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Abstract

Tn an environment for developing and running paralle! programs, it
is not always possible to capture effectively the true behaviors of the
concurrently running processes. The degree of complexity resulted
from the parallel execution and the unavailability of the suitable
facilities contribute considerably to this situation. This paper
introduces the experiences of developing a tracing mechanism for
visually observing and studying the behaviors of a parallel automated
reasoning system. This visualizer is capable of displaying the
execution status of the mmltiprocessors as well as analyzing the
speedups and refated informations. It has been successfully
implemented on the SunView windowing environment, Also
discussed in the paper are the improvements upon a parallelism made
possible by employing the information obtained from the visualizer.

1 Imtroduction

The availability of the multiprocessors makes it possible to apply
parallelism to many interesting algorithms and improve the overall
performance. However, it is not straightforward to design and
implement an effective algorithm for a given parallel mechanism.
Among the difficulties, the high degree of complexity and the large
amount of information generated form the parallel executions are the
most apparent one. Since the processors are running in parallel,
their executions are blended together and their outputs are a mixture
of different types of informations. To sort out this composite of
output and solve this behavieral comprehension problem, one must
provide more information, such as the identification of a processor
which generated a particular output, or direct the output of different
processors to different places whick can be files or different areas of

the screen. However, the ouiputs are usually not well-organized and
none of these methods serves the purpose of easy understanding of
the parallel behaviors or debugging the parallel programs.

During our process of developing a paraltel antomated reasoning
system, the desire of obtaining the behavioral comprehension was
even stronger. The overall control over an automated reasoning
system is crucial for a successful result to be derived. For the
purpose of being able to direct an automated reasoning system to a
fruitful direction and therefore improve the speed of the system, the
details about the specific operations that each processer is carrying
out at a specific time is very helpful. The design and implementation
of a tracing fool (a visualizer) for monitoring the executions of each
processor and therefore allowing the comprehension of the parallel
behaviors is thus initiated.

The SUN workstation is chosen to be the platform for this
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visualizer. The paralle] automated reasoning system is implemented
in C on an Encore Multimax using a package for writing parallel
program. This package, form the Argonne Natiomal TLaboratory,
contains most of the constructs which is useful for implementing
parallel programs. The tracing message generated from the execution
of the parallel reasoning system is transported form the Encore
Multimax to the SUN and displayed in the SunView windowing
environmeni. This mechanism allows the researchers to viswally
observe the behaviors of the parallelism by observing what kind of
operations a particnlar process is doing during concurrent execution.
The characteristic of parallelization for a particular probiem can be
studied using this tool. This mechanism will not directly help the.
execution of the parallel sysiem in an obvious way, but will enhance
the knowledge of the researcher about the parallelism and
subsequently improve the algorithm.

Described in the next section is the paralle]l automated reasoning
system which is the program the visnalizer is teacing for. The
parallelism governing the execution of the automated reasoming
system is also presented. It also introduces the paraliel package
which is used for implementing our paralle] reasoning system. The
tracing tool itself is presented in Section three along with some
example, Section four discusses how this tool can help to improve
the parallelism. A summary of this paper is given in Section five.

2 Parallel Automated Reasoning

Automated reasoning offers an elegant framework for solving
several interesting but difficolt problems such as program
verification, logic circuit design, and solving some open questions in
mathematics. The success of these applications make automated
Teasoning a promising area in AL However, the process of reasoning
is, in general, combinatorially explosive. Effective control strategy
will lead the operations of a reasoning system towards a fruitful
direction, such as a proof or a desirable derivation. Unfortunately,
even with an effective control strategy, the search space of a
deductive proof grows exponentially. Applying parallelism is one of
the methods which may improve the performance of the automated
reasoning systems.

‘We take advantages of the explicit availability of the growing
search space of the connection graph representation to study different
kinds of paralielism systematically. A cornection graph is a schema
for representing a set of first-order clauses in a refutational proof
[Kow73]. The paraliel kink resolution [L1.90] of connection graphs
have been categorized into (1) global parallelism #@nd (2) local
parallelism. OR and AND parallelism are examples of local
parallelism. Local parallelism is switable for densely connected
graphs while global parallelism, such as DC parallelism [Log87], is
appropriate for larger sparsely connected graphs.
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The basic operation in a connection graph refutation is link
resolution, in which a link is selected and the pair of clauses incident
to the link is resolved. In parallel link resolution each process is
responsible for resolving a link: create a resolvent, update the
inherited links, and finally remove the Yink being resolved. Consider
resolving a link conmecting to CI and C2, The information on the
inherited links are obtained by reading both CI and C2. The process
then updates a resolvent and modifies the inherited clauses to
establish the inherited links between the resolvent and the inherited
clause. For more details of connection graph refutation refer to
[Kow75, SPR2, SPR4].

