environments, more bugs will surface, they will be characterized and communicated efficiently to more 

bug fixers, the fix being obvious to someone, and the fix will be communicated effectively back and integrated into 

the core of the product. We capture this potential effect, of higher developers’ contributions because of more 

reported bugs, by the number of cumulative downloads (Downloads) of the release of the project.  

New Developer Knowledge and Skills  

The literature on performance has identified individual characteristics such as knowledge and skills as antecedents 

of participation. Such characteristics are, however, difficult to measure, and are frequently assessed through the use 

of proxies, such as the level of education and experience. Curtis et al. (1979) reported that in a series of experiments 

involving professional programmers, the number of years of experience was not a significant predictor of 

comprehension, debugging, or modification time, but that number of languages known was. Accordingly, they 

suggested that breadth of experience may be a more reliable guide to ability than length of experience. So, to control 

for the effect of new developers’ skills, we use ChgDevExp, which is approximated by the change in the team 

language skills by the addition of the new developer to the team over the team skills without the new developer.  

Sponsorship 

The incentives for programmers to participate in an open source project include ego gratification, career concern, 

and so on, whereas developers build proprietary software primarily for monetary compensation. However, an 

increasing number of open source projects have opted to receive monetary donations from organizations and users. 

Although some developers and projects choose to allocate part or all of the incoming donations to SourceForge, 

most recipients of the donations rely on the monetary supports to fund development time and other key resources 

that are necessary for the continuation of the projects. So, we postulate that developers getting additional monetary 

benefits will input extra efforts and time into comprehending and fixing the source code. Therefore, we choose to 

use the variable AcceptSponsors to capture whether a project is accepting external funds and is using monetary 

compensation as part of its incentive mechanism. It takes the value of 1 if the project is accepting donations and 0 

otherwise. 
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Development Status  

To capture the development stage of a project, which is typically determined by the developer in charge of the 

project on SourceForge, the variable DevStatus takes values from 1 to 6 representing development stages of 

Planning, Pre-Alpha, Alpha, Beta, Production/Stable, and mature respectively. The larger the value of DevStatus, the 

more mature the project is. 

Results 

Initial investigations revealed that the dependent variable and most of the independent variables were not normally 

distributed. In such case, linear regression analysis might yield biased and non interpretable parameter estimates 

(Gelman and Hill 2007). Therefore, as suggested by Gelman and Hill (2007), we performed a logarithmic 

transformation on the dependent and the not normally distributed independent variables. Investigations also showed 

that Project Age was highly correlated with its square. The correlations were high enough to raise concerns of 

multicolinearity, which if uncorrected for may lead to inflated standard errors and, in worst case, inconsistent or 

unstable estimates (Greene 2003). As suggested by Gelman and Hill (2007), we mean centered the variables before 

taking the square which reduced the correlation to acceptable level. To avoid any confusion, we represent the log 

transformed variables by ‘ln’ attached in front of the variable name. We also represent the mean centered variables 

by ‘mc’ attached in front of their name.  

We also computed the Variance Inflation Factor (VIF) for all the variables to test for multicollinearity among the 

variables. VIF is one measure of the effect the other independent variables have on the variance of a regression 

coefficient (Maddala, 1988). Large VIF values indicate high collinearity. Suggested cutoffs for VIF include 10 

(Studenmund, 1992) and 5.3 (Hair et al. 1992). The VIF values for the different variables in our regression analyses 

are reported (results shown in Table 1, 2, and 3) and in no case exceed 1.25. Although multicollinearity does exist to 

a certain extent, the low VIF values indicate that it is not a serious problem.  

For our dependent measure, ChgBugsReported we test the impact of change in complexity on the number of bugs 

(hypothesis H1) found by estimating the parameters for the following regression model: 

 

ChgBugsReported = α + β1ChgMC/HE + β2lnSize +  β3lnDownloads +  β4AcceptSponsors + β5DevStatus 

 

A positive and significant estimate of parameter β1 would indicate that the probability of having bugs in a source 

code increases as the structural complexity of software increases. The results of the regression are presented in Table 

1. The model shows a good fit with the data. The parameter estimate for ChgMC is positive and significant (βMC= 

0.328, p < 0.00). The results suggest that projects with unit increase in structural complexity experience 0.328 units 

increase in the number of bugs. Similar results were found for ChgHE (βHE= 0.252, p < 0.00) (H1 supported). 

 

 

Table 1: Regression Results for ChgBugsReported 

McCabe Cyclomatic (MC) Halstead Effort (HE) 
Model 

β  Sig. VIF β  Sig. VIF 

(Constant)   .000    .000   

ChgComp* .328 .000 1.121 .252 .000 1.036 

Size .238 .000 1.147 .316 .000 1.069 

Downloads .226 .000 1.097 .216 .000 1.096 

AcceptSponsors -.174 .000 1.048 -.189 .000 1.040 

DevStatus -.067 .085 1.039 -.062 .125 1.045 

R2 0.534 0.319 

* Two separate regression analysis with MC and HE were conducted. Both the results are shown above 

 

 

Next we test the impact of complexity on the number of contributions from new developers (hypothesis H2) by 

estimating the parameters for the following regression model: 
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ChgNewDevCommits = α + β1ChgMC/HE + β2lnSize +  β3lnDownloads + β4Sponsors + β5DevStatus + β6mcAge + 

β7mcAgeSq + β8lnSkillsChg 

 

The results of the regression are presented in Table 2. The model shows good fit with the data. The parameter 

estimate for ChgMC is significantly negative (βMC = -0.360, p<0.000). The results suggest that a unit increase in 

structural complexity decreases the contributions from new developers by 0.360 units. Regression analysis with 

ChgHE also indicated the similar results (βHE= -0.241, p < 0.00) (H2 supported).  

 

Table 2: Regression Results for ChgNewDevCommits 

McCabe Cyclomatic (MC) Halstead Effort (HE) 
Model 

β  Sig. VIF β  Sig. VIF 

(Constant)   .125   .042   
ChgComp -.360 .000 1.154 -.241 .000 1.054 

Size -.155 .000 1.160 -.235 .000 1.091 

Downloads .101 .014 1.215 .117 .007 1.211 

Sponsors .331 .000 1.054 .353 .000 1.047 

DevStatus .101 .009 1.061 .098 .015 1.066 

Age .045 .260 1.161 .017 .679 1.147 

AgeSq .023 .545 1.044 .034 .388 1.043 

SkillsChg -.104 .006 1.014 -.108 .006 1.014 

R2 0.386 0.329 

 

 

Finally, we examine the impact of complexity on the time taken to fix bugs (hypothesis H3) by estimating the 

parameters for the following regression model: 

 

ChgFixTime = α + β1ChgMC/HE + β2lnSize +  β3lnDownloads + β4Sponsors + β5DevStatus + β6mcAge + 

β7mcAgeSq + β8lnSkillsChg 

 

Table 3 summarizes the results of the regression analysis. The model shows a good fit with the data. The parameter 

estimate for ChgMC is significant and positive (βMC = 0.722, p<0.000), indicating that projects that experience a unit 

increase in structural complexity takes 0.722 units additional time to fix bugs. For ChgHE, the regression coefficient 

was found to be positive and significant (βHE= 0.569, p < 0.00) indicating similar results (H3 supported). 

 

 

Table 3: Regression Results for ChgFixTime 

McCabe Cyclomatic (MC) Halstead Effort (HE) 
Model 

β  Sig. VIF β  Sig. VIF 

(Constant)   .000   .000   

ChgComp .722 .000 1.154 .569 .000 1.054 

Size .010 .780 1.160 .167 .000 1.091 

Downloads -.099 .005 1.215 -.124 .002 1.211 

Sponsor -.082 .012 1.054 -.114 .002 1.047 

DevStatus -.011 .742 1.061 .003 .938 1.066 

Age -.047 .166 1.161 -.002 .950 1.147 

AgeSq .001 .963 1.044 -.021 .568 1.043 

SkillsChg .069 .031 1.014 .079 .032 1.014 

R2 0.562 0.417 
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While performing preliminary analysis, we noted that the variables ChgMC and ChgHE (independent variables) 

exhibit bimodal characteristics. Upon careful evaluation, it was found that projects that experienced an increase in 

complexity over its previous release formed one mode, whereas the projects that exhibited decrease in complexity 

over its previous release formed the other mode. To find its impact, we created another selection variable, which was 

coded 1 if the change in complexity was positive and 0 if the change in complexity was negative. We re-regressed 

the data with the new variable for all three hypotheses. Due to space limitation, only the results for ChgMC are 

summarized in Table 4. 