Practicing different strategies of selecting parallel links resulted
in different parallelism. For example, in DC parallelism, links
connecting fo distinct clanses are resolved concurrently, while, in OR
parallelism, links connecting to a specific literal, called sun literal,
are resolved concurrently. The links selected by a particular
parallelism to solve concurrently are called parallel links. Consider
the connection graph of Figure 1. The parallel link sets of the graph
that can be solved by DC parallelism include {1,5}, {2,6,4},
{1,6,7}, {38}, while the parallel links of the OR parallelism will be
link number 4,5,7, and 8 if the clause C is selected as the sun literal.
For a successful application of any parallelism, it is essential to have
an -algorithm that obtains the parallel links with a minimum
overhead, In extended DC parallelism, parallel links are selected by
partitioning the graph such that links that are selected one from each
partition form parallel links. Most of the examples in this paper,
used for explaining the functions of the tracér, are selected from
running extended DC parallelism.
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Figure 1: A Connection Graph example.

Logical inconsistency has been observed when practicing each
different parallelism [Log85, HKKS8!1]. By logical inconsistency, we
mean the derivation of both the empty clause and the empty graph
from the same graph when parallel links are resolved concurrently.
The derivation of the empty clause means that the hypothesis is
proved while the derivation of the empty graph means that the same
hypothesis is not proved. Logical inconsistency occurs in parallel
link resolution becanse paralle] processes access and manipulate the
same shared resource concurrently.

The necessary and sufficient conditions for a correct parallel link
resolution can be easily satisfied by only allowing the access to the
shared resources to happen within a critical section. The possible
failure of the sufficient condition suggests that it may be possible to
have a circular waiting and hence a deadlock situation. The formal
details analyzing the possible deadlock sitnations in different
parallelisms were shown in [LL91]. We vse a higher Ievel parallel
proof procedure to refer to all the different parallelism which will
select their parallel links based on the employing parallelism and
solve these parallel links concurrently.
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2.1 Task Pooling

In parallel processing on shared memory system, there are
usually tasks to be distributed, or assigned to different processes for
solving, The scheduling of the task distribution can be done in
dissimilar fashions. In pre-scheduling, the assignments of tasks to
processes are decided before the processes actually started working,
while, in self-scheduling, the assignings are performed "on-the-go."
A simple example of different scheduling would be the addition of
two matrices. Pre-scheduling would require designated indexes to be
assigned to identified processes before the addition actually begin.
For example, the addition of two 3 X3 matrices would assign each
row to different process in pre-scheduling, while, in self-scheduling,
each process may dynamically pick up one element of the matrix for
addition and then come back to pick up next available one, without
a pre-determined order,

For the purpose of executing our parallel algorithm, it is
necessary to use the self-scheduling approach because the tasks are
not pre-determinable. There is no way to know, before hand, which
link is going to be resolved and which nodes are the inherited nodes.

It is therefore necessary to distribute them once they become

available.

It is adequate to use task pooling to realize the self-scheduling
mechanism. Before describing the task pooling, we first identify the
master process and the slave processes. The *master process’, which
1s the original process created by the operation system, is responsible
for creating and depositing tasks into the pool, while the set of *slave
processes’ are responsible for link resolution.

Master
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Init Slave Slave Slave
‘TaskPool
‘ Work( ) || " Work({ ) " " Work( ) ”
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Figure 2: The conceptual diagram of the task pooting.

In task pooling, the tasks are created and deposited into a rask

pool. Figure 2 illustrates the relationships between the master
process and the slave processes. The master creates the slaves and
then places initial tasks into the task pool. After depositing tasks into
the task pool, the master picks up a task from the task pool and
behaves like a slave in terms of resolving links. The master joing
with the slaves to solve the problems by calling the same subroutine,
Work( ), called by the slaves, Tasks also can be created, and
deposited into the task pool, after all the processes starts working.
If a process cannot get a task because the task pool is empty, it
should wait, somewhere inside the monitor, until all the processes
are waiting.

2.2 The Macro Package

Although primitive iperations are always available for most of
the parallel machines, they are usually low level and insufficient for
parallel operations that reguires more complicated control and
coordination. A more sophisticated construct is needed for complex
operations such as task pooling in our algorithm.
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The parallel proof procedure discussed in this paper is
implemented using a macro package [BBD87] of Argonne National
Laboratory {call it MP from now on) which provides rich constructs
for paraliel programming. There are several reasons for using MP.
First, it is easier to encode the parailel programs than using the
-primitives of the machine, provided that a proper construct that well
matched to the problem is used. Before a programmer can master the
skill of prograrming in parallel, extensive practice must acquired.
Using MP can organize and standerize the parallel concepts that
enable the user to write logical or structural parallel programs
without low level planning.

Another advantage, as claimed by Argonne, is that MP will not
impair the performance of parallel program. As evidented in our
experiment, this is an important feature any parallel package should
possess. Finally, MP is portable. The parallel constructs provided in
the macro package can be viewad as an intermediate language for
parallel programming. Thus a program developed with the package
can run on several parallel machines, provided that one uses the
appropriate macro expansion for the selected underlying parallel
machine.

In this research, we use the monitor construct of the task pooling
mechanism. A monitor encapsulates the data structures defined
within the monitor and provides an exclusive access to the
procedures defined in it. Two types of monitors are used in this
implementation: the ASKFOR monitor and the BARRIER monitor.
In order to understand the parallel-praof procedure introduced in the
next sub-section, these two monitors, along with their syntax, are
shortly described below.

ASKFOR monitor: The task pooling is maintained by an *ASKFOR’
monitor which stands for a monitor to which processes ’ask for’
an available task from the pool. To ask for a task from the pool,
the operations inside the ASKFOR guarantee exclusive access to
the pool of tasks. A call to the ASKFQOR monitor, appears as

ASKFOR(task_identifier);
in the pseudo codes; will return the next available task to the
caller. It also maintains ‘delay’ and ‘continue’ operation for
processes to wait inside the monitor.

BARRIER monitor: The synchronization between processes can be
achieved by another monitor of the package called the
BARRIER monitor, A process that reaches a BARRIER
statement, appeared as

: BARFIER;

in the pseudo codes, will stay in the associated queue until all

the other processes reach a BARRIER. At this time they are

released all together and the concurrent operations proceed. This

barrier synchronization allows the alignment of processes at a

specific point during the concurrent execution.

The details conceming the implementation and the utilization of
these monitors are going to be discussed elsewhere,

2.3 Parallel Proof. Proceﬂure

The overall control of the automated reasoning system using

- connection graphs can be described by a procedure called “parallel-

proof." The pseudo codes of this procedure are written in Figure 3.

This procedure is general to all the parallelisms, which means it can

be applied to a pariicular parallelism with ¢nly minor modificitions
to its details while keeping the high level siructure the same,

The parallel proof procedure is called by a master process which
controls the proof procedures ard monitors the termination condition,
The parallel-proof procedure creates NV slave processes (line 3) where
N is usually one less than the number of processors in the system.
The proof procedure terminates (ling 4) successfully wheti the empty

1993 Pan Pacific Conference on Information Systerns

I. procedure parallel-prool;
/* This procedhere is ealled by Lhe master process *f
2. { Initialize the lermination conditions;
3 Create ¥V Slave processes; /* they initially wail on 2 BARRIER */
. while (lerninaling condition is not trae} {
5. Creale parallel tasks;
6. Neposit them inlo the task pool;
7. BARRIEI; /* Release the Slave processes™ /
8. Worl; /* Join the slaves to work */
9 Apply simplilication such as remnval of subsumed clausos;

0.}
11, Terminate all the Slave processes;

12.}

13. process Slave;

15.  while (terminaling condition is not Lrue) {
17, BARRIER;

16. Work;

8.}

19.F

20. procedure Work;
21, { while (the task pool is not emply) {

22.  ASKFQR{task); /* Gel a task from the task paol ¥/
23. (iF (task # null) resolve-update(task);

4.}

25. }

Figure 3; The Parallel-Proof Procedure of DC parallelism.

clanse is derived, or it terminates unsuccessfully when the necessary
conditions for refutation failure are satisfied. The necessary
conditions for refutation are: there must be af least one positive and
one riegative clause in the giaph, and the graph cannot collapse.
Ongce the parallel links are obtained (line 5), they are deposited
into a task pool that is used for processes scheduling, Notice that
different selection of parallel links will result in different parallelism.