 

Table 4: Regression Results  

ChgBugsReported ChgNewDevCommits ChgFixTime  

Model 

 

Variable 

(p-value) 

1a 1b 1c 2a 2b 2c 3a 3b 3c 

Constant (.000) (.000) (.033) (.125) (.000) (.052) (.000) (.000) (.221) 

ChgMC 
.328 

(.000) 

.288 

(.000) 

.528 

(.006) 

-.360 

(.000) 

-.502 

(.000) 

-.337 

(.130) 

.722 

(.000) 

.540 

(.000) 

.674 

(.002) 

Size 
.238 

(.000) 

.220 

(.000) 

.102 

(.450) 

-.155 

(.000) 

-.120 

(.002) 

.301 

(.076) 

.010 

(.780) 

-.054 

(.229) 

.484 

(.003) 

Downloads 
.226 

(.000) 

.249 

(.000) 

-.203 

(.428) 

.101 

(.014) 

.181 

(.000) 

.380 

(.294) 

-.099 

(.005) 

-.154 

(.001) 

.287 

(.377) 

Sponsors 
-.174 

(.000) 

-.109 

(.009) 

-.307 

(.068) 

.331 

(.000) 

.268 

(.000) 

-.101 

(.613) 

-.082 

(.012) 

-.109 

(.014) 

-.138 

(.448) 

DevStatus 
-.067 

(.085) 

-.061 

(.128) 

-.246 

(.172) 

.101 

(.009) 

.082 

(.029) 

-.029 

(.903) 

-.011 

(.742) 

.003 

(.952) 

.124 

(.568) 

Age    
.045 

(.260) 

.072 

(.064) 

.257 

(.229) 

-.047 

(.166) 

-.070 

(.116) 

.166 

(.384) 

AgeSq    
.023 

(.545) 

-.20 

(.592) 

.241 

(.291) 

.001 

(.963) 

.023 

(.589) 

.056 

(.783) 

SkillsChg    
-.104 

(.006) 

-.069 

(.062) 

-.137 

(.397) 

.069 

(.031) 

.078 

(.064) 

.209 

(.158) 

R-square .534 .367 .624 .386 .463 .561 .562 .392 .644 

a = Full Model (all data points); b = +ve Change in Complexity; c = -ve Change in Complexity (MC) 

 

 

Discussion and Implications 

As most of the regression coefficients for McCabe’s Cyclomatic number and Halstead’s Effort have similar results, 

both the results are discussed together as Structural Complexity. Additionally, due to space limitations, the 

discussion of Table 4 is also limited in this paper.  

Funami and Halstead (1975) found a 0.98 correlation between the structural complexity and the reported number of 

bugs. Fitzsimmons and Love (1978) reported the correlations ranging from 0.75 to 0.81. In our data, we also found 

the correlation between the number of bugs reported and the change in complexity to be 0.43. It is interesting to note 

that the correlation found in this study was much smaller than the correlations reported in earlier studies for non-

open source software. However, it is consistent with the literature on OSS. In the context of OSS, Schröter et al. 

(2006) reported the correlation value in the range of 0.40.  

In literature, the relationship between complexity and the number of bugs has been found to be statistically 

significant (Henry et al., 1981; Shen et al., 1985). Our data analysis also shows the same. The positive and 

significant coefficient of regression indicates that as the complexity increases, the number of bugs reported increase. 
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This result must be carefully interpreted as it does not imply that more bugs are reported because the software is 

complex. Rather, more bugs are reported because complex software tends to have more bugs. 

By mining software histories of two projects, Kim and Whitehead (2006) recommended to use time taken to fix bugs 

as a quality measure of software.  Kemerer and Slaughter (1997) also found that complex software are more 

frequently repaired. In our analysis, we found that complexity of software has strong positive influence on the time 

taken to fix bugs. Fixing a bug in one segment of the source code usually causes many adjustments in other 

segments (Loch et al., 2003). The more complex the software is, the more the adjustments in other segments are. As 

a consequence, a developer has to simultaneously understand, and recollect all such dispersed pieces in different 

segments. Handling all the segments together has a detrimental effect on time devoted by a developer because more 

time is required to follow the flow of logic within the code (Banker et al., 1998). This is supported by several 

empirical studies that have found that time required to fix bugs increases as the complexity increases (Boehm-Davis 

et al.1992, Gill and Kemerer 1991). This result has an important implication for the maintainability of the source 

code. When a developer becomes conscious of the amount of time taken to fix bug, there is tendency for the 

developer to make the code base less maintainable by producing “quick and dirty” code instead of the slower and 

more thought through code. Such half-baked efforts lead to a vicious cycle in which the complexity, the number of 

bugs, and the time taken to fix those bugs feed each other until a dead end is reached with the only option of either 

re-engineering the project or closing the project. 