When all the processes reach the BARRIER, they will be released
together. These released slave processes will call a procedure *Work’
(line 16) where it repeatedly grabs a task (a link) from the task pool
by calling the ASKFOR monitor (line 21) and, if the ASKFOR
returns a valid task, resolves the link by calling a process called
"resolve-update” (line 22), This resolve-update procedure, appeared
in [Log87], stands for the codes that is used to solve the tasks at
hand, and it may match to different content for different parailelism,

While the slave processes are resolving the links, the main
process also gets a Hok from the task pool and resclves it by calling
the procedure *Work’ (line ), instead of waiting. Before all the
processes complete their works, if a process cannot acquire a2 link
from the task pool by calling ASKFOR, it will be placed an the
queue associated with that ASKPOR monitor. The- ASKFCOR will
release all of the processes together when all the processes are

waiting in the queue, which will happen when all the links in the
task pool have been resolved. This synchronization mechanism
provided by the ASKFOR monitor will prevent the master process
{rom starting the simplification (line 9) prematurely before all the
slaves finish their work. That is to say, the macro package is capable
of blocking all the processes in the monitor before all the tasks in the
task pool have been finished, such that no process can starts another
rounid of ‘works before the works in the present round have been
completed. After ali the processes finished their "Work’, the slaves
will go back to the BARRIER (line 15) while the master proceeds
through the simplifications (line 9) and goes back to create parallel
links for tlie next round.
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Figure 4: A particular example of the output of the trace mechanism.

3 The Visualizer

To trace the execution of the parallel processors, it is required
that the timing information about the details of each processor’s
execution be generated. The instructions for acquiring the timing
information are machine dependent. To get the timing on Encore
Multimax, a

timer_fnit( )

instruction must be set initjally to enable a 32-bit, free running,
microsecond timer. It must be called before the initialization of all
the concurrent processors in order to allow each of them to access
the timer successfully. Subsequently, in the parallel program, the
current value of the microsecond timer can be returned by a

timer_geti{ }

instruction. To acquire the exact execution time of a block of
instructions, the difference of the time between the start and the end
of the block, let it be *diff’, is calculated as following.

s = timer_gst{ );
(block of instructions)

8 = timer_gat! );
diff = e -5

The granularity of the block of instructions is assumed to be
large enough such that the time of executing the timer_get{ }
instruction will not cause any notable interference with the paralie]

programs’ execution. Fortunately, timer_gat{ } is an efficient machine
instruction and its execution time is negligible.

After the timing informations are available, they must be
recorded in a data structure and then saved in a file. The timing
information cannot be printed out directly to the output when the
paralle]l programs are executing because the I/O will interferes
seriously with the concurrent executions of the parallel programs. In
order to record all the timing information, a specially designed data
structure is maintained in the shared memory. This cause a large
amount of valvable shared memory space to be occupied by the data

structure for maintaining the timing information. Unfortunately, this
is inevitable.

All the data maintained in the timing structure is dumped to a
file after all the parallel executions are terminated. Then, these data
are shipped to the SUN workstation for a graphical trace. This
visualizer is written in C in the SunView windowing environment.
Figure 4 shows an example oulput created by the tracer in which
different tasks of each processor at different time are presented in
bar chart form, The examples from running extended DC parallelism
is going to be used for discussion after this point. The trace outpuc
in extended DC parallelism includes following sub-tasks:
partitioning, askfor, resolve and update the resolvent, and waiting to
resolve dead-lock. Each sub-task is shown in a different shaded

pattern. Each round is separately scaled such that it can fit in the
whole screen while maintaining the relative length of each sub-task,

In the trace, the times taken by the partitioning algorithm are
represented by an area starting at the beginning of the time axis.
This is indicating the fact that the overhead is common to all the
processors because, when the master processor is partitioning the
connection graph, all the slaves are waiting on the barrier and doing
nothing,

Since the macro package is very efficient, in the sense that the
ASKFQR operations take a small amount of time compared with the
overall execution time, the time taken by ASKFOR is relatively short
or negligible. Usually, the first invocation of the ASKFOR monitor
requires some set up time and appeared longer than those happenad
at the later stage of the trace. Those ASKFORs after the first one
usually take a negligible amount of time and hence they appear as
vertical lines.