Another reason could be found in Dymo (2006) observations. Dymo mentions that most people prefer to work on 

software enhancements by adding features rather than working on fixing bugs. Debugging and understanding the 

existing code takes more resources especially when it is written by someone else. Consequently, they tend to work 

on new versions of the software than to continue improving old ones. In proprietary software development, a 

developer is bound to work on the assigned task and has no option other than to work on fixing the existing code. 

Whereas, in OSS, most of the work is done on voluntary basis and developers are not contracted for specific work, 

the developers tend to choose to develop new code as it could also bring more visibility to them in the OSS 

community than just fixing the existing code.  

The third impact of the source code complexity analyzed in the study was on attracting contributions from new 

developers. Our analysis shows that the structural complexity has a strong negative influence on the number of 

contributions from new developers. The significant value of coefficients of regression (βMC= 0.360, p-value<0.000; 

βHE= 0.241, p-value<0.000) indicate that as the structural complexity of source code increases (over the previous 

release) the number of contributions from new developers decrease (over the previous release). As OSS primarily 

thrives upon the voluntary contributions, the project managers must actively control the source code complexity in 

order to attract contributions from new developers. In a complex piece of code, it takes longer for a developer to 

determine the flow of logic leading to slower progress of the project (Ramanujan & Cooper, 1994). Cavalier (1998) 

pointed that the willingness of people to continue to contribute to a project is related to the progress that is made in 

the project. If a large number of activities do not seem to be moving forward, participants loose interest, leading 

them to leave the project. This leads to a higher likelihood of activities not being completed, and ultimately, the 

death of the project. Such projects become inactive over time and, further, fail to attract any contributions.  

The results of regression models 1b, 1c, 2b, 3b, and 3c, shown in Table 4, clearly illustrate that change in 

complexity has a significant impact on the change in number of bugs, change in time to fix bugs, and the change in 

number of contributions from new developers. Only when the complexity was found to decrease, its impact on 

number of contributions from the new developers was non-significant (Model 2c). The only interpretation would be 

that when complexity for a source code drops below a certain level, it becomes comprehendible to almost all the 

new developers making the variance in data to have insignificant impact on their contributions. This also, in a way, 

supports the argument that decreasing complexity increases the understanding of a source code, which leads to 

increased contributions from developers, especially new developers. 

Size of the source code was expected to have similar effects. Our analysis found strong effects of size on the number 

of bugs and the number of contributions from new developers. It is often argued that complexity and size are 

strongly correlated and that could lead to the problem of multicollinearity, which tends to inflate the regression 

coefficients. As mentioned earlier, we tested for the problem of multicollinearity by computing the variance inflation 

factor and found the multicollinearity within the permissible limits.  

We found that the number of downloads has strong effect on the reported number of bugs, time to fix bugs, and the 

number of contributions from new developers. The number of downloads indicate the popularity of a project and 

popular projects attract more user and developers (Krishnamurthy, 2002). As the number of user and developer 



Midha -Does Complexity Matter? 

community grows, the number of eyes watching the source code increases. As Eric Raymond (1999) repeatedly 

mentions “to many eyes, all bugs are shallow”. When source code is open and freely visible, users can readily 

identify flaws. The probability of finding a bug, thus, increases with the increase in the number of eyes. With these 

increases eyes, the number of hands working on code also increases leading to increased contributions from the new 

developers.  

The continued development of a project, represented by the age of a project, gives software the legitimacy, 

reputation and attention of the community. But in our study, age of a project did not show any significant effect, 

linearly or non-linearly, on any of the studied dependent variables. The reason could be because a large number of 

OSS projects on SourceForge are in the early stages of development. This could be attributed to the ease with which 

new projects can be started. A new project takes only few minutes to start, and need no thoughts about the outcomes. 