Those overhead (partitioning, askfor, and deadlocks) are
subtracted form the duration of the link resolutions to obtain the time
required to perform the useful resolution operations. The areas
representing the time spent on solving deadlocks are drawn inside the
areas representing the time taken for resclution and update as in
indication that the resolve-deadlock procedure is called within the
resolution procedure. This tracer can help us to visually observe and
realize the behavior of the extended DC paralielism.

To get an ingight of the parallel-proof procedure we have
defined the following speedups: Theoretical Speedup (TSP), Optimal
Speedup (OSP), and Actual Speedup (ASP). TSP is calculated
ignoring all the overheads involved in each iteration of the extended
DC parallelism. OSP is calculated by taking all the overheads except
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the time taken for creating the partitions. The ASP is the real
speedup after considering all the overheads including the partitioning
time.

The tracer can be used to graphically explain how the speedups
are calculated. During an iteration of an extended DC parallelism,
suppose processor { is assigned a total of # partitions and
Lpseeesbipyens, &, are the useful times taken for resolving all the links
in each of these partitions, then the actual speedup (ASP) is

E,’;=1(tn1 + tng + A tﬂ,n)/e

where p is the number of processes used and e is the elapsed time of
overall resolution. Note here that each #, does not include any
overhead. It means that the ASP is the real speedup after taking ail
the overhead into consideration, including the time for partitioning,

If the time taken for partitioning is zero, although it is
impossibie, the resulted speedup will be an optimal, respecting to the
partitioning time. We call_ the speedup obtained based on this
assumption as optimal speedup (OSP). Notice that the word opfimal
is used with respect to the effectiveness of the partitioning algorithm.
Suppose the partitioning time is g, then the OSP is given by the
expression

Drei(tn +tnz + o bt ) /(e — g)

1t is actually representing the speedup with the assumption that
partitioning operations take no time at all.

The theoretical speedup, TSP, is calculated without considering
any kind of overhead. Although this is impossible in the real world,
it helps to understand the performance of the proposed algorithm. It
is calculated as the ratio of the summation of all the useful work and
the time taken by the longest stream of the useful work. Note here
that no more than one processor is allowed to work on a single
partition. The time taken, m, for the longest stream of the useful
work is given by:

m = maz{(ta 4+t + ...+ tnr,)
Thus the theoretical speedup is given by

forn=1...p}

Ei:l(tn] + tnz + s + t,—,,"}/m
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Figure 5: A simple case for explaining the calculation of the speedup.

To explain the caleulations using the visualizer, consider the
execution trace shown in Figure 5. There are two processes, the
Master, which is assigned three partitions, and the Slave I which is
assigned two partitions, Therefore, p = 2 with7; = 3, and 7, = 2.
The times used for resolving these partitions by the process 1 arid 2
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are respectively #,,,2,,,2,; and 2, t,, as indicated in the Figure 5. The
elapsed time ¢ is scaled from point 0 to 100 and the maximum
summation of the useful work m is

maz{(tyy + f12 + t1a), (b +t22)}] =in + i+ i1
The TSP is thercfore

E1%.:1 (tnl + t'n2 +... + iurn)/m
=ty +t,+ t13) + (tay + ta2)}/m
' =174

If 2y + t;; + 153 = 1y + 13, the theoretical speedup in this
example will be equal to 2, but it is very unfikely to happen in
practice. After including the system overhead, askfor overhead, and
deadlock overhead, without considering the partitioning overhead,
the OSP is calculated as

Dttt ) fe—g

= ((t11 + 112+ f13) + (tor +1a2)) /e — g
=1.69

Finally, the ASP is simply

Ei—-l( nl +tn2 + LR + tnr.-.)/e

= ((ti1 +tie + tis) + (I + 2)) /e
= 1.46

4 Improving the Parallelism Using the
Visualizer

This section shows how the visualizer can help to realize as well
as improve the parallelism by using examples in extended DC
parallelism.

‘When the number of processors in use is increased, the speedup
usually is expected to increase. However, when the number of tasks
in not Iarge enough, this might not be the case, Using the tracer, one
of the exception tan be depicted in Figure 6 and 7. Whén four
processors are used instead of three, the works are mose sparsely
distributed therefore lowered the speedup. When the number of
processors keep growing (Figure 8), there are simply not enough.
work available and the processors without being assigned any task
are sitting idle all the way. Figure 9 and 10 are showing the situation
for another example when number of processors is increased from

five to six. It is simply saying that one should use more processors
only when there are enough works to do.

How, exactly, the tracer can improve the parallelism? The
following example shows how the decision of a- series of

modifications upon the extended DC parallelism can be made by
examining the output created by the tracer. The original parallel
proof procedure solves thie links of a partition without resclving any-
new links of the partition. This will result in a small granularity and
subsequently a relatively large paititioning time. Figure 11 shows a
trace of the program execution where the percentage of partitioning
time (8.49%) is relatively large. This is because the gramularity of
the useful works are not large enough and the partitioning time is
relatively large and becomes a noticeable factor. ‘To improve the
granularity, we have to put more work into the partition, which can
be done by solving not only the original links of a partition but also
the new links inserted into the partition. This will cause the partition
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Figure 7: Increasing the number of processer from three to four is
actually decreasing the speedup.

to expand along with the solving of the links in the partition.
Therefore, in medifying the proof procedure, we allow each partition
to expand without any restriction and to continue until all the links
are solved within a partition.

Under the policy of allowing the expansion of a partition, the
elapsed time of resolving each partition is extended a great deal
therefore the overhead are become relatively insignificant, When we
allow a partition to expand, the partitioning overhead becomes small
compared to the useful work. In Figure 12, the Master and the Slave
1 are working on partitions that expanded to large sizes and the
overhead percentages are lowered, for example, to 0.05% for ’ask

for’ and 1.2% for partitioning. Compare Figure 12 with Figure 11
which is executed under the original parallel proof procedure. The
percentage time of partitioning operation is relatively lowered
significantly.

Now that the problem of significant partitioning time is solved.
However, another problem is revealed when we examine the trace
show in Figure 13. This trace depicts the situation when the uneven
sizes of partitioning happens. An evened amount of works should be
distributed among parallel processors such that a best speedup can be
reached. Unfortunately, not every partition has the opportunity to
grow at the same rate and hence some processors may complete their
work earlier than the others. In Figure 13, the Master, the Slave 1,

- J

Figure 9: An execution with five processors available.

and the Slave 2 are exhausted their tasks and the idling is affecting
the speedup considerably. This problem of uneven distribution can
be solved by setting up a threshold value of maximum idling
processors, When the threshold value is reached, it means a pre-
decided number of processors are idling, all the parallel processors
at this point will relinquish its partition and finish. In this situation
the resolution of over-expanded partitions ‘can be stopped
immediately and the possible uneven distribution caused by partition
expansion will not be able to happen.

Comipare Figure 13 and Figure 14 where they are working on
the same connection graph with the same number of processors, but

Figure 13 represents the trace without setting up the threshold value
while 14 represents the trace with the threshold value. Obviously, the
achieved improvement is a result of the fact that the threshold value
becames effective when there are too many idling processors. The
break-even point between partition expansion and uneven distribution
is the key to a better resource utilization.
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Figure 10: Increase the number of processaors from five to six will not
help.

[Lawttetng Feiu:

Figure 12: The partitioning overhead is relatively lowered when the
partitions are allowed to expand.
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Figure 11: The partitioning time is relatively large.

S Summary

In general, to completely comprehend the true behavior of the
parallel processors in. a parallel environment is not usually
achigvable, Simultancous parallel operations make the task of
analyzing the parallelism very difficult, This paper discussed a
tracing tool (a visualizer) which is successfully developed as a part
of a parallel automated teasoning program, This visualizer can bé
modified to trace the output of any other parallel systems as long as
it can generate the timing information fo]lowmg the proper format.
This visualizer, as demonstrated, is capable of helping the
researchers to rea]ize what hiave redlly happened among those
pa.ra.llel processors, and, most 1mportantly, assisting the des1gncrs to
improve their algorithms.

Figure 13; Uneven sizes of partitioning may cause processors to be
idled.
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