Such projects become inactive over time and have almost zero contributions from the developer community. It could 

be argued that age could bring the legitimacy, reputation, and attention only if the project is active. Another 

indication of continued development, the development status of a project, which is an indication of the activity, was 

also studied and was found to have a significantly positive impact on the number of commits from new developers 

only. In OSS literature, development status has been shown to have a positive impact on project’s popularity. Al 

Marzouq et al. (2005) argue that a project attracts more developers as the software becomes more stable. In turn, 

these new developers bring effort and contribution that improves the software. A growth cycle starts that feeds both 

the community and development of the software. This growth cycle creates a network effect that is associated with 

the size of the community.  

Lakhani and Wolf (2005) showed that developers receiving money in any form spend more time working on OSS 

than their peers. Similar results were shown by our data set. We found that the projects that have any form of 

sponsorship have higher number of contributions from new developers. We also found that such projects had less 

number of bugs and took lesser time to fix the bugs. This clearly indicates that developers are receptive to external 

stimuli such as monetary reward. Henkel (2006) illustrated a similar impact of external sponsorship on the 

development of applications for Linux, one of the most successful OSS project. Henkel noticed that most 

contributors in the field of embedded Linux are salaried or contract developers working for commercial firms. 

Google Summer of Code is already implementing organizational sponsorship to attract new developers (Google, 

2008). Developers joining this would want to advertise their skills to Google, a potential employer. However, the 

success of the program is yet to be determined.  

Developers’ skills and experience were tested using a surrogate measure. The change in team skills with the addition 

of new developers was found to have significant influence on the number of contributions from new developers and 

the time taken to fix bugs. However, both the control variables showed have impact in the direction opposite of what 

was expected. We believed that as the new developers increase, the number of contributions will increase and the 

time taken to fix bugs will decrease accordingly. The opposite directions of the relations indicate that with the 

increase in number of skills, the overall time to fix bugs increases and the total relative new contributions decrease. 

The logical reasoning would be that either developers are just joining the development team without actually 

contributing towards the project development or the amount of contributions are not proportionate to the number of 

skills they possess. This is consistent with commonly argued problem in OSS development that OSS development 

follows a Pareto law; i.e. a small amount of developers of around 20% is responsible for a huge amount of the work 

done (around 80%).  

Contributions  

The structural complexity can be measured for the current software release, and therefore serve as useful planning 

tool for the next release. In addition, it should be noted that the hypotheses regarding the structural complexity were 

supported by the models after having controlled for various factors. Therefore, the results found here cannot be seen 

as an artifact due to possible correlation with these other factors. 

The most important contribution of the paper is the strong support for the relation between the structural complexity 

and the contributions from new developers. Even though the results accord with the intuition, this is the first study to 

test the relationship empirically. Our models indicate that, on an average, OSS development projects with high 

structural complexity are significantly associated with increased bugs and repair time and decreased contributions 

from new developers. This suggests that project administrators may wish to implement guidelines for upper bounds 

of complexity during development and could recommend that software releases at no stage should exceed these 

guidelines. However, no such standard guidelines could be implemented for all software development projects. 
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Developers and administrators interested in software development need to set their own standards like NSA 

standard, which is derived from the analysis of 25 million lines of software written for NSA.  

The project administrators for OSS projects can learn the importance of controlling complexity. As recommended 

by Lehman (1985), the results suggest possible strategies for not only planning for controlling complexity, but 

actively attempting to reduce it. As software projects progress, they become more complex making it difficult to 

understand and manage (Fitzgerald, 2005). Project administrators also need to be careful about subsequent changes 

between different releases. Such changes can have strong impact on projects (Samoladas et al., 2004). If such 

changes are not well monitored, it could lead to the ripple effect. Ripple effects refer to the phenomena of changes 

made to one part of the software affecting other parts of the software. Lehman's operating system example clearly 

shows the ripple effect since the percentage of modules changed in Release 15 is 33% while the percentage of 

modules changed in Release 19 is 56%. The OSS development, which primarily thrives from voluntary 

contributions, must keep a close watch on the structural complexity of the program in order to attract contributions 

from new developers.  

Another important contribution of this research is for the organizations involved in or interested in getting involved 

in OSS development. Our results indicate that, on the contrary to OSS ideological beliefs, by offering a monetary 

reward in a specific project, organizations may successfully attract increased contributions from the OSS 

community.  

Limitations 

Although sample size is by far large enough to guarantee statistical validity, the choice of sample population might 

have affected the outcomes of the study. 

It could be argued that the change log only records the committer; whether the developer of the code is always 

acknowledged is uncertain. 

Do all bugs get reported? It is possible that some of bugs are fixed and are never reported. 
